首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a common autosomal dominant cancer susceptibility condition. Inherited mutations in at least four DNA mismatch repair genes, hMSH2, hMLH1, hPMS1, and hPMS2, are known to cause HNPCC. In this study we used denaturing gradient gel electrophoresis (DGGE) to screen for hMLH1 mutations in 34 unrelated HNPCC families (30 Dutch, 3 Italian, and 1 Danish). Ten novel pathogenic germ-line mutations (seven affecting splice sites, two frameshifts, and one in-frame deletion of a single amino acid) have been identified in 12 (35%) of these families. In a previous study, hMSH2 mutations were found in 21% of the same families. While the spectrum of mutations at the hMSH2 gene among HNPCC patients appears heterogeneous, a cluster of hMLH1 mutations has been found in the region encompassing exons 15 and 16, which accounts for 50% of all the independent hMLH1 mutations described to date and for > 20% of the unrelated HNPCC kindreds here analyzed. This unexpected finding has a great practical value in the clinical scenario of genetic services.  相似文献   

2.
Analysis of significance of age at cancer diagnosis as a factor allowing identification of a subgroup of patients with a high frequency of hMSH2 and hMLH1 mutations among families that fulfil suspected HNPCC criteria was performed. DNA from thirty-one unrelated patients affected by colorectal cancer from families matching the above criteria were studied by direct sequencing for occurrence of hMSH2 and hMLH1 gene mutations. Seven unequivocal constitutional mutations were detected: five in the hMLH1 gene and two in the hMSH2 gene. Additionally, one hMLH1 alteration of unknown significance was found. All seven mutations were found in a subgroup of 19 patients with cancer diagnosed before the age of 50 years. In a subgroup of 12 patients with cancer diagnosed at an older age only one case with hMLH1 alteration of unknown significance was detected. Our results indicate that early age at cancer diagnosis seems to be a crucial pedigree factor in discrimination of patients with hMSH2 or hMLH1 mutations among families suspected of HNPCC and matching criteria I of ICG-HNPCC.  相似文献   

3.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a relatively common autosomal dominant cancer-susceptibility condition. The recent isolation of the DNA mismatch repair genes (hMSH2, hMLH1, hPMS1, and hPMS2) responsible for HNPCC has allowed the search for germ-line mutations in affected individuals. In this study we used denaturing gradient-gel electrophoresis to screen for mutations in the hMSH2 gene. Analysis of all the 16 exons of hMSH2, in 34 unrelated HNPCC kindreds, has revealed seven novel pathogenic germ-line mutations resulting in stop codons either directly or through frameshifts. Additionally, nucleotide substitutions giving rise to one missense, two silent, and one useful polymorphism have been identified. The proportion of families in which hMSH2 mutations were found is 21%. Although the spectrum of mutations spread at the hMSH2 gene among HNPCC patients appears extremely heterogeneous, we were not able to establish any correlation between the site of the individual mutations and the corresponding tumor spectrum. Our results indicate that, given the genomic size and organization of the hMSH2 gene and the heterogeneity of its mutation spectrum, a rapid and efficient mutation detection procedure is necessary for routine molecular diagnosis and presymptomatic detection of the disease in a clinical setup.  相似文献   

4.
5.
Hereditary non-polyposis colorectal cancer (HNPCC) is a common hereditary cancer. Genetic testing is complicated by the multiple DNA mismatch repair genes that underlie the disorder. Many suspected HNPCC families have no germ-line mutation identified. We reassessed an unusual family that appeared to have 2 individuals homozygous for a germline mutation within exon 1 of the hMLH1 gene. A few rare individuals with two inherited mutations in one of the mismatch repair genes have been reported and appear to have a distinct clinical appearance. However, there were no clinical features in the family discussed here that were consistent with constitutive lack of hMLH1. Redesigning the intronic primers for exon 1 identified a common polymorphism located within the original intronic primer site. The polymorphism prevented amplification of the wild-type allele, giving the erroneous appearance of homozygous inheritance of the mutated allele. Likewise, common intronic polymorphisms, if located within primer sequences on the chromosome harboring the HNPCC germ-line mutation could restrict amplification to only the wild-type allele, which may contribute significantly to the low success rate of identifying mutations in HNPCC families.  相似文献   

6.
Missense mutations in hMLH1 associated with colorectal cancer   总被引:3,自引:0,他引:3  
One of the most prevalent hereditary syndromes associated with colorectal cancer is hereditary nonpolyposis colorectal cancer (HNPCC). The inherited gene defects in HNPCC have been shown to reside in DNA mismatch repair genes, mostly hMSH2 or hMLH1. Most HNPCC patients are heterozygous with regard to the relevant mismatch repair gene; they have one normal and one mutated allele, and mismatch repair in normal somatic cells is functional. Cancer predisposition in HNPCC is believed to be associated with the loss of the wild-type allele in somatic cells, resulting in defective DNA mismatch repair. This gives rise to DNA microsatellite instability (MSI), an increased somatic mutation rate, and eventually, to the accumulation of mutations in genes involved in colorectal carcinogenesis. In support of this theory, colorectal tumors in HNPCC patients and in mice deficient for hMSH2 or hMLH1 show MSI. Here, we describe two missense mutations in hMLH1 exon 16 associated with colorectal cancer. Interestingly, the tumors do not show MSI. This raises some potentially important issues. First, even microsatellite-negative colorectal tumors can be associated with germline mutations and these will be missed if an MSI test is used to select patients for mutation screening. Second, the lack of MSI in these cases suggests that the mechanism involved in carcinogenesis could be different from that generally hypothesized.  相似文献   

7.
Muir-Torre syndrome (MTS) is an autosomal dominant disease defined by the coincidence of at least one sebaceous skin tumor and one internal malignancy. About half of MTS patients are affected by colorectal cancer. In a subgroup of MTS patients the disease has an underlying DNA mismatch-repair (MMR) defect and thus is allelic to hereditary nonpolyposis colorectal cancer (HNPCC). The purpose of this study was to examine to what extent germ-line mutations in DNA MMR genes are the underlying cause of the MTS phenotype. We ascertained 16 MTS patients with sebaceous skin tumors and colorectal cancer, and we examined their skin and visceral tumors for microsatellite instability. All the patients exhibited high genomic instability in at least one tumor. The search for germ-line mutations in the hMSH2 and hMLH1 genes in 13 of the MTS patients revealed truncating mutations in 9 (69%): eight mutations in the hMSH2 gene and one in the hMLH1 gene. This is the first systematic search for germ-line mutations in patients ascertained on the basis of sebaceous skin tumors. Our results indicate that (1) MTS patients exhibit significantly more mutations in the hMSH2 gene than in the hMLH1 gene; and (2) the subpopulation of MTS patients who are also affected by colorectal cancer, irrespective of family history and age at onset of tumors, may have a likelihood for an underlying DNA MMR defect similar to that for patients with a family history fulfilling the strict clinical criteria for HNPCC.  相似文献   

8.
Evaluation of the causative role of germline mutations in DNA mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) families can be difficult. Whereas nonsense, frameshift or splice-site mutations are presumed to lead to dysfunctional gene products and thus are generally considered to be causative, the evaluation of missense mutations often remains uncertain. We observed a novel germline mutation in the hMLH1 gene (His→Pro at codon 329) in an HNPCC family. The same missense mutation also occurred as a somatic event in the colonic tumours of two other HNPCC patients who had germline mutations at different sites of the hMLH1gene. Thus, the H329P mutation present in the germline can be considered as having an aetiological role in this HNPCC family. Received: 1 April 1997 / Accepted: 13 May 1997  相似文献   

9.
Hereditary non-polyposis colorectal cancer (HNPCC) is a clinical syndrome characterised by an inherited predisposition to early onset colorectal and uterine cancers and an increased incidence of other cancers. It is caused by germline defects in the human mismatch repair genes. Defects in two of the known mismatch repair genes (namely hMSH2 and hMLH1) account for over 90% of mutations found in HNPCC families. In this study we have identified 14 families that fulfilled the clinical criteria for HNPCC and screened the hMSH2 and hMLH1 genes for germline mutations using single-strand conformational polymorphism (SSCP) analysis and DNA sequencing. Seven mutations were identified. Of these, there were five frameshifts, one missense mutation and a further novel mutation that involved separate transition and transversion changes in successive amino acid residues. Three of the mutations were in hMSH2 and four in hMLH1. The identification of germ-line mutations in an HNPCC family enables targeted surveillance and the possibility of early curative intervention. SSCP is a simple and effective method for identifying most mutations in the human mismatch repair genes using DNA from fresh, frozen or archival material. Received: 24 July 1996 / Revised: 26 September 1996  相似文献   

