首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Persistent RET activation is a frequent event in papillary thyroid carcinoma (PTC) and medullary thyroid carcinoma (MTC). In these cancers, RET activates the ERK/MAPK, the PI3K/AKT/mTOR and the JAK/STAT3 pathways. Here, we tested the efficacy of a JAK1/2- inhibitor, AZD1480, in the in vitro and in vivo growth of thyroid cancer cell lines expressing oncogenic RET. Thyroid cancer cell lines harboring RET/PTC1 (TPC-1), RET M918T (MZ-CRC1) and RET C634W (TT) alterations, as well as TPC-1 xenografts, were treated with JAK inhibitor, AZD1480. This inhibitor led to growth inhibition and/or apoptosis of the thyroid cancer cell lines in vitro, as well as to tumor regression of TPC-1 xenografts, where it efficiently blocked STAT3 activation in tumor and stromal cells. This inhibition was associated with decreased proliferation, decreased blood vessel density, coupled with increased necrosis. However, AZD1480 repressed the growth of STAT3- deficient TPC-1 cells in vitro and in vivo, demonstrating that its effects in this cell line were independent of STAT3 in the tumor cells. In all cell lines, the JAK inhibitor reduced phospho-Y1062 RET levels, and mTOR effector phospho-S6, while JAK1/2 downregulation by siRNA did not affect cell growth nor RET and S6 activation. In conclusion, AZD1480 effectively blocks proliferation and tumor growth of activated RET- thyroid cancer cell lines, likely through direct RET inhibition in cancer cells as well as by modulation of the microenvironment (e.g. via JAK/phospho-STAT3 inhibition in endothelial cells). Thus, AZD1480 should be considered as a therapeutic agent for the treatment of RET- activated thyroid cancers.  相似文献   

2.
CD40 is critically involved in Fas-mediated cholangiocyte apoptosis during liver inflammation, but the underlying signalling events are poorly understood. Our recent work implicated AP-1 in CD40-induced cholangiocyte apoptosis, but suggested involvement of other signalling pathways. Because STAT3 has been implicated in liver regeneration we investigated this signalling pathway during CD40 mediated cholangiocyte apoptosis. Western immunoblotting, electrophoretic mobility gel shift assays, In situ DNA end labelling and caspase-3 activity were used to investigate intracellular signalling and apoptosis in primary human cholangiocytes following CD40 activation. CD40-activation induced caspase-3 dependent cholangiocyte apoptosis and 3-fold increases in JNK/ERK phosphorylation (concomitant with increased AP-1 binding activity) and 4-fold increases in pSTAT3, which were sustained for up to 24 h. Protein levels of c-Jun, c-Fos and pSTAT3 confirmed the upregulation. Phosphorylation of p38 remained unchanged suggesting that this MAP kinase was not involved in CD40 mediated apoptosis. Increased JAK2 phosphorylation accompanied increased STAT3 phosphorylation after CD40 ligation. Cholangiocytes were also shown to express JAK1 and 3 which was phosphorylated following control stimulation with TNFalpha or IL2 respectively but not after CD40 ligation. JNK, ERK and JAK2 inhibitors partially abrogated apoptosis and when used in combination reduced it to basal levels. In conclusion, induction of CD40-mediated cholangiocyte apoptosis requires JAK2-mediated phosphorylation of STAT3 as well as sustained JNK1/2, ERK1/2 activation. This study demonstrates that STAT3 can function as a proapoptotic factor in primary human liver epithelial cells.  相似文献   

3.
Persistently activated IL‐6/STAT3 pathway promotes acquired resistance to targeted therapy with epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs) in non–small‐cell lung cancer (NSCLC) treatment. miR‐206 has been verified to be dysregulated and plays as a negative regulator in lung cancer. However, whether miR‐206 may overcome IL6‐induced gefitinib resistance in EGFR‐mutant lung cancer remains elusive. In this study, we investigated the role of miR‐206 in IL6‐induced gefitinib‐resistant EGFR‐mutated lung cancer cell lines. We showed that forced miR‐206 expression restored gefitinib sensitivity in IL6‐induced gefitinib‐resistant EGFR‐mutant lung cancer cells by inhibiting IL6/JAK1/STAT3 pathway. Specifically, mechanistic investigations revealed that miR‐206 blocked IL‐6/STAT3 signalling via directly targeting the 3'‐UTR of intracellular IL‐6 messenger RNA. Moreover, IL‐6 induced miR‐206 down‐regulation by reducing the cropping process of primary miR‐206 (pri‐miR‐206) into the Drosha/DGCR8 complex. Taken together, our findings reveal a direct role of miR‐206 in regulating IL‐6/STAT3 pathway and contrarily activated IL‐6/STAT3 signalling mediates the miR‐206 maturation process in gefitinib‐resistant EGFR‐mutant lung cancer cells.  相似文献   

