首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
It is well known that in certain disease states, including ischemia and Alzheimer's disease, neurodegeneration occurs in the hippocampus and that vulnerability to neuronal death is area dependent. The present study investigated the mechanism of area-dependent vulnerability to neuronal death under endoplasmic reticulum stress conditions induced by tunicamycin (TM), using rat organotypic hippocampal cultures (OHC) and hippocampal slices. Analysis of propidium iodide uptake showed that TM-induced neuronal death in a concentration-dependent manner (20-80 microg/mL) and that the rank order of vulnerability among hippocampal subregions was dentate gyrus (DG)>CA1>CA3. Results of immunohistochemistry using hippocampal slices also showed that procaspase-12-positive cells in area CA3 were significantly fewer than those in area CA1 and the DG. Moreover, procurement of neurons in areas CA1, CA3 and the DG by laser microdissection, followed by Western blot analysis, also revealed that the level of procaspase-12 in area CA3 was significantly lower than those in area CA1 and the DG. Pretreatment with z-ATAD-fmk, a cell-permeable caspase-12-selective inhibitor significantly attenuated the TM-induced increase of PI fluorescence in the CA1 and DG subregion but not in area CA3. These results suggest that TM elicits subregion-specific neuronal toxicity in OHC and that the vulnerability to TM-induced toxicity is at least partly dependent on the expression level of endogenous procaspase-12 in each area of the hippocampus.  相似文献   

3.
Ketamine is widely used as an anesthetic, analgesic, or sedative in pediatric patients. We reported that ketamine alters the normal neurogenesis of rat fetal neural stem progenitor cells (NSPCs) in the developing brain, but the underlying mechanisms remain unknown. The PI3K‐PKB/Akt (phosphatidylinositide 3‐kinase/protein kinase B) signaling pathway plays many important roles in cell survival, apoptosis, and proliferation. We hypothesized that PI3K‐PKB/Akt signaling may be involved in ketamine‐altered neurogenesis of cultured NSPCs in vitro. NSPCs were isolated from Sprague‐Dawley rat fetuses on gestational day 17. 5‐bromo‐2′‐deoxyuridine (BrdU) incorporation, Ki67 staining, and differentiation tests were utilized to identify primary cultured NSPCs. Immunofluorescent staining was used to detect Akt expression, whereas Western blots measured phosphorylated Akt and p27 expression in NSPCs exposed to different treatments. We report that cultured NSPCs had properties of neurogenesis: proliferation and neural differentiation. PKB/Akt was expressed in cultured rat fetal cortical NSPCs. Ketamine inhibited the phosphorylation of Akt and further enhanced p27 expression in cultured NSPCs. All ketamine‐induced PI3K/Akt signaling changes could be recovered by N‐methyl‐d ‐aspartate (NMDA) receptor agonist, NMDA. These data suggest that the inhibition of PI3K/Akt‐p27 signaling may be involved in ketamine‐induced neurotoxicity in the developing brain, whereas excitatory NMDA receptor activation may reverse these effects  相似文献   

4.
Accumulating evidence has reported that microRNA‐144‐3p (miR‐144‐3p) is highly related to oxidative stress and apoptosis. However, little is known regarding its role in cerebral ischemia/reperfusion‐induced neuronal injury. Herein, our results showed that miR‐144‐3p expression was significantly downregulated in neurons following oxygen–glucose deprivation and reoxygenation (OGD/R) treatment. Overexpression of miR‐144‐3p markedly reduced cell viability, promoted cell apoptosis, and increased oxidative stress in neurons with OGD/R treatment, whereas downregulation of miR‐144‐3p protected neurons against OGD/R‐induced injury. Brahma‐related gene 1 (Brg1) was identified as a potential target gene of miR‐144‐3p. Moreover, downregulation of miR‐144‐3p promoted the nuclear translocation of nuclear factor erythroid 2‐related factor 2 (Nrf2) and increased antioxidant response element (ARE) activity. However, knockdown of Brg1 significantly abrogated the neuroprotective effects of miR‐144‐3p downregulation. Overall, our results suggest that miR‐144‐3p contributes to OGD/R‐induced neuronal injury in vitro through negatively regulating Brg1/Nrf2/ARE signaling.  相似文献   

