首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Monoclonal antibody (MAb) 1B3 against Haemophilus parasuis (H. parasuis) was generated by fusing SP2/0 murine myeloma cells and spleen cells from BALB/c mice immunized with the whole-bacterial-cell suspension of H. parasuis HS80 (serotype 5). The MAb 1B3 showed strong reactivity with 15 serotype reference strains of H. parasuis using Dot blot and Western blot analysis. Immunoprecipitation and protein spectral analysis indicated that MAb 1B3 recognized by Oligopeptide permease A (OppA) belongs to the ATP binding cassette transporter family. In addition, a linear B-cell epitope recognized by MAb 1B3 was identified by the screening of a phage-displayed 12-mer random peptide library. Sequence analysis showed that MAb 1B3 was recognized by phages-displaying peptides with the consensus motif KTPSEXR (X means variable amino acids). Its amino acid sequence matched 469KTPAEAR475 of H. parasuis OppA protein. A series of progressively truncated peptides were synthesized to define the minimal region that was required for MAb 1B3 binding. The epitope was highly conserved in OppA protein sequences from the isolated H. parasuis strains, which was confirmed by alignment analysis. Furthermore, the minimal linear epitope was highly specific among 75 different bacterial strains as shown in sequence alignments. These results indicated MAb 1B3 might be potentially used to develop serological diagnostic tools for H. parasuis.  相似文献   

2.
Our previous work found that the monoclonal antibody 8C6, which recognized the epitope EVETPIRN on influenza A virus M2 protein, conferred protection against influenza virus challenge. In this study, 8C6 was used to screen the 7-mer phage peptide library in order to identify the crucial amino acid residues on the protective epitope EVETPIRN. Nine positive phage clones were selected by a test of dose-dependent binding activity to 8C6 after three rounds of panning. The phage clones exhibited a consensus motif (TXXR), which was found on the epitope EVETPIRN. Site-directed mutation analysis indicated that Thr and Arg on the epitope EVETPIRN played a key role in the recognition by 8C6. Furthermore, sequence alignment and analysis revealed that Thr and Arg on the epitope were highly conserved. Our results could provide useful information for influenza vaccine design based on M2 mimotope.  相似文献   

3.
Previous works demonstrated that the monoclonal antibody (MAb) called R7B4 is directed to an epitope shared by receptors for lactogenic and somatogenic hormones as well as interleukins 2 and 6 (IL-2 and IL-6). The MAb inhibited the biological effects of those hormones and cytokines by impairing their binding to receptors. It is known that the receptors for growth hormones (GH), prolactins (PRL), IL-2, and IL-6 pertain to the type I cytokine receptor family, sharing the common motif WSXWS or the homologous F(Y)GEFS. Thus, a set of 34 decapeptides corresponding to diverse receptors containing those sequences were synthesized by the PEPSCAN method and their reactions with MAb R7B4 were measured by ELISA. The MAb significantly recognized 21 peptides, allowing us to establish the consensus sequence HGYWSEWSPE as a portion of the R7B4 epitope. The consensus peptide was synthesized and purified by conventional methods, and its capacity to bind to MAb R7B4 paratope confirmed. Moreover, polyclonal Ab to the peptide elicited in mice were able to inhibit the hGH binding to lactogenic, somatogenic and human specific liver receptors. This fact suggests that the consensus peptide could be used as an immunogen to produce anti-hGH receptor Ab behaving as hormone or cytokine antagonists in certain pathological conditions.  相似文献   

4.
We have established a murine hybridoma cell line RG719 which produces a rabies virus-neutralizing IgM-type monoclonal antibody (referred to as MAb RG719). Immunoblot analysis indicated that the antibody recognized a sequential epitope of G protein. Among four rabies virus strains tested, the antigenicity to MAb RG719 was absent from the Nishigahara strain, while the other three strains (HEP, ERA and CVS) reacted to the MAb. Studies with deletion mutants of the G protein indicated that the epitope was located in a middle region of the primary structure of G protein, ranging from position 242 to 300. By comparing the estimated amino acid sequence of the four strains, we found in this region two amino acids (at positions 263 and 291) which are common to three of those strains but are not shared by the Nishigahara strain. The site-directed point mutagenesis revealed that replacement of phenylalanine-263 by leucine destroyed the epitope of the HEP G protein, while the epitope was generated on the Nishigahara G protein whose leucine-263 was replaced by phenylalanine. These observations suggest that phenylalanine-263 is essential for constructing the epitope for MAb RG719. The synthetic 20-mer peptide produced by mimicking the amino acid sequence (ranging from amino acid positions 249 to 268) of the presumed epitope region was shown to bind specifically to MAb RG719 and also to raise the virus-neutralizing antibodies in rabbits. Vaccination with the HEP vaccine produced in Japan induced in humans and rabbits production of significant amounts of the antibodies which reacted with the 20-mer peptide.  相似文献   

5.
Herpes simplex virus (HSV) envelope glycoproteins are the prime targets of adaptive antiviral immunity. Previous investigation identified a protective, neutralizing, glycoprotein B1 (gB-1)-reactive monoclonal antibody (MAb B6) and localized the linear epitope recognized by the MAb to residue 84 of gB-1. Three overlapping peptides (two 20-mers and one 18-mer), together spanning amino acids 63 to 110 of the wild-type sequence of gB-1, were synthesized and analyzed for their ability to stimulate immunity which cross-reacts with HSV-1. All stimulated some level of response. Two peptides, the gB 18-mer and 20.1-mer, were recognized by MAb B6 and HSV-immune antibody but were unable to stimulate virus-neutralizing antibody or serum able to protect against zosteriform spread in vivo. The 20.2-mer peptide, however, which was not recognized by MAb B6 or HSV-generated immune antibody, stimulated the production of neutralizing antibody and serum able to protect against zosteriform spread. Immunization with all of the peptides was able to enhance viral clearance of a low dose of HSV-1 in an ear challenge model and induce antibody reactive in antibody-dependent complement-mediated lysis of HSV-1-infected cells in vitro. These results are the first report of HSV immunity induced by peptides corresponding to gB and indicate that the best immunogen, in terms of stimulating neutralizing antiserum able to protect in vivo against HSV-1, was a peptide not recognized by HSV-immune mechanisms or by the MAb used to localize it.  相似文献   

6.
Three custom synthesized myelin basic protein (MBP) peptides, bovine peptide 79-88, human peptide 80-89, and human peptide 82-91, were used to produce four murine monoclonal antibodies (MAb) that were selected on the basis of reaction in a solid phase radioimmunoassay (SRIA) with human MBP. The MAb were compared with respect to antigen specificity against intact MBP and 10 overlapping MBP peptides. One MAb recognized an epitope near the amino-terminus of bovine MBP peptide 79-88. A second MAb was directed towards an epitope that is more reactive in human MBP peptide 45-89 than in intact MBP, but is not recognized in any of the small MBP peptides examined. The third MAb detected an epitope near the middle of human MBP peptide 80-89, whereas the fourth MAb reacted with the carboxyl-terminal portion of human MBP peptide 82-91. Epitopes recognized in SRIA were sometimes not detected by the same MAb in a fluid phase double antibody radioimmunoassay. These results demonstrate the multiplicity of potential epitopes in a dodecapeptide of MBP and do not support the concept of a single, dominant epitope in the region of MBP peptide 80-89.  相似文献   

7.
CCR5 is the major coreceptor for human immunodeficiency virus (HIV) infection. The murine monoclonal antibody (MAb) 2D7, which recognizes a conformation-dependent epitope in the second extracellular loop of CCR5, is one of the most potent inhibitors of R5 virus cell entry. However, attempts to humanize 2D7 for in vivo human use have been unsuccessful so far. A filamentous phage library expressing random peptides was used to identify a peptide mimitope that is recognized by MAb 2D7. A synthetic peptide containing this sequence (2D7-2SK) bound to MAb 2D7 with high affinity and reversed its HIV type 1 (HIV-1) fusion inhibitory activity. The peptide contains sequence homologies to two distal regions of the second extracellular loop of human CCR5, both of which are required for MAb 2D7 binding. Rabbit anti-2D7-mimitope antibodies competed with MAb 2D7 for binding to the 2D7-2SK peptide in Biacore biosensor testing. Importantly, the rabbit anti-2D7-2SK antibodies bound to CCR5 on cells and specifically inhibited R5 (but not X4) envelope-mediated syncytium formation. These antibodies also neutralized infection of human peripheral blood mononuclear cells with R5 HIV isolates comparably to MAb 2D7. In summary, we have identified a novel peptide that closely mimics the MAb 2D7 epitope on CCR5. This peptide could be included as a potential vaccine candidate or to isolate 2D7-like human antibodies as entry inhibitors for R5 viruses.  相似文献   

