首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the technique of energy-filtering transmission electron microscopy was applied to localize cyanophycin (CGP) in recombinant strains of Ralstonia eutropha. Since CGP is a polymer consisting of the amino acids aspartate and arginine, which functions as a temporary nitrogen reserve that is deposited as insoluble inclusions in the cytoplasm of the cell, its nitrogen content is significantly higher than that of the other cell matter. In this study, we recorded nitrogen distribution maps, which represent the location of CGP in ultrathin sections of resin-embedded cells of recombinant strains of R. eutropha expressing the cyanophycin synthetase of Anabaena sp. strain PCC 7120. Furthermore, the existence of nitrogen in CGP granules was additionally proven by recording electron energy-loss spectra. The samples of R. eutropha H16 (pBBR1MCS-2::cphA1(7120)) revealed a second type of granule, which does not show nitrogen in the corresponding maps and which can be identified as an inclusion containing poly(3-hydroxybutyric acid). The methods applied in this study are suitable to identify storage compounds with elevated nitrogen contents and to reveal their location in the bacterial cell. The methods are also very helpful to distinguish between inclusions of different chemical compositions that occur both at the same time in the cells but cannot or only hardly be distinguished by other methods.  相似文献   

2.
Two different recombinant plasmids both containing the cyanophycin synthetase gene (cphA) of Synechocystis sp. strain PCC6308 but differing concerning the resistance marker gene were tested for their suitability to produce high amounts of cyanophycin in recombinant strains of Ralstonia eutropha. Various cultivation experiments at the 30-L scale revealed very low cyanophycin contents of the cells ranging from 4.6% to 6.2% (w/w) of cellular dry weight (CDW) only, most probably because most cells had lost the corresponding plasmid during cultivation. To establish a cost effective and high efficient system for production of cyanophycin at larger scales using recombinant strains of R. eutropha, we applied two strategies: First, we integrated cphA into the dispensable chromosomal l-lactate dehydrogenase gene (ldh) of R. eutropha. Depending on the cultivation conditions used, relatively low cyanophycin contents between 2.2% and 7.7% (w/w) of CDW were reproducibly detected, which might be due to weak expression or low gene dosage in the single cphA copy strain of R. eutropha. In a second strategy we constructed a KDPG-aldolase gene (eda)-dependent addiction system, which combined features of a multi-copy plasmid with stabilized expression of cphA. Flasks experiments revealed that the cells accumulated extraordinarily high amounts of cyanophycin between 26.9% and 40.0% (w/w) of CDW even under cultivation conditions lacking cyanophycin precursor substrates or plasmid stabilizing antibiotics. Cyanophycin contents of up to 40.0% (w/w) of CDW were also obtained at a 30-L scale or a 500-L pilot-plant scale under such non-selective conditions. This demonstrates impressively that the stabilizing effect of the constructed eda-dependent addiction system can be used for production of enhanced amounts of cyanophycin at a larger scale in recombinant strains of R. eutropha.  相似文献   

3.
Elementary mode analysis was applied to simulate conditions for cyanophycin (CGP) biosynthesis and to optimize its production in bacteria. The conclusions from these simulations were confirmed by experiments with recombinant strains of the wild types and polyhydroxyalkanoate (PHA)-negative mutants of Ralstonia eutropha and Pseudomonas putida expressing CGP synthetase genes (cphA) of Synechocystis sp. strain PCC6308 or Anabaena sp. strain PCC7120. In particular, the effects of suitable precursor substrates and of oxygen supply as well as of the capability to accumulate PHA in addition to CGP biosynthesis were investigated. Since CGP consists of the amino acids aspartate and arginine, the tricarboxylic acid cycle (TCC), which provides intermediates for biosynthesis of these amino acids, seems to be important. Excretion of intermediates of the TCC upon cultivation at restricted oxygen supply and conversion of fumarate mainly to malate and to only little succinate in the absence of oxygen indicated that TCC intermediates for arginine and aspartate biosynthesis were provided by the oxidative or reductive parts of the TCC, respectively. The following important conclusions were made from the experiments and the simulations: (i) external arginine additionally supplied to the medium, (ii) oxygen limitation, and (iii) absence of PHA accumulation exerted positive effects on CGP accumulation. These conclusions were utilized to obtain CGP contents in the cells of as high as 17.9% (w x w(-1)) during cultivation of the investigated bacteria at the 30-L scale using mineral salts medium. Such high CGP contents were previously not obtained with these bacteria at a 30-L scale, even if complex media were used.  相似文献   

4.
5.
The temporal and spatial accumulation of cyanophycin was studied in two unicellular strains of cyanobacteria, the diazotrophic Cyanothece sp. strain ATCC 51142 and the non-diazotrophic Synechocystis sp. strain PCC 6803. Biochemistry and electron microscopy were used to monitor the dynamics of cyanophycin accumulation under nitrogen-sufficient and nitrogen-deficient conditions. In Cyanothece sp. ATCC 51142 grown under 12 h light/12 h dark nitrogen-fixing conditions, cyanophycin was temporally regulated relative to nitrogenase activity and accumulated in granules after nitrogenase activity commenced. Cyanophycin granules reached a maximum after the peak of nitrogenase activity and eventually were utilized completely. Knock-out mutants were constructed in Synechocystis sp. PCC 6803 cphA and cphB genes to analyze the function of these genes and cyanophycin accumulation under nitrogen-deficient growth conditions. The mutants grew under such conditions, but needed to degrade phycobilisomes as a nitrogen reserve. Granules could be seen in some wild-type cells after treatment with chloramphenicol, but were never found in Delta cphA and Delta cphB mutants. These results led to the conclusion that cyanophycin is temporally and spatially regulated in nitrogen-fixing strains such as Cyanothece sp. ATCC 51142 and represents a key nitrogen reserve in these organisms. However, cyanophycin appeared to play a less important role in the non-diazotrophic unicellular strains and phycobilisomes appeared to be the main nitrogen reserve.  相似文献   

6.
7.
8.
Cyanophycin is non-ribosomally synthesized protein-like copolymer. Synthesis of cyanophycin is catalyzed by cyanophycin synthetase (CphA). In this study, a novel cyanophycin synthetase CphA49 belonging to NOR5 clade of Gammaproteobacteria was identified with primer-based screening from a deep-sea sediment metagenomic library. The cphA49 gene contained an open reading frame of 2,637 bp and encoded a protein with a predicted molecular mass of 100 kDa. A recombinant CphA49 was obtained by the functional expression of cphA49 in Escherichia coli BL21 (DE3). The biochemical properties of the purified CphA49 were determined. The optimum pH and temperature of the recombinant CphA49 were 9.0 and 40 °C, respectively. The enzyme was stable at temperatures below 40 °C. The recombinant CphA49 exhibited strict primer dependency and broad substrate specificities. Cyanophycin catalyzed by CphA49 exhibited homogenous molecular mass. The amino acid composition of cyanophycin was determined and constitutes arginine, aspartic acid, and lysine.  相似文献   

9.
Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5 mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid.  相似文献   

10.
The thermophilic cyanobacterium Synechococcus sp. strain MA19 contained the structural genes for cyanophycin synthetase (cphA) and cyanophycinase (cphB), which were identified, cloned, and sequenced in this study. The translation products of cphA and cphB exhibited high levels of similarity to corresponding proteins of other cyanobacteria, such as Anabaena variabilis and Synechocystis sp. Recombinant cells of Escherichia coli harboring cphA colinear with lacPO accumulated cyanophycin that accounted for up to 25% (wt/wt) of the dry cell matter in the presence of isopropyl-beta-D-thiogalactopyranoside (IPTG). The cyanophycin synthetase was enriched 123-fold to electrophoretic homogeneity from the soluble fraction of the recombinant cells by anion-exchange chromatography, affinity chromatography, and gel filtration chromatography. The purified cyanophycin synthetase maintained the parental thermophilic character and was active even after prolonged incubation at 50 degrees C; in the presence of ectoine the enzyme retained 90% of its activity even after 2 h of incubation. The in vitro activity of the enzyme depended on ATP, primers, and both substrates, L-arginine and L-aspartic acid. In addition to native cyanophycin, the purified enzyme accepted a modified cyanophycin containing less arginine, alpha-arginyl aspartic acid dipeptide, and poly-alpha,beta-DL-aspartic acid as primers and also incorporated beta-hydroxyaspartic acid instead of L-aspartic acid or L-canavanine instead of L-arginine at a significant rate. The lack of specificity of this thermostable enzyme with respect to primers and substrates, the thermal stability of the enzyme, and the finding that the enzyme is suitable for in vitro production of cyanophycin make it an interesting candidate for biotechnological processes.  相似文献   