10.
The combination of bisulfite treatment and PCR-single-strand DNA conformation polymorphism (SSCP) analysis is proposed for quantitative methylation assay. We applied this procedure to the methylation analysis of the hMLH1 promoter region in colorectal cancer. An analysis of mixtures of known amounts of methylated and unmethylated DNA revealed a linear relation. Using a calibration curve, proportions of methylated DNA were calculated. The hMLH1 promoter region was highly methylated in about 80% of microsatellite instability (MSI) (+) colorectal cancers, but in none of the MSI(-) colorectal cancers. A significant correlation existed between hypermethylation of the hMLH1 promoter and MSI, as in previous reports. In conclusion, bisulfite-PCR-SSCP (BiPS) analysis could be applied to the rapid identification of methylation status in multiple samples, quantification of methylation differences, and detection of methylation heterogeneity in amplified DNA fragments.  相似文献   

11.
目的:探讨白细胞介素-10(IL-10)启动子-627C/A基因多态性和等位基因频率与过敏性哮喘血清IgE、IL-10浓度以及病情严重程度的相互关系。方法:从哮喘病人DNA文库中选择青岛地区过敏性哮喘病人518例和健康志愿者501例,采用PCR-RFLP方法对IL-10基因启动子-627位点多态性进行观察,比较两组基因型和等位基因的分布频率,同时测定血清中总IgE、IL-10浓度和肺功能检查(FEV1、FVC、FEVl/FVC)。结果:轻度和中-重度哮喘组AA、CA和CC基因型所占比例分别为38.1%、46.0%、15.9%和45.6%、46.2%和8.2%(P=0.0168,X~2=8.232,df=2)A等位基因与哮喘病轻的严重程度有明显相关性(P<0.05)。AA基因型哮喘病人血清的IgE浓度显著升高(P<0.01),但其血清IL-10浓度比CC基因型携带者明显降低(P<0.01)。结论:IL-10基因启动子-627位点多态性与过敏性哮喘的发生有一定的相关性,等位基因A是哮喘患病的风险基因,而等位基因C则是哮喘病的保护基因。  相似文献   

12.
The CYP21 (steroid 21-hydroxylase) gene is involved in the synthesis of steroid hormones. Bov-A2 is a retroposon that is common in ruminant genomes. The promoter region of bovine CYP21 contains a short interspersed nucleotide element of Bov-A2, which overlaps a putative Sp1 binding site. We looked for RFLP/HpaII polymorphism in the Bov-A2 element in bovine Zebu breeds by PCR-RFLP, and examined whether polymorphism in this element is associated with methylation. Among DNA samples from 135 Brazilian Zebu breed cattle, we identified an RFLP/HpaII polymorphism (T/C), which, based on a restriction methylation-sensitive assay employing HpaII and isoschizomer MspI enzymes (methylation-sensitive and -non-sensitive enzymes, respectively), appears to be a DNA methylation point. This is the first report of this polymorphism and on DNA methylation in the bovine CYP21 promoter region in Brazilian Zebu cattle.  相似文献   

13.
Germline mutations in two human mismatch repair (MMR) genes, hMSH2 and hMLH1, appear to account for approximately 70% of the common cancer susceptibility syndrome hereditary nonpolyposis colorectal cancer (HNPCC). Although the hMLH1 protein has been found to copurify with another MMR protein hPMS2 as a heterodimer, their function in MMR is unknown. In this study, we have identified the physical interaction regions of both hMLH1 with hPMS2. We then examined the effects of hMLH1 missense alterations found in HNPCC kindreds for their interaction with hPMS2. Four of these missense alterations (L574P, K616Delta, R659P, and A681T) displayed >95% reduction in binding to hPMS2. Two additional missense alterations (K618A and K618T) displayed a >85% reduction in binding to hPMS2, whereas three missense alterations (S44F, V506A, and E578G) displayed 25-65% reduction in binding to hPMS2. Interestingly, two HNPCC missense alterations (Q542L and L582V) contained within the consensus interaction region displayed no effect on interaction with hPMS2, suggesting that they may affect other functions of hMLH1. These data confirm that functional deficiencies in the interaction of hMLH1 with hPMS2 are associated with HNPCC as well as suggest that other unknown functional alteration of the human MutL homologues may lead to tumorigenesis in HNPCC kindreds.  相似文献   

14.
Comparisons of Connexin-26 (GJB2) gene sequences available in the GenBank data base indicate the presence of a polymorphism in the promoter, but no easy method is available for the detection of this polymorphism. We have developed a PCR-RFLP test for simultaneous detection of two single nucleotide insertions (G and A) in the GJB2 promoter. The test is based on amplification of a 146-bp DNA fragment, which was digested with Mae I to detect the G insertion in the promoter. A similar digestion with Hinf I detects the A insertion. The test was validated using direct DNA sequencing of amplified DNA from 33 samples. After validation, we have used it to investigate DNA samples from 160 control subjects and 51 unrelated patients with nonsyndromic autosomal recessive deafness. All of the samples analyzed using the PCR test and DNA sequencing were found to contain both the G and A insertions in the GJB2 gene promoter. This PCR test will be useful in studying the prevalence of these two insertions in other populations.  相似文献   

15.
16.
17.
Denaturing high-performance liquid chromatography (DHPLC) is an efficient method for detection of mutations involving a single or few numbers of nucleotides, and it has been successfully used for mutation detection in disease-related genes. Colorectal cancer is one of the most common cancers, and mutations in the genes for hereditary nonpolyposis colon cancer (HNPCC), hMLH1 and hMSH2, also involve mainly point mutations. Sequence analysis is supposed to be a screening method with high sensitivity; however, it is time-consuming and expensive. We therefore decided to test sensitivity and reproducibility of DHPLC for 71 sequence variants in hMLH1 and hMSH2 initially found by sequence analysis in DNA samples of German HNPCC patients. DHPLC conditions of the PCR products were based on the melting pattern of the wild-type sequence of the corresponding PCR fragments. All but one of the 71 mutations was detected using DHPLC (sensitivity of 97%). Running time per sample averaged only 7 min, and the system is highly automated. Thus DHPLC is a rapid and sensitive method for the detection of hMLH1 and hMSH2 sequence variants.  相似文献   

18.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a common autosomal dominant cancer-susceptibility condition characterized by early onset colorectal cancer. Germ-line mutations in one of four DNA mismatch repair (MMR) genes, hMSH2, hMLH1, hPMS1, or hPMS2, are known to cause HNPCC. Although many mutations in these genes have been found in HNPCC kindreds complying with the so-called Amsterdam criteria, little is known about the involvement of these genes in families not satisfying these criteria but showing clear-cut familial clustering of colorectal cancer and other cancers. Here, we applied denaturing gradient-gel electrophoresis to screen for hMSH2 and hMLH1 mutations in two sets of HNPCC families, one set comprising families strictly complying with the Amsterdam criteria and another set in which at least one of the criteria was not satisfied. Interestingly, hMSH2 and hMLH1 mutations were found in 49% of the kindreds fully complying with the Amsterdam criteria, whereas a disease-causing mutation could be identified in only 8% of the families in which the criteria were not satisfied fully. In correspondence with these findings, 4 of 6 colorectal tumors from patients belonging to kindreds meeting the criteria showed microsatellite instability, whereas only 3 of 11 tumors from the other set of families demonstrated this instability. Although the number of tumors included in the study admittedly is small, the frequencies of mutations in the MMR genes show obvious differences between the two clinical sets of families. These results also emphasize the practical importance of the Amsterdam criteria, which provide a valid clinical subdivision between families, on the basis of their chance of carrying an hMSH2 or an hMLH1 mutation, and which bear important consequences for genetic testing and counseling and for the management of colorectal cancer families.  相似文献   

19.
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease caused by mutations in one of at least four different DNA mismatch repair genes, hMLH1, hMSH2, hPMS1, and hPMS2. Phenotypically, HNPCC is characterized by the early onset of colorectal cancers and various extracolonic cancers. Depending on the presence or absence of extracolonic tumors, HNPCG-has been divided into two syndromes (Lynch syndrome I and Lynch syndrome II), but, so far, no correlation to distinct genotypes has been demonstrated. In this study, we present a frequent hMLH1 intron 14 founder mutation that is associated with a highly reduced frequency of extracolonic tumors. The mutation disrupts the splice donor site and silences the mutated allele. Tumors exhibited microsatellite instability, and loss of the wild-type hMLH1 allele was prevalent. We propose that the mutation results in a milder phenotype, because the mutated hMLH1 protein is prevented from exerting a dominant negative effect on the concerted action of the mismatch repair system.  相似文献   

20.
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal, dominantly inherited cancer-prone syndrome. Here, we describe a novel and efficient approach for screening mutations of two major HNPCC susceptibility genes, hMSH2 and hMLH1. The system consists of RNA extraction from whole blood treated with the translation inhibitor, followed by long RT-PCR of the entire coding regions combined with direct sequencing. In analysis of 15 kindreds suspicious for HNPCC, 8 samples were subjected to analysis after puromycin treatment and 7 samples were analyzed without puromycin treatment. Three deleterious mutations were detected in the kindreds with puromycin treatment, while none were observed in those without puromycin. Signals from mutated alleles were enhanced after puromycin treatment and easily distinguished from the wild-type allele, achieved by suppression of nonsense-mediated mRNA decay. Furthermore, 12 other mutations were detected in 15 kindreds. The system is considered to be a reliable and useful approach for detecting germline mutations of hMSH2 and hMLH1 in HNPCC kindreds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号