5.
Neonatal hypoxic-ischemic encephalopathy is one of the leading causes of death in infants. Increasing evidence indicates that oxidative stress and apoptosis are major contributors to hypoxic-ischemic injury and can be used as particularly promising therapeutic targets. Platycodin D (PLD) is a triterpenoid saponin that exhibits antioxidant properties. The aim of this study was to evaluate the effects of PLD on hypoxic-ischemic injury in primary cortical neurons. We found that oxygen-glucose deprivation/reperfusion (OGD/R) induced inhibition of cell viability and cytotoxicity, which were attenuated by PLD treatment. PLD treatment inhibited oxidative stress induced by OGD/R, which was evidenced by the reduced level of reactive oxygen species and increased activities of catalase, superoxide dismutase, and glutathione peroxidase. Histone-DNA enzyme-linked immunosorbent assay revealed that apoptosis was significantly decreased after PLD treatment in OGD/R-treated cortical neurons. The increased bax expression and decreased bcl-2 expression induced by OGD/R were reversed by PLD treatment. Furthermore, PLD treatment caused the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in OGD/R-stimulated cortical neurons. Suppression of this pathway blocked the protective effects of PLD on OGD/R-induced cell injury. These findings suggested that PLD executes its protective effects on OGD/R-induced cell injury via regulating the PI3K/Akt/mTOR pathway in cortical neurons.  相似文献   

6.
Neurotrophins, activating the PI3K/Akt signaling pathway, control neuronal survival and plasticity. Alterations in NGF, BDNF, IGF-1, or insulin signaling are implicated in the pathogenesis of Alzheimer disease. We have previously characterized a bigenic PS1×APP transgenic mouse displaying early hippocampal Aβ deposition (3 to 4 months) but late (17 to 18 months) neurodegeneration of pyramidal cells, paralleled to the accumulation of soluble Aβ oligomers. We hypothesized that PI3K/Akt/GSK-3β signaling pathway could be involved in this apparent age-dependent neuroprotective/neurodegenerative status. In fact, our data demonstrated that, as compared with age-matched nontransgenic controls, the Ser-9 phosphorylation of GSK-3β was increased in the 6-month PS1×APP hippocampus, whereas in aged PS1×APP animals (18 months), GSK-3β phosphorylation levels displayed a marked decrease. Using N2a and primary neuronal cell cultures, we demonstrated that soluble amyloid precursor protein-α (sAPPα), the predominant APP-derived fragment in young PS1×APP mice, acting through IGF-1 and/or insulin receptors, activated the PI3K/Akt pathway, phosphorylated the GSK-3β activity, and in consequence, exerted a neuroprotective action. On the contrary, several oligomeric Aβ forms, present in the soluble fractions of aged PS1×APP mice, inhibited the induced phosphorylation of Akt/GSK-3β and decreased the neuronal survival. Furthermore, synthetic Aβ oligomers blocked the effect mediated by different neurotrophins (NGF, BDNF, insulin, and IGF-1) and sAPPα, displaying high selectivity for NGF. In conclusion, the age-dependent appearance of APP-derived soluble factors modulated the PI3K/Akt/GSK-3β signaling pathway through the major neurotrophin receptors. sAPPα stimulated and Aβ oligomers blocked the prosurvival signaling. Our data might provide insights into the selective vulnerability of specific neuronal groups in Alzheimer disease.  相似文献   

7.
The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy.  相似文献   

8.
MicroRNAs (miRNAs) have been suggested as pivotal regulators in the pathological process of cerebral ischemia and reperfusion injury. In this study, we aimed to investigate the role of miR‐135a in regulating neuronal survival in cerebral ischemia and reperfusion injury using an in vitro cellular model induced by oxygen‐glucose deprivation and reoxygenation (OGD/R). Our results showed that miR‐135a expression was significantly decreased in neurons with OGD/R treatment. Overexpression of miR‐135a significantly alleviated OGD/R‐induced cell injury and oxidative stress, whereas inhibition of miR‐135a showed the opposite effects. Glycogen synthase kinase‐3β (GSK‐3β) was identified as a potential target gene of miR‐135a. miR‐135a was found to inhibit GSK‐3β expression, but promote the expression of nuclear factor erythroid 2‐related factor 2 (Nrf2) and downstream signaling. However, overexpression of GSK‐3β significantly reversed miR‐135a‐induced neuroprotective effect. Overall, our results suggest that miR‐135a protects neurons against OGD/R‐induced injury through downregulation of GSK‐3β and upregulation of Nrf2 signaling.  相似文献   