8.
Avian influenza viruses (AIV) of the H5N1 subtype have caused morbidity and mortality in humans. Although some migratory birds constitute the natural reservoir for this virus, chickens may play a role in transmission of the virus to humans. Despite the importance of avian species in transmission of AIV H5N1 to humans, very little is known about host immune system interactions with this virus in these species. The objective of the present study was to identify putative T cell epitopes of the hemagglutinin (HA) antigen of an H5 AIV in chickens. Using an overlapping peptide library covering the HA protein, we identified a 15-mer peptide, H5246–260, within the HA1 domain which induced activation of T cells in chickens immunized against the HA antigen of an H5 virus. Furthermore, H5246–260 epitope was found to be presented by both major histocompatibility complex (MHC) class I and II molecules, leading to activation of CD4+ and CD8+ T cell subsets, marked by proliferation and expression of interferon (IFN)-γ by both of these cell subsets as well as the expression of granzyme A by CD8+ T cells. This is the first report of a T cell epitope of AIV recognized by chicken T cells. Furthermore, this study extends the previous finding of the existence of dual-specific epitopes in other species to chickens. Taken together, these results elucidate some of the mechanisms of immune response to AIV in chickens and provide a platform for creation of rational vaccines against AIV in this species.  相似文献   

9.
BackgroundThe VP1 protein of duck hepatitis A virus (DHAV) is a major structural protein that induces neutralizing antibodies in ducks; however, B-cell epitopes on the VP1 protein of duck hepatitis A genotype 1 virus (DHAV-1) have not been characterized.

Methods and Results

To characterize B-cell epitopes on VP1, we used the monoclonal antibody (mAb) 2D10 against Escherichia coli-expressed VP1 of DHAV-1. In vitro, mAb 2D10 neutralized DHAV-1 virus. By using an array of overlapping 12-mer peptides, we found that mAb 2D10 recognized phages displaying peptides with the consensus motif LPAPTS. Sequence alignment showed that the epitope 173LPAPTS178 is highly conserved among the DHAV-1 genotypes. Moreover, the six amino acid peptide LPAPTS was proven to be the minimal unit of the epitope with maximal binding activity to mAb 2D10. DHAV-1–positive duck serum reacted with the epitope in dot blotting assay, revealing the importance of the six amino acids of the epitope for antibody-epitope binding. Competitive inhibition assays of mAb 2D10 binding to synthetic LPAPTS peptides and truncated VP1 protein fragments, detected by Western blotting, also verify that LPAPTS was the VP1 epitope.

Conclusions and Significance

We identified LPAPTS as a VP1-specific linear B-cell epitope recognized by the neutralizing mAb 2D10. Our findings have potential applications in the development of diagnostic techniques and epitope-based marker vaccines against DHAV-1.  相似文献   

10.
猪瘟病毒(CSFV)囊膜结构糖蛋白E2(gp55)是激发保护性免疫应答的主要抗原蛋白。E^ms和E2与细胞表面受体的相互作用介导病毒对细胞的感染过程。采用抗CSFV中和性单克隆抗体c24/10,淘选噬菌体展示的12肽随机肽库,结合噬菌体拟位免疫反应性分析结果,对CSFV E2蛋白中和表位进行定位。结果表明:F2蛋白的SPTTLR基序(832~837位氨基酸)构成CSFV特异性线性中和表位,基序的第一、二、三位氨基酸是表位与单克隆抗体c24/10结合所必需的氨基酸,也是表位的关键性氨基酸。  相似文献   

11.
Liu  Xi  Ding  Li  Yuan  Jing  Liao  Jian  Duan  Lian  Wang  Wenfei  Tan  Weiguo  Yu  Weiye  Zhou  Boping  Chen  Xinchun  Yang  Zheng 《中国病毒学》2019,34(3):334-337
<正>Dear Editor,H7 N9 is a recently identified subtype of influenza A virus that caused a major outbreak in humans in China in 2013.According to the latest data provided by the Chinese Center for Disease Control and Prevention(http://www.moh.gov.cn/zwgk/yqbb3/ejlist.shtml, updated on October 31, 2018),the mortality rate of H7 N9 infections in China amounts to  相似文献   

12.
Nonstructural protein 3 (NS3) of hepatitis C virus (HCV), codes for protease and helicase carrying NTPase enzymatic activities, plays a crucial role in viral replication and an ideal target for diagnosis, antiviral therapy and vaccine development. In this study, monoclonal antibodies (mAbs) to NS3 helicase were characterized by epitope mapping and biological function test. A total of 29 monoclonal antibodies were produced to the truncated NS3 helicase of HCV-1b (T1b-rNS3, aa1192–1459). Six mAbs recognized 8/29 16mer peptides, which contributed to identify 5 linear and 1 discontinuous putative epitope sequences. Seven mAbs reacted with HCV-2a JFH-1 infected Huh-7.5.1 cells by immunofluorescent staining, of which 2E12 and 3E5 strongly bound to the exposed linear epitope 1231PTGSGKSTK1239 (EP05) or core motif 1373IPFYGKAI1380 (EP21), respectively. Five other mAbs recognized semi-conformational or conformational epitopes of HCV helicase. MAb 2E12 binds to epitope EP05 at the ATP binding site of motif I in domain 1, while mAb 3E5 reacts with epitope EP21 close to helicase nucleotide binding region of domain 2. Epitope EP05 is totally conserved and EP21 highly conserved across HCV genotypes. These two epitope peptides reacted strongly with 59–79% chronic and weakly with 30–58% resolved HCV infected blood donors, suggesting that these epitopes were dominant in HCV infection. MAb 2E12 inhibited 50% of unwinding activity of NS3 helicase in vitro. Novel monoclonal antibodies recognize highly conserved epitopes at crucial functional sites within NS3 helicase, which may become important antibodies for diagnosis and antiviral therapy in chronic HCV infection.  相似文献   

13.

Background

The West Nile virus (WNV) capsid (C) protein is one of the three viral structural proteins, encapsidates the viral RNA to form the nucleocapsid, and is necessary for nuclear and nucleolar localization. The antigenic sites on C protein that are targeted by humoral immune responses have not been studied thoroughly, and well-defined B-cell epitopes on the WNV C protein have not been reported.

Results

In this study, we generated a WNV C protein-specific monoclonal antibody (mAb) and defined the linear epitope recognized by the mAb by screening a 12-mer peptide library using phage-display technology. The mAb, designated as 6D3, recognized the phages displaying a consensus motif consisting of the amino acid sequence KKPGGPG, which is identical to an amino acid sequence present in WNV C protein. Further fine mapping was conducted using truncated peptides expressed as MBP-fusion proteins. We found that the KKPGGPG motif is the minimal determinant of the linear epitope recognized by the mAb 6D3. Western blot (WB) analysis demonstrated that the KKPGGPG epitope could be recognized by antibodies contained in WNV- and Japanese encephalitis virus (JEV)-positive equine serum, but was not recognized by Dengue virus 1-4 (DENV1-4)-positive mice serum. Furthermore, we found that the epitope recognized by 6D3 is highly conserved among the JEV serocomplex of the Family Flaviviridae.

Conclusion

The KKPGGPG epitope is a JEV serocomplex-specific linear B-cell epitope recognized by the 6D3 mAb generated in this study. The 6D3 mAb may serve as a novel reagent in development of diagnostic tests for JEV serocomplex infection. Further, the identification of the B-cell epitope that is highly conserved among the JEV serocomplex may support the rationale design of vaccines against viruses of the JEV serocomplex.  相似文献   

14.
Summary Phage displayed random-6-mer libraries were screened with a monoclonal antibody specific for a minimized ‘linear’ 7-mer epitope of the measles virus hemagglutinin protein. No clone with the wild-type sequence was selected and most clones contained a sequence motif not found in the wild-type sequence. Two mimotopes (LYMPQLS, SEMPQLP) were synthesized which inhibited binding to the measles virus 95–135 times better than a wild-type peptide. Sequence comparison of proteins with known 3D-structure indicates that the epitope corresponds to an α-helix, while the best mimotopes have no predicted helix propensity. The proline is thought to be required for inducing a turn neccesary for mimicking part of the α-helix. The higher intrinsic stability of such a mimotope may explain its improved binding and may be more suitable in immunogenicity experiments.  相似文献   

15.
16.
Avian influenza has emerged as a devastating disease and may cross species barrier and adapt to a new host, causing enormous economic loss and great public health threats, and non-structural protein 1 (NS1) is a multifunctional non-structural protein of avian influenza virus (AIV) that counters cellular antiviral activities and is a virulence factor. RNA interference (RNAi) provides a powerful promising approach to inhibit viral infection specifically. To explore the possibility of using RNAi as a strategy against AIV infection, after the fusion protein expression plasmids pNS1-enhanced green fluorescent protein (EGFP), which contain the EGFP reporter gene and AIV NS1 as silencing target, were constructed and NS1-EGFP fusion protein expressing HEK293 cell lines were established, four small interfering RNAs (siRNAs) targeting NS1 gene were designed, synthesized, and used to transfect the stable cell lines. Flow cytometry, real-time quantitative polymerase chain reaction, and Western blot were performed to assess the expression level of NS1. The results suggested that sequence-dependent specific siRNAs effectively inhibited mRNA accumulation and protein expression of AIV NS1 in vitro. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for AIV infection.  相似文献   