4.
Berberin, extracted from Chinese herbal medicine Coptis chinensis, has been found to have anti-tumor activities. However, the underlying mechanisms have not been fully elucidated. Our current study demonstrated that berberin inhibited the in vitro and in vivo growth, migration/invasion of CRC cells, via attenuating the expression levels of COX-2/PGE2, following by reducing the phosphorylation of JAK2 and STAT3, as well as the MMP-2/-9 expression. We further clarified that an increase of COX-2/PGE2 expression offset the repressive activity of Berberin on JAK2/STAT3 signaling, and a JAK2 inhibitor AZD1480 blocked the effect of COX-2/PGE2 on MMP-2/-9 expression. In summary, Berberin inhibited CRC invasion and metastasis via down-regulation of COX-2/PGE2- JAK2/STAT3 signaling pathway.  相似文献   

5.
《Cellular signalling》2014,26(9):1863-1869
Dysregulation of signalling pathways by changes of gene expression contributes to hallmarks of cancer. The ubiquitously expressed chaperone protein AAG8 (aging-associated gene 8 protein, encoded by the SIGMAR1 gene) is often found to be overexpressed in various cancers. AAG8 is involved in ER (endoplasmic reticulum)-associated degradation and has been intensively elaborated in neuroscience. However, its rationale in carcinogenesis has rarely been noticed. In this study, we explored the intrinsic oncogenetic roles of AAG8 in cancer cells and found that AAG8 promoted carcinogenesis both in vitro and in vivo. We further characterized AAG8, for the first time to our knowledge, as a STAT3 activator and elucidated that it alternatively activated STAT3 in addition to IL6/JAK pathway. Based on these findings and a drug screening study, we demonstrated that combined inhibition of AAG8 and IL6/JAK signalling synergistically limits cancer cell growth. Taken together, our findings shed light on the fundamental evidences for identification of AAG8 as an oncoprotein and potential target for cancer prevention, as well as highlight the importance of ER proteins in contributing to JAK/STAT signaling and carcinogenesis.  相似文献   

6.
DYRK1A is considered a potential cancer therapeutic target, but the role of DYRK1A in NSCLC oncogenesis and treatment requires further investigation. In our study, high DYRK1A expression was observed in tumour samples from patients with lung cancer compared with normal lung tissues, and the high levels of DYRK1A were related to a reduced survival time in patients with lung cancer. Meanwhile, the DYRK1A inhibitor harmine could suppress the proliferation of NSCLC cells compared to that of the control. As DYRK1A suppression might be effective in treating NSCLC, we next explored the possible specific molecular mechanisms that were involved. We showed that DYRK1A suppression by siRNA could suppress the levels of EGFR and Met in NSCLC cells. Furthermore, DYRK1A siRNA could inhibit the expression and nuclear translocation of STAT3. Meanwhile, harmine could also regulate the STAT3/EGFR/Met signalling pathway in human NSCLC cells. AZD9291 is effective to treat NSCLC patients with EGFR‐sensitivity mutation and T790 M resistance mutation, but the clinical efficacy in patients with wild‐type EGFR remains modest. We showed that DYRK1A repression could enhance the anti‐cancer effect of AZD9291 by inducing apoptosis and suppressing cell proliferation in EGFR wild‐type NSCLC cells. In addition, harmine could enhance the anti‐NSCLC activity of AZD9291 by modulating STAT3 pathway. Finally, harmine could enhance the anti‐cancer activity of AZD9291 in primary NSCLC cells. Collectively, targeting DYRK1A might be an attractive target for AZD9291 sensitization in EGFR wild‐type NSCLC patients.  相似文献   

7.
The anti-phagocytosis signal, CD47, prevents phagocytosis when it interacts with signal-regulatory protein alpha (SIRPα) on macrophages. Given the vital role of CD47 in immune response, further investigation on the regulation of CD47 in tumor microenvironment is needed. Herein, we identified that interferon-gamma (IFN-γ), one of the most important cytokines in the immune and inflammatory response, up-regulated CD47 expression in cancer cells and this effect could be inhibited by the JAK1/2 inhibitor ruxolitinib, as well as siRNA-mediated silencing of JAK1, STAT1, and IRF1. The IFN-γ-induced surface expression of CD47 contributed to a stronger binding affinity to SIRPα and a decrease in phagocytosis of cancer cells by macrophages. Knockdown of JAK1, STAT1, or IRF1 by siRNA reversed the decreased phagocytosis caused by IFN-γ. Besides, analysis from TCGA revealed that IFNG had a positive correlation with CD47 in various types of cancer, which was supported by the increased surface CD47 expression after IFN-γ treatment in different types of cancer cells. The discovery of IFN-γ-induced up-regulation of CD47 in cancer cells unveils another feedback inhibitory mechanism of IFN-γ, thus providing insights into cancer immunotherapy targeting CD47.  相似文献   

8.
Abnormalities in the JAK2/STAT3 pathway are involved in the pathogenesis of colorectal cancer (CRC), including apoptosis. However, the exact mechanism by which dysregulated JAK2/STAT3 signalling contributes to the apoptosis has not been clarified. To investigate the role of both JAK2 and STAT3 in the mechanism underlying CRC apoptosis, we inhibited JAK2 with AG490 and depleted STAT3 with a small interfering RNA. Our data showed that inhibition of JAK2/STAT3 signalling induced CRC cellular apoptosis via modulating the Bcl-2 gene family, promoting the loss of mitochondrial transmembrane potential (Δψm) and the increase of reactive oxygen species. In addition, our results demonstrated that the translocation of cytochrome c (Cyt c), caspase activation and cleavage of poly (ADP-ribose) polymerase (PARP) were present in apoptotic CRC cells after down-regulation of JAK2/STAT3 signalling. Moreover, inhibition of JAK2/STAT3 signalling suppressed CRC xenograft tumour growth. We found that JAK2/STAT3 target genes were decreased; meanwhile caspase cascade was activated in xenograft tumours. Our findings illustrated the biological significance of JAK2/STAT3 signalling in CRC apoptosis, and provided novel evidence that inhibition of JAK2/STAT3 induced apoptosis via the mitochondrial apoptotic pathway. Therefore, JAK2/STAT3 signalling may be a potential target for therapy of CRC.  相似文献   

9.
10.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

11.
IL‐2R pathway is a key regulator in the development of immune cells and has emerged as a promising drug target in cancer treatment, but there is a scarcity of related inhibitors. TPD7 is a novel biphenyl urea taspine derivate, which has been shown anti‐cancer effect. Here, we demonstrated the anti‐cancer activity of TPD7 in cutaneous T cell lymphoma and investigated the underlying mechanism of TPD7 through IL‐2R signalling. The inhibitory effect of TPD7 on cell viability exhibited a strong correlation with the expression level of IL‐2R, and cutaneous T cell lymphoma H9 and HUT78 cells were most sensitive to TPD7. TPD7 was nicely bound to IL‐2R and down‐regulated the mRNA and protein levels of IL‐2R. Furthermore, TPD7 suppressed the downstream cascades of IL‐2R including JAK/STAT, PI3K/AKT/mTOR and PLCγ/Raf/MAPK signalling, resulting in Bcl‐2 mitochondrial apoptosis pathway and cell cycle proteins CDK/Cyclins regulation. And, these were verified by flow cytometry analysis that TPD7 facilitated cell apoptosis in H9 cells via mitochondrial pathway and impeded cell cycle progression at G2/M phase. TPD7 is a novel anti‐cancer agent and may be a potential candidate for cutaneous T cell lymphoma treatment by regulating IL‐2R signalling pathway.  相似文献   

12.
Jagged1, the essential ligand of the Notch signalling pathway, is highly expressed in metastatic prostate cancer, and its high expression in breast cancer is linked to poor survival rates. However, the mechanism of Jagged1′s involvement in platinum‐resistant ovarian cancer has not been thoroughly elucidated to date. The purpose of the present study was to investigate the roles of Jagged1 in the platinum resistance of ovarian cancer and its possible mechanisms. Compared with a platinum responsive group of ovarian epithelial cell carcinomas, we found the positive staining intensity of Notch1, Notch2, Jagged1, STAT3 and Epithelial‐mesenchymal transition (EMT) proteins were lower in a platinum‐resistant group. The DDP‐resistant ovarian cancer cell line (C13K) had a higher IC50 of DDP than its parental cell line (OV2008) (< 0.05) and acquired an EMT phenotype and invasive characteristics. Inhibiting or knockdown of Jagged1 expression could not only reduce its capacity of migration and invasion but also reverse EMT and down‐regulate the expression of serine 727‐phosphorylated STAT3 (pS727) at the protein level but not total STAT3 or tyrosine 705‐phosphorylated STAT3 (pY705) in C13K cells. Furthermore, it was found that crosstalk between the Jagged1/Notch and JAK/STAT3 signalling pathways were involved in Jagged1‐promoting EMT in C13K cells. Experiments in vivo showed a reduced micrometastatic tumour burden in the lung, liver and spleen of mice implanted with C13K cells with knocked‐down Jagged1 compared with mice implanted with control cells. All of these results demonstrate that Jagged1 can crosstalk with the JAK/STAT3 pathway, and they all cooperate to promote the aberrant occurrence of EMT, further reinforcing the abilities of invasion and migration of platinum‐resistant ovarian cancer in vivo and in vitro.  相似文献   