9.
Leptin and insulin have overlapping intracellular signaling mechanisms and exert anorexigenic actions in the hypothalamus. We aimed to determine how chronic exposure to increased leptin affects the hypothalamic response to a rise in insulin. We analyzed the activation and interactions of components of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the hypothalamus of rats treated icv for 14 days with leptin followed by a central injection of insulin and killed 15 min later. Insulin increased glycemia and chronic leptin reduced this insulin induced rise in glucose. Leptin decreased the association between the insulin receptor beta chain (IRβ) and insulin receptor substrate 2 (IRS2), augmented the association between Janus kinase 2 and IRS2, increased levels of the catalytic subunit of PI3K and pAkt-Ser473 and decreased forkhead box O number 1 levels. Insulin reduced the association between suppressor of the cytokine signaling 3 and IRβ, increased IRβ-IRS2 association and pAkt-Thr308 levels, with chronic leptin exposure blunting these effects. In conclusion, chronic exposure to leptin decreases the central response to insulin by increasing suppressor of the cytokine signaling 3 association to IR, which inhibits insulin signaling at the level of interaction of its receptor with IRS2 and activates PI3K by promoting Janus kinase 2-IRS2 association. Thus, these results suggest that this mechanism could be a target for the treatment of insulin resistance.  相似文献   

10.
11.
Fingolimod (FTY720) is used as an immunosuppressant for multiple sclerosis. Numerous studies indicated its neuroprotective effects in stroke. However, the mechanism remains to be elucidated. This study was intended to investigate the mechanisms of phosphorylated FTY720 (pFTY720), which was the principle active molecule in regulating astrocyte‐mediated inflammatory responses induced by oxygen‐glucose deprivation (OGD). Results demonstrated that pFTY720 could protect astrocytes against OGD‐induced injury and inflammatory responses. It significantly decreased pro‐inflammatory cytokines, including high mobility group box 1 (HMGB1) and tumour necrosis factor‐α (TNF‐α). Further, studies displayed that pFTY720 could prevent up‐regulation of Toll‐like receptor 2 (TLR2), phosphorylation of phosphoinositide 3‐kinase (PI3K) and nuclear translocation of nuclear factor kappa B (NFκB) p65 subunit caused by OGD. Sphingosine‐1‐phosphate receptor 3 (S1PR3) knockdown could reverse the above change. Moreover, administration of TLR2/4 blocker abolished the protective effects of pFTY720. Taken together, this study reveals that pFTY720 depends on S1PR3 to protect astrocytes against OGD‐induced neuroinflammation, due to inhibiting TLR2/4‐PI3K‐NFκB signalling pathway.  相似文献   

12.
Astaxanthin (ATX), which is the most abundant flavonoid in propolis, has previously shown neuroprotective properties against cerebral ischaemia‐induced apoptosis. However, the mechanisms by which ATX mediates its therapeutic effects are unclear. At present, we explored the underlying mechanisms involved in the protective effects of ATX via the phosphoinositide 3‐kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling pathway in SH‐SY5Y cells. The PI3K/Akt inhibitor LY294002 and GSK3β inhibitor LiCl were employed in this study. Pre‐treatment with ATX for 24 hours significantly decreased the oxygen and glucose deprivation (OGD)‐induced viability loss, reduced the proportion of apoptosis and regulated OGD‐mediated reactive oxygen species (ROS) production. Furthermore, ATX suppressed OGD‐caused mitochondrial membrane potential and decomposition of caspase‐3 to cleaved caspase‐3, and heightened the B‐cell lymphoma 2 (Bcl‐2)/Bax ratio. PI3K/Akt/GSK3β/Nrf2 signalling pathway activation in SH‐SY5Y cells was verified by Western blot. ATX and LiCl treatment raised the protein levels of p‐Akt, p‐GSK3β, nucleus Nrf2 and haeme oxygenase 1 (HO‐1). However, these protein expression levels decreased by treatment of LY294002. The above in vitro data indicate that ATX can confer neuroprotection against OGD‐induced apoptosis via the PI3K/Akt/GSK3β/Nrf2 signalling pathway.  相似文献   

13.
In order to investigate the neuroprotection of insulin in retinal neurons,we used retinal neuronalculture as a model system to study the protective effects of insulin against H_2O_2-induced cytotoxicity andapoptotic death.Primary retinal neuronal cultures were grown from retinas of 0-2-day old Sprague-Dawleyrats.Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay.Apoptotic cell death was evaluated by the TdT-mediated digoxigenin-dUTP nick-end labeling assay,and byDNA laddering analysis.Phosphoinositide 3-kinase (PI3K) activity was measured using phosphoinositide4,5-bisphophate and [γ-~(32)P]ATP as substrate.Western blot analysis with anti-phospho-Akt (pS473) antibodywas performed to examine the level of phosphorylated Akt.We observed that treatment with 100μM H_2O_2for 24 h significantly decreased cell viability and induced apoptotic death of retinal neurons,and that pretreatmentwith 10 nM insulin significantly inhibited or attenuated H_2O_2-induced cytotoxicity and apoptosis.Pretreatmentwith LY294002,a specific PI3K inhibitor,abolished the cytoprotective effect of insulin.Insulin also stronglyactivated both PI3K and the downstream effector Akt.These results suggest that insulin protects retinalneurons from oxidative stress-induced apoptosis and that the PI3K/Akt signal pathway is involved in insulin-mediated retinal neuroprotection.  相似文献   

14.
Autophagy, a type II programmed cell death, is essential for cell survival under stress, e.g. lung injury, and bone marrow‐derived mesenchymal stem cells (BM‐MSCs) have great potential for cell therapy. However, the mechanisms underlying the BM‐MSC activation of autophagy to provide a therapeutic effect in ischaemia/reperfusion‐induced lung injury (IRI) remain unclear. Thus, we investigate the activation of autophagy in IRI following transplantation with BM‐MSCs. Seventy mice were pre‐treated with BM‐MSCs before they underwent lung IRI surgery in vivo. Human pulmonary micro‐vascular endothelial cells (HPMVECs) were pre‐conditioned with BM‐MSCs by oxygen‐glucose deprivation/reoxygenation (OGD) in vitro. Expression markers for autophagy and the phosphoinositide 3‐kinase/protein kinase B (PI3K/Akt) signalling pathway were analysed. In IRI‐treated mice, administration of BM‐MSCs significantly attenuated lung injury and inflammation, and increased the level of autophagy. In OGD‐treated HPMVECs, co‐culture with BM‐MSCs attenuated endothelial permeability by decreasing the level of cell death and enhanced autophagic activation. Moreover, administration of BM‐MSCs decreased the level of PI3K class I and p‐Akt while the expression of PI3K class III was increased. Finally, BM‐MSCs‐induced autophagic activity was prevented using the inhibitor LY294002. Administration of BM‐MSCs attenuated lung injury by improving the autophagy level via the PI3K/Akt signalling pathway. These findings provide further understanding of the mechanisms related to BM‐MSCs and will help to develop new cell‐based therapeutic strategies in lung injury.  相似文献   

15.
阿尔茨海默病(Alzheimer’s disease, AD)是一种以进行性痴呆为主要特征的中枢神经系统退行性疾病,其认知功能障碍可能与Ⅱ型糖尿病(type 2 diabetes, T2DM)诱发的胰岛素抵抗所损伤的PI3K/Akt胰岛素信号级联通路相关。胰岛素是调节机体新陈代谢的重要激素,通过与神经细胞表面的胰岛素受体结合激活PI3K/Akt信号通路,以调控葡萄糖、脂质的代谢。任何中间媒介功能紊乱所导致的脑胰岛素水平和胰岛素敏感性的降低都会损坏PI3K/Akt信号通路,诱发脑能量代谢障碍、Aβ沉积、Tau蛋白过度磷酸化,引起并加重AD认知功能障碍。因此,本文以PI3K/Akt胰岛素信号通路为主线,揭示了T2DM中脑胰岛素抵抗(insulin resistance, IR)与AD之间的复杂机制,旨在加深对脑IR介导的AD病理过程的系统性理解,借此为延缓或治疗AD的认知功能障碍提供理论基础。  相似文献   