11.
A 3878-bp genomic region from the cyanobacterium Synechocystis sp. strain PCC6308, amplified by inverse PCR, harbored the structural genes cphA (2625 bp) and cphB (819 bp) encoding cyanophycin synthetase and cyanophycinase, respectively. Both primary structures exhibited a high degree of similarity to the corresponding translational products from other cyanobacteria. Five regions were localized in the cyanophycin synthetase consensus sequence by their resemblance to conserved sites of ATP-dependent carboxylate-amine/thiol ligases and three substrate ligases. The functionality of cphA was proven by heterologous expression of active enzyme and synthesis of cyanophycin in Escherichia coli, which led to a maximum cyanophycin content of 26.6% (w/w) of cell dry mass. Furthermore, a modified radiometric enzyme assay for a more reliable and feasible measurement of cyanophycin synthetase activity was developed and applied to reveal the substrate specificity of the enzyme.  相似文献   

12.
To elucidate the biosynthetic pathways of carotenoids, especially myxol 2'-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp. strain PCC 6803 deletion mutants lacking selected proposed carotenoid biosynthesis enzymes and GDP-fucose synthase (WcaG), which is required for myxol 2'-fucoside production, were analyzed. The carotenoids in these mutants were identified using high-performance liquid chromatography, field desorption mass spectrometry, and (1)H nuclear magnetic resonance. The wcaG (all4826) deletion mutant of Anabaena sp. strain PCC 7120 produced myxol 2'-rhamnoside and 4-ketomyxol 2'-rhamnoside as polar carotenoids instead of the myxol 2'-fucoside and 4-ketomyxol 2'-fucoside produced by the wild type. Deletion of the corresponding gene in Synechocystis sp. strain PCC 6803 (sll1213; 79% amino acid sequence identity with the Anabaena sp. strain PCC 7120 gene product) produced free myxol instead of the myxol 2'-dimethyl-fucoside produced by the wild type. Free myxol might correspond to the unknown component observed previously in the same mutant (H. E. Mohamed, A. M. L. van de Meene, R. W. Roberson, and W. F. J. Vermaas, J. Bacteriol. 187:6883-6892, 2005). These results indicate that in Anabaena sp. strain PCC 7120, but not in Synechocystis sp. strain PCC 6803, rhamnose can be substituted for fucose in myxol glycoside. The beta-carotene hydroxylase orthologue (CrtR, Alr4009) of Anabaena sp. strain PCC 7120 catalyzed the transformation of deoxymyxol and deoxymyxol 2'-fucoside to myxol and myxol 2'-fucoside, respectively, but not the beta-carotene-to-zeaxanthin reaction, whereas CrtR from Synechocystis sp. strain PCC 6803 catalyzed both reactions. Thus, the substrate specificities or substrate availabilities of both fucosyltransferase and CrtR were different in these species. The biosynthetic pathways of carotenoids in Anabaena sp. strain PCC 7120 are discussed.  相似文献   

13.
Sinorhizobium meliloti infects leguminous plants resulting in a nitrogen-fixing symbiosis. Free living cells accumulate poly(3-hydroxybutyrate) (PHB) as carbon and energy source under imbalanced growth conditions. The cphA1 7120 gene encoding a cyanophycin (CGP) synthetase of Anabaena sp. PCC7120 in plasmids pVLT31::cphA1 7120 and pBBR1MCS-3::cphA1 7120 was expressed in the wild-type S. meliloti 1021 and in a phbC-negative mutant generated in this study. Expression of cphA1 7120 and accumulation of CGP in cells were studied in various media. Yeast mannitol broth (YMB) and pBBR1MCS-3::cphA1 7120 yielded the highest CGP contents in both S. meliloti 1021 strains. Supplying the YMB medium with isopropyl-β-D-thiogalactopyranoside, aspartic acid, and arginine enhanced CGP contents about 2.5- and 2.8-fold in S. meliloti 1021 (pBBR1MCS-3::cphA1 7120) and S. meliloti 1021 phbCΩKm (pBBR1MCS-3::cphA1 7120), respectively. Varying the nitrogen-to-carbon ratio in the medium enhanced the CGP content further to 43.8% (w/w) of cell dry weight (CDW) in recombinant cells of S. meliloti 1021 phbCΩKm (pBBR1MCS-3::cphA1 7120). Cells of S. meliloti 1021 (pBBR1MCS-3::cphA1 7120) accumulated CGP up to 39.6% in addition to 12.1% PHB (w/w, of CDW). CGP from the S. meliloti strains consisted of equimolar amounts of aspartic acid and arginine and contained no other amino acids even if the medium was supplemented with glutamic acid, citrulline, ornithine, or lysine. CGP isolated from cells of S. meliloti 1021 (pBBR1MCS-3::cphA1 7120) and S. meliloti 1021 phbCΩKm (pBBR1MCS-3::cphA1 7120) exhibited average molecular weights between 20 and 25 kDa, whereas CGP isolated from Escherichia coli S17-1 (pBBR1MCS-3::cphA1 7120) exhibited average molecular weight between 22 and 30 kDa. Co-expression of cyanophycinase from Anabaena sp. PCC7120 encoded by cphB1 7120 in cphA1 7120-positive E. coli S17-1, S. meliloti 1021, and its phbC-negative mutant gave cyanophycinase activities in crude extracts, and no CGP granules occurred. A higher PHB content in S. meliloti 1021 (pBBR1MCS-3::cphB1 7120::cphA1 7120) in comparison to the control indicated that the cells used CGP degradation product (β-aspartate-arginine dipeptide) to fuel PHB biosynthesis.  相似文献   