13.
Sympatho-adrenergic activity and the renin-angiotensin system are considered critical regulators of obesity and hypertension. The novel angiotensin II type 1 receptor-associated protein (ATRAP) has been demonstrated to modulate angiotensin II signalling in smooth muscle cells and cardiomyocytes. Adipose tissue expresses important renin angiotensin system components and contributes to cardiometabolic disease. However, ATRAP expression and regulation in adipocytes are unknown. We investigated expression of this novel modulator of angiotensin signalling and its regulation by beta-adrenergic receptors. We found ATRAP to be expressed in differentiated brown and white adipocytes. Stimulation of beta-adrenoceptors strongly suppressed ATRAP expression. We hypothesised a role for JAK/STAT signalling elements. Indeed, beta3-adrenergic stimulation robustly stimulated both STAT1 and STAT3 phosphorylation in a time- and dose-dependent manner. This effect was abrogated by inhibition of PKA and JAK2 signalling. Moreover, inhibition of JAK/STAT and PKA signalling reversed the beta3-adrenergic suppression of ATRAP expression. This study provides the first evidence for expression and adrenergic regulation of the angiotensin II signalling modulator ATRAP in adipocytes. Further, it indicates a novel regulatory link between beta-adrenergic and JAK/STAT signalling.  相似文献   

14.
15.
Cutaneous T-cell lymphomas and leukemias (CTCLs) are a heterogeneous group of extranodal non-Hodgkin's lymphomas. These are characterized by an accumulation of malignant CD4+ T-lymphocytes in the skin, lymph nodes, and peripheral blood. Novel treatment options are needed for patients who progress to advanced stage disease. Cucurbitacin I has previously shown promising results in Sézary syndrome (Sz). A plethora of cucurbitacins, however, have not yet been tested in CTCL. Herein, we investigated the effect of cucurbitacin E and I in two CTCL cell lines. We show that both cucurbitacins decrease viability and cause apoptosis in these cell lines, although HuT-78 was more affected than SeAx (IC50 of 17.38 versus 22.01 μM for cucurbitacin E and 13.36 versus 24.47 μM for cucurbitacin I). Moreover, both cucurbitacins decrease viability of primary cells of a Sz patient (56.46% for cucurbitacin E and 59.07% for cucurbitacin I). Furthermore, while JAK2 inhibition leads to decreased viability in SeAx cells (IC50 of 9.98 and 29.15 μM for AZD1480 and ruxolitinib respectively), both JAK1 and JAK3 do not. This suggests that JAK2 has a preferential role in promoting survival. Western blotting in SeAx cells revealed that both cucurbitacins inhibit STAT3 activation (P < 0.0001), while only cucurbitacin I inhibits STAT5 activation (P = 0.05). This suggests that STAT3 plays a preferential role in the mechanism of action of these cucurbitacins. Nevertheless, a role of STAT5 and JAK2 cannot be excluded and should be explored further. This knowledge could contribute to the development of effective therapies for CTCL and other malignancies involving dysfunction of the JAK/STAT pathway.  相似文献   

16.
Exchange protein activated by cyclic AMP (EPAC1) suppresses multiple inflammatory actions in vascular endothelial cells (VECs), partly due to its ability to induce expression of the suppressor of cytokine signalling 3 (SOCS3) gene, the protein product of which inhibits interleukin 6 (IL6) signalling through the JAK/STAT3 pathway. Here, for the first time, we use the non-cyclic nucleotide EPAC1 agonist, I942, to determine its actions on cellular EPAC1 activity and cyclic AMP-regulated gene expression in VECs. We demonstrate that I942 promotes EPAC1 and Rap1 activation in HEK293T cells and induces SOCS3 expression and suppresses IL6-stimulated JAK/STAT3 signalling in HUVECs. SOCS3 induction by I942 in HUVECs was blocked by the EPAC1 antagonist, ESI-09, and EPAC1 siRNA, but not by the broad-spectrum protein kinase A (PKA) inhibitor, H89, indicating that I942 regulates SOCS3 gene expression through EPAC1. RNA sequencing was carried out to further identify I942-regulated genes in HUVECs. This identified 425 I942-regulated genes that were also regulated by the EPAC1-selective cyclic AMP analogue, 007, and the cyclic AMP-elevating agents, forskolin and rolipram (F/R). The majority of genes identified were suppressed by I942, 007 and F/R treatment and many were involved in the control of key vascular functions, including the gene for the cell adhesion molecule, VCAM1. I942 and 007 also inhibited IL6-induced expression of VCAM1 at the protein level and blocked VCAM1-dependent monocyte adhesion to HUVECs. Overall, I942 represents the first non-cyclic nucleotide EPAC1 agonist in cells with the ability to suppress IL6 signalling and inflammatory gene expression in VECs.  相似文献   

17.
It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号