16.
Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured cerebellar granule neurons in vitro. We have investigated the effects of pretreatment with NMDA on kainate-induced neuronal cell death in mouse hippocampus in vivo. The systemic administration of kainate (30 mg/kg), but not NMDA (100 mg/kg), induced severe damage in pyramidal neurons of the hippocampal CA1 and CA3 subfields 3-7 days later, without affecting granule neurons in the dentate gyrus. An immunohistochemical study using an anti-single-stranded DNA antibody and TdT-mediated dUTP nick end labeling analysis both revealed that kainate, but not NMDA, induced DNA fragmentation in the CA1 and CA3 pyramidal neurons 1-3 days after administration. Kainate-induced neuronal loss was completely prevented by the systemic administration of NMDA (100 mg/kg) 1 h to 1 day previously. No pyramidal neuron was seen with fragmented DNA in the hippocampus of animals injected with kainate 1 day after NMDA treatment. The neuroprotection mediated by NMDA was prevented by the non-competitive NMDA receptor antagonist MK-801. Taken together these results indicate that in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation in murine hippocampus.  相似文献   

17.
We investigated the importance of the phosphoinositide3-kinase (PI3K) pathway in CA1 and dentate gyrus (DG) areas of hippocampus by exposing organotypic cultures to LY294002, a PI3K inhibitor, or to oxygen and glucose deprivation (OGD) for up to 21 hours. LY294002 induced increased propidium iodide (PI) uptake and caspase 3/7 activity in both regions, with a faster onset in DG. In contrast, cultures exposed to 60 min of OGD showed a PI uptake only in the CA1 area, beginning 13 h after the insult and increasing until 21 h. We did not observe any significant changes in AKT phosphorylation and immunocontent in CA1 or DG areas of organotypic cultures exposed to OGD, suggesting that the phosphorylation of this protein at Ser-473 is unrelated to the cellular damage induced by ischemia. Our results suggest that the inhibition of the PI3K pathway does not mimic the cell death profile observed with an ischemic model.  相似文献   

18.
19.
Insulin-like and non-insulin-like selenium actions in 3T3-L1 adipocytes   总被引:1,自引:0,他引:1  
In insulin-sensitive 3T3-L1 adipocytes, selenium stimulates glucose transport and antilipolysis and these actions of selenium, like insulin actions, are sensitive to wortmanin, an inhibitor of phosphatidylinositol-3-kinase (PI3K). Selenium stimulates PI3K activity that is sustained up to 24 h. Selenium after 5-10 min increases tyrosine phosphorylation of selective cellular proteins, but after 24 h overall tyrosine phosphorylation is increased. Tyrosine phosphorylation of insulin receptor substrate 1 is detected when enriched by immunoprecipitation with anti-PI3K antibody. Selenium, however, does not stimulate insulin receptor tyrosine kinase activity. Selenium also increases phosphorylation of other insulin signaling proteins, including Akt and extracellular signal regulated kinases. Selenium-stimulated glucose transport is accompanied by increases in glucose transporter-1 content in the plasma membrane. These data are consistent with similar selenium action in glucose transport in 3T3-L1 fibroblasts expressing mainly GLUT1. In chronic insulin-induced insulin resistant cells, selenium unlike insulin fully stimulates glucose transport. In summary, selenium stimulates glucose transport and antilipolysis in a PI3K-dependent manner, but independent of insulin receptor activation. Selenium exerts both insulin-like and non-insulin-like actions in cells.  相似文献   

20.
Insulin and its receptor are both present in the central nervous system and are implicated in neuronal survival and hippocampal synaptic plasticity. Here we show that insulin activates phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), and results in an induction of long-term depression (LTD) in hippocampal CA1 neurones. Evaluation of the frequency-response curve of synaptic plasticity revealed that insulin induced LTD at 0.033 Hz and LTP at 10 Hz, whereas in the absence of insulin, 1 Hz induced LTD and 100 Hz induced LTP. LTD induction in the presence of insulin required low frequency synaptic stimulation (0.033 Hz) and blockade of GABAergic transmission. The LTD or LTP induced in the presence of insulin was N-methyl-d-aspartate (NMDA) receptor specific as it could be inhibited by alpha-amino-5-phosphonopentanoic acid (APV), a specific NMDA receptor antagonist. LTD induction was also facilitated by lowering the extracellular Mg(2+) concentration, indicating an involvement of NMDA receptors. Inhibition of PI3K signalling or discontinuing synaptic stimulation also prevented this LTD. These results show that insulin modulates activity-dependent synaptic plasticity, which requires activation of NMDA receptors and the PI3K pathway. The results obtained provide a mechanistic link between insulin and synaptic plasticity, and explain how insulin functions as a neuromodulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号