14.
On the basis of a previous report on the occurrence of water-soluble cyanophycin (CGP, cyanophycin granule polypeptide) in a recombinant strain of Escherichia coli expressing the cyanophycin synthetase (CphA) of Desulfitobacterium hafniense published by others, the conditions of its production were investigated in this study. Although the incubation temperature, aeration level, and NaCl concentration during cultivation had effects on the in vivo production of water-soluble CGP, it could be isolated as a major variant irrespective of the cultivation conditions. The occurrence of the soluble variant was also not dependent on the E. coli host or on the origin of cphA. Furthermore, it was shown that water-insoluble CGP can be in vitro solubilized to extents of up to about 80% (w/w) in solutions of different inorganic salts such as LiCl, NaCl, KCl, RbCl, KBr, MgCl(2), or CaCl(2). Evidence was obtained that the salt ions bind tightly to CGP. If the ions were not removed from the salt solution by dialysis or dilution, the CGP remained stable in solution. This method to solubilize water-insoluble CGP could also be applied to high concentrations of the polymer. CGP that remained insoluble after the first treatment could only marginally be solubilized in following treatments. The polydisperse CGP molecules were solubilized to the same extent over the whole molecular weight range with no preference of a particular molecular weight.  相似文献   

15.
以能分化异形胞的蓝细菌(Anabaenasp.PCC7120)为材料,采用重组PCR在体外对控制DNA复制起始的dnaA基因进行定点突变后克隆到整合质粒中,再通过三亲本杂交将整合质粒转移到Anabaena PCC7120中,以分离和筛选温度敏感型突变体。结果成功获得Anabaena PCC 7120 dnaA高温敏感性突变体。研究表明,利用重组PCR技术可在体外实现对Anabaena PCC 7120的dnaA的定点突变,并可通过同源重组双交换成功实行整合质粒中突变基因对野生型基因的置换,使突变基因插入到细胞染色体中,进而成功构建温度敏感型突变菌株。  相似文献   

16.
鱼腥藻7120遗传转化的研究进展   总被引:1,自引:0,他引:1  
鱼腥藻7120作为模式生物被广泛用于光合、固氮、进化、代谢等基本生命现象的研究。近几年, 对其基因工程的研究使人们看到它在医药、环保、能源等方面的应用潜力, 但表达效率低是其发展的瓶颈。为了提高其表达效率, 研究者从鱼腥藻7120的载体(包括启动子、复制子、选择标记基因等)的改进、目的基因的优化(密码子和SD序列)、宿主的改善、转化方法的改变等方面进行了大量探索, 除了用于功能基因的研究, 已经有几十个外源基因在鱼腥藻7120中表达。除了研究载体, 诱变鱼腥藻7120形成有利于外源基因表达的突变体和摸索转基因蓝藻最佳生长条件和表达条件, 可能是新的发展方向。  相似文献   

17.
The synthesis of cyanophycin, a biodegradable polymer, is directed by cyanophycin synthetase. Polymerase chain reaction (PCR) cloned the gene cphA coding for cyanophycin synthetase from Synechocystis sp. PCC 6803 into pET-21b followed by transformation into two Escherichia coli hosts. The culture conditions for cyanophycin production were investigated, and the molecular weight and compositions of purified cyanophycin were analyzed. The results showed that E. coli BL21-CodonPlus(DE3)-RIL could produce 120 mg cyanophycin per gram dry cell weight in terrific medium. The purified cyanophycin consisted of insoluble and soluble forms at pH 7. The insoluble form had a higher molecular weight (20-32 kDa) than the soluble form (14-25 kDa). Both forms are composed of three major amino acids, aspartic acid, arginine, and lysine, and the insoluble form showed a higher arginine/lysine molar ratio (4.61 ± 0.31) than the soluble form (0.89 ± 0.05). In addition, the nitrogen sources could affect the yields of insoluble and soluble forms of cyanophycin. The medium containing additional lysine could enhance the proportion of the soluble form, but had little effect on the lysine and arginine percentages of both soluble and insoluble forms. The medium containing additional arginine slightly decreased the proportion of soluble form and altered its amino acid composition, with a minimal effect on the lysine and arginine percentages in the insoluble form.  相似文献   

18.
The gene cphA encoding cyanophycin synthetase was interrupted in Anabaena variabilis ATCC 29413 by insertional mutagenesis. The mutant lacked cyanophycin granules and the polar nodules of heterocysts. The mutant grew as fast as the wild-type irrespective of the nitrogen source at low light intensity whereas growth on N(2) was somewhat reduced in high light. It is concluded that cyanophycin metabolism and polar nodules are not essential for aerobic N(2) fixation.  相似文献   

19.
Cyanophycin [multi-L-arginyl-poly(L-aspartic acid) (CGP)] was, for the first time, produced in yeast. As yeasts are very important production organisms in biotechnology, it was determined if CGP can be produced in two different strains of Saccharomyces cerevisiae. The episomal vector systems pESC (with the galactose-inducible promoter GAL1) and pYEX-BX (with the copper ion-inducible promoter CUP1) were chosen to express the cyanophycin synthetase gene from the cyanobacterium Synechocystis sp. strain PCC 6308 (cphA(6308)) in yeast. Expression experiments with transgenic yeasts revealed that the use of the CUP1 promoter is much more efficient for CGP production than the GAL1 promoter. As observed by electrophoresis of isolated CGP in sodium dodecyl sulfate-polyacrylamide gels, the yeast strains produced two different types of polymer: the water-soluble and the water-insoluble CGP were observed as major and minor forms of the polymer, respectively. A maximum CGP content of 6.9% (wt/wt) was detected in the cells. High-performance liquid chromatography analysis showed that the isolated polymers consisted mainly of the two amino acids aspartic acid and arginine and that, in addition, a minor amount (2 mol%) of lysine was present. Growth of transgenic yeasts in the presence of 15 mM lysine resulted in an incorporation of up to 10 mol% of lysine into CGP. Anti-CGP antibodies generated against CGP isolated from Escherichia coli TOP10 harboring cphA(6308) reacted with insoluble CGP but not with soluble CGP, if applied in Western or dot blots.  相似文献   

20.
Three new Anabaena sp. strain PCC 7120 genes encoding group 2 alternative sigma factors have been cloned and characterized. Insertional inactivation of sigD, sigE, and sigF genes did not affect growth on nitrate under standard laboratory conditions but did transiently impair the abilities of sigD and sigE mutant strains to establish diazotrophic growth. A sigD sigE double mutant, though proficient in growth on nitrate and still able to differentiate into distinct proheterocysts, was unable to grow diazotrophically due to extensive fragmentation of filaments upon nitrogen deprivation. This double mutant could be complemented by wild-type copies of sigD or sigE, indicating some degree of functional redundancy that can partially mask phenotypes of single gene mutants. However, the sigE gene was required for lysogenic development of the temperate cyanophage A-4L. Several other combinations of double mutations, especially sigE sigF, caused a transient defect in establishing diazotrophic growth, manifested as a strong and prolonged bleaching response to nitrogen deprivation. We found no evidence for developmental regulation of the sigma factor genes. luxAB reporter fusions with sigD, sigE, and sigF all showed slightly reduced expression after induction of heterocyst development by nitrogen stepdown. Phylogenetic analysis of cyanobacterial group 2 sigma factor sequences revealed that they fall into several subgroups. Three morphologically and physiologically distant strains, Anabaena sp. strain PCC 7120, Synechococcus sp. strain PCC 7002, and Synechocystis sp. strain PCC 6803 each contain representatives of four subgroups. Unlike unicellular strains, Anabaena sp. strain PCC 7120 has three additional group 2 sigma factors that cluster in subgroup 2.5b, which is perhaps specific for filamentous or heterocystous cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号