首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的培养大鼠主动脉平滑肌细胞和内皮细胞,细胞纯化与鉴定,比较生物学特性的差异。方法采用血管环贴壁法培养动脉内皮细胞,组织块贴壁法培养动脉平滑肌细胞,并采用有限稀释法挑选内皮细胞单克隆,免疫细胞荧光鉴定二者的特异性标志,相差显微镜观察二者单个细胞及细胞群体在形态上的差异性,CCK-8试剂盒检测细胞的增殖,比较二者对胰酶消化,粘附,冻存后复苏的情况。结果血管环贴壁法成功培养血管内皮细胞,组织块培养法成功培养出血管平滑肌细胞,内皮细胞能够形成单克隆集落,培养的细胞均表达相应的特异性标志,内皮细胞增殖速度和平滑肌细胞有差异,内皮细胞对胰酶的耐受性较差,内皮细胞粘附所需时间短,对冻存后的耐受性较好。结论组织块贴壁法适合内皮细胞和平滑肌细胞的培养,有限稀释法能够纯化原代培养的内皮细胞,大鼠主动脉平滑肌细胞和内皮细胞在细胞形态、增殖、粘附、对胰酶的反应、冻存后复苏均存在差异。  相似文献   

3.
Perlecan, a major heparan sulfate proteoglycan of vascularized tissues, was immunopurified from media conditioned by human endothelial cells of both arterial and venous origin. The heparan sulfate moiety of perlecan from cultured arterial cells differed in amount and/or composition from that produced by a transformed cell line of venous origin. Both forms of perlecan bound basic fibroblast growth factor with Kd approximately 70 nM. In ELISA experiments, perlecan and its protein core bound to various extracellular matrix components in a manner that was strongly influenced by the format of the assay. Human vascular smooth muscle cells and human endothelial cells adhered to perlecan-coated surfaces, and both cell types adhered better to the venous cell-derived than to the arterial cell-derived perlecan. Removal of the heparan sulfate chains abolished this difference and increased the ability of both types of perlecan to adhere vascular cells. Denaturation of perlecan and its protein core also rendered each of them more adhesive, indicating the presence of conformation-independent adhesion determinants in the polypeptide sequence. Their location was investigated using recombinant perlecan domains. Overall, our results represent the first demonstration of human perlecan acting as an adhesive molecule for human vascular cells and suggest that it may play a role in vascular wound healing.  相似文献   

4.
Evidence suggests that endothelial cell layer heparan sulfate proteoglycans include a variety of different sized molecules which most likely contain different protein cores. In the present report, approximately half of endothelial cell surface associated heparan sulfate proteoglycan is shown to be releasable with soluble heparin. The remaining cell surface heparan sulfate proteoglycan, as well as extracellular matrix heparan sulfate proteoglycan, cannot be removed from the cells with heparin. The heparin nonreleasable cell surface proteoglycan can be released by membrane disrupting agents and is able to intercalate into liposomes. When the heparin releasable and nonreleasable cell surface heparan sulfate proteoglycans are compared, differences in proteoglycan size are also evident. Furthermore, the intact heparin releasable heparan sulfate proteoglycan is closer in size to proteoglycans isolated from the extracellular matrix and from growth medium than to that which is heparin nonreleasable. These data indicate that cultured porcine aortic endothelial cells contain at least two distinct types of cell surface heparan sulfate proteoglycans, one of which appears to be associated with the cells through its glycosaminoglycan chains. The other (which is more tightly associated) is probably linked via a membrane intercalated protein core.Abbreviations ECM extracellular matrix - HSPG heparan sulfate proteoglycan - PAE porcine aortic endothelial - PBS phosphate buffered saline  相似文献   