17.
18.
Avian influenza virus (AIV) A/turkey/Oregon/71-SEPRL (TK/OR/71-SEPRL) (H7N3) encodes a full-length NS1 protein and is a weak inducer of interferon (IFN). A variant, TK/OR/71-delNS1 (H7N3), produces a truncated NS1 protein and is a strong inducer of IFN. These otherwise genetically related variants differ 20-fold in their capacities to induce IFN in primary chicken embryo cells but are similar in their sensitivities to the action of IFN. Furthermore, the weak IFN-inducing strain actively suppresses IFN induction in cells that are otherwise programmed to produce it. These phenotypic differences are attributed to the enhanced IFN-inducing capacity that characterizes type A influenza virus strains that produce defective NS1 protein. The pathogenesis of these two variants was evaluated in 1-day-old and 4-week-old chickens. The cell tropisms of both viruses were similar. However, the lesions in chickens produced by the weak IFN inducer were more severe and differed somewhat in character from those observed for the strong IFN inducer. Differences in lesions included the nature of inflammation, the rate of resolution of the infection, and the extent of viral replication and/or virus dissemination. The amelioration of pathogenesis is attributed to the higher levels of IFN produced by the variant encoding the truncated NS1 protein and the antiviral state subsequently induced by that IFN. The high titer of virus observed in kidney tissue ( approximately 10(9) 50% embryo lethal doses/g) from 1-day-old chickens infected intravenously by the weak IFN-inducing strain is attributed to the capacity of chicken kidney cells to activate the hemagglutinin fusion peptide along with their unresponsiveness to inducers of IFN as measured in vitro. Thus, the IFN-inducing capacity of AIV appears to be a significant factor in regulating the pathogenesis, virulence, and viral transmission of AIV in chickens. This suggests that the IFN-inducing and IFN induction suppression phenotypes of AIV should be considered when characterizing strains of influenza virus.  相似文献   

19.
We previously reported that the clone JK34 was cross-reactive for dengue virus types 1, 2, 3, and 4 and recognized NS3 (I. Kurane, M. A. Brinton, A. L. Samson, and F. A. Ennis, J. Virol. 65:1823-1828, 1991). In the present experiments, we defined the epitope at the amino acid level, with 93 15-mer overlapping peptides which cover the entire NS3. A peptide 4 which contains amino acids 251 to 265 of NS3 sensitized the autologous B lymphoblastoid cell line (LCL) to the lysis by JK34. The smallest peptide recognized by JK34 was a 10-mer peptide which contains amino acids 255 to 264 (EIVDLMCHAT). A monoclonal antibody to HLA-DP inhibited the lysis of epitope peptide-pulsed autologous LCL by JK34. Genotypic typing revealed that the HLA-DP of this donor is DPA1*01, DPB1*0201, which is serologically defined as HLA-DPw2. JK34 lysed peptide 4-pulsed allogeneic LCL which carried HLA-DPw2. These results indicate that HLA-DPw2 is the restriction allele for recognition of this epitope by JK34.  相似文献   

20.
VP2 is a structural protein of the foot-and-mouth disease virus (FMDV). In this study, a FMDV serotype-in-dependent monoclonal antibody (MAb), 4B2, was generated. By screening a phage-displayed random 12-peptide library, we found positive phages displaying the consensus motif ETTXLE (X is any amino acid (aa)), which is highly homologous to 6ETTLLE11 at the N-terminus of the VP2 protein. Subsequently, a series of GST-fusion proteins expressing a truncated N-terminus of VP2 were examined by western blot analysis using the MAb 4B2. The results indicated that the motif 6ETTLLE11 of VP2 may be the minimal requirement of the epitope recognized by 4B2. Moreover, a 12-aa peptide 2KKTEETTLLEDR13 was shown to be the minimal unit of the epitope with maximal binding activity to 4B2. Alanine-scanning analysis demonstrated thatThr7, Thr8, and Leu10 are the functional residues of the 4B2 epitope Glu6 and Leu9 are required residues, and Glu11 plays a crucial role in the binding of MAb 4B2. The fine mapping of the epitope indicated that MAb 4B2 has the potential to be used in FMDV diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号