5.
Eukaryotic organisms are influenced by gravitational forces in their environment. The low gravitational forces endured by organisms in space alter cellular processes in cultured mammalian cells. Endothelial cells represent an interesting model to study because of their crucial role in the pathogenesis of various diseases, from atherosclerosis to inflammation to any situation characterized by dysregulated angiogenesis. We therefore cultured human endothelial cells derived from the umbilical vein in Rotating Wall Vessels (RWV) that simulate microgravity on earth. Under these experimental conditions, cells are viable and no increase in apoptotic rate was observed. They grow reproducibly faster than controls up to 8 days from seeding. Because endothelial proliferation is crucial in angiogenesis, we evaluated other steps required for new blood vessels to form. We found no variations in the levels of metalloproteases and an increased synthesis of their inhibitors (TIMP), suggesting that hypogravity does not induce a pro-angiogenic phenotype. Since i) alterations of blood pressure have been observed in astronauts and ii) endothelial cell synthesize vasoactive molecules, we evaluated the synthesis of nitric oxide and prostacyclin, both potent vasodilators and inhibitors of platelet aggregation. We observed that human endothelial cells grown in hypogavity synthesize higher amounts of prostacyclin and nitric oxide than controls. More studies are ongoing to understand the molecular basis of these events and their role in altering the physiology of the vascular tree.  相似文献   

6.
Summary Endothelial glycosaminoglycans are important in a diverse range of vascular functions. In the course of a biochemical and histological study exploring the role of glycosaminoglycans in inflammation, we have investigated the use of gold-conjugated poly-l-lysine with silver enhancement to establish the nature and physical location of glycosaminoglycans on the surface of cultured human umbilical vein endothelial cells. Cationic gold was effective in locating anionic sites in both cultured endothelial cells and in paraffin-embedded renal tissue. By manipulating pH, and by using enzymes specific for degrading glycosaminoglycans, it was found that, at pH 1.2, staining was directed primarily at glycosaminoglycans. The surface of human umbilical vein endothelial cells was found to be extensively covered in heparan sulphate, the histological appearance of which was dependent upon the fixation procedure employed. Heparan sulphate was also seen to co-distribute with the extracellular matrix protein, fibronectin, when endothelial cultures were simultaneously stained with cationic gold and an antibody to cellular fibronectin.  相似文献   

7.
Cytokines are known to tip the balance of the coagulant-anticoagulant molecules on the endothelial cell surface toward intravascular coagulation. Their effects on endothelial cell surface-associated heparin-like compounds have not been examined yet. Incorporation of [35S]sulfate into heparan sulfate on cultured porcine aortic endothelial cells was suppressed by human recombinant interleukin-1 beta (rIL-1 beta) or tumor necrosis factor alpha (rTNF alpha) in a dose- and time-dependent manner with little effect on cell number, protein content, and [3H]leucine incorporation of cells. Maximal inhibition was achieved by incubation of cells with 100 ng/ml of rIL-1 beta or 5 ng/ml of rTNF alpha for 12-24 hours, resulting in a reduction of the synthesis of heparan sulfate on the cell surface by approximately 50%. The dose dependency was consistent with that seen in the stimulation of endothelial cell procoagulant activity by each cytokine. The suppression of heparan sulfate synthesis was sustained for at least 48 hours after pretreatment of cells with cytokines and was unchanged after the addition of indomethacin or polymyxin B. The rate of degradation of prelabeled 35S-heparan sulfate on the cell surface was not altered by cytokine treatments. Neither the size, the net negative charge, nor the proportion of the molecule with high affinity for antithrombin III of endothelial cell heparan sulfate was changed by cytokines. Furthermore, specific binding of 125I-labeled antithrombin III to the endothelial cell surface was reduced to 40-60% of control by cytokines. In parallel with reduction in binding, antithrombin III cofactor (heparin-like) activity was partially diminished in cytokine-treated endothelial cells. Thus, cytokine-mediated suppression of heparin-like substance on endothelial cells appears to be another cytokine-inducible endothelial effects affecting coagulation.  相似文献   

8.
In this study, we investigated the effect of the extracellular matrix (ECM) secreted by vascular cells on proteoglycan (PG) synthesis by vascular smooth muscle cells in culture. PG synthesis of human aortic smooth muscle cells plated on plastic or the matrices derived from vascular endothelial cells, vascular smooth muscle cells, or THP-1 macrophages was characterized. Smooth muscle cell and macrophage matrices increased both secreted and cellular smooth muscle cells PG production by 2.5-fold to 3.9-fold, respectively, over plastic and endothelial cell matrix. Macrophage matrix was more potent than smooth muscle cell matrix in this regard. Selective enzymatic removal of chondroitin sulfates, collagen, and elastin from smooth muscle cell matrix enhanced the stimulation of PG synthesis, as did the removal of chondroitin sulfates from macrophage matrix. PG turnover rates were similar for smooth muscle cells plated on the three matrices. The newly synthesized PG from cultures plated on smooth muscle cell-, and macrophage-derived matrices had greater charge density, larger molecular size, and longer glycosaminoglycan chains than those from endothelial cell matrix cultures. These data show that the ECM plays a major role in modulating vascular smooth muscle cell PG metabolism in vitro.  相似文献   

9.
Basic fibroblast growth factor (bFGF) was internalized at a rapid rate by Chinese hamster ovary (CHO) cells that do not express significant numbers of high affinity receptors for bFGF as well as CHO cells that have been transfected with cDNA encoding FGF receptor-1 or FGF receptor-2. Internalization of bFGF was completely blocked by the addition of 10 micrograms/ml heparin in the parental CHO cells but only partially inhibited in cells expressing transfected FGF receptors. Bovine aortic endothelial cells also exhibit heparin-sensitive and heparin-resistant internalization of bFGF. The internalization of bFGF through the heparin-resistant pathway in CHO cells was efficiently competed by addition of unlabeled bFGF, was proportional to the number of receptors expressed, and approached saturation, suggesting that the heparin-resistant internalization was due to high affinity receptors. Internalization of bFGF through the heparin-sensitive pathway was not efficiently competed by unlabeled bFGF and did not approach saturation at concentrations of bFGF up to 50 ng/ml, properties similar to the interaction of bFGF with low affinity heparan sulfate binding sites on the cell surface. Internalization of bFGF in CHO cells not expressing FGF receptors was inhibited by heparin, heparan sulfate, and dermatan sulfate, the same glycosaminoglycans that block binding to cell-surface heparin sulfates. Internalization of bFGF in the parental CHO cells was inhibited at the same concentrations of heparin that block binding to cell-surface heparan sulfates. Finally, inhibition of the sulfation of CHO cell heparan sulfates by the addition of chlorate or digestion of CHO cell heparan sulfates with heparinase inhibited bFGF internalization in the parental CHO cells. These results demonstrate that bFGF can be internalized through a direct interaction with cell-surface heparan sulfates. Thus, there are two pathways for internalization of bFGF: high affinity receptor-mediated and heparan sulfate-mediated.  相似文献   

10.
The effect of heparin on the rate of binding of basic fibroblast growth factor (bFGF) to high affinity (receptor) and low affinity (heparan sulfate) binding sites on endothelial cells and CHO cells transfected with FGF receptor-1 or FGF receptor-2 was investigated. Radiolabeled bFGF bound rapidly to both high and low affinity sites on all three types of cells. Addition of 10 micrograms/ml heparin eliminated binding to low affinity sites and decreased the rate of binding to high affinity sites to about 30% of the rate observed in the absence of heparin. However, the same amount of 125I-bFGF bound to high affinity sites at equilibrium in the presence and absence of heparin. The effect of heparin on the initial rate of binding to high affinity sites was related to the log of the heparin concentration. Depletion of the cells of heparan sulfates by treatment with heparinase also decreased the initial rate of binding to high affinity receptors. These results suggest that cell-surface heparan sulfates facilitate the interaction of bFGF with its receptor by concentrating bFGF at the cell surface. Dissociation rates for receptor-bound and heparan sulfate-bound bFGF were also measured. Dissociation from low affinity sites was rapid, with a half-time of 6 min for endothelial cell heparan sulfates and 0.5 min for Chinese hamster ovary heparan sulfates. In contrast, dissociation from receptors was slow, with a half-time of 46 min for endothelial cell receptors, 2.5 h for FGF receptor-1, and 1.4 h for FGF receptor-2. These results suggest that degradative enzymes may not be needed to release bFGF from the heparan sulfates in instances where receptors and heparan sulfate-bound bFGF are in close proximity because dissociation from heparan sulfates occurs rapidly enough to allow bFGF to bind to unoccupied receptors by laws of mass action.  相似文献   

11.
Angiomodulin (AGM/TAF/mac25) is a 30-kDa glycoprotein that was identified as an integrin-independent cell adhesion protein secreted by human bladder carcinoma cells. AGM is highly accumulated in small blood vessels of tumor tissues. In the present study, we attempted to identify the cell surface receptor and the cell-binding site of AGM using ECV-304 human vascular endothelial cells and BALB/c3T3 mouse fibroblasts. Heparin, heparan sulfate, and dextran sulfate, but not chondroitin sulfate, inhibited both adhesion of the two cell lines to AGM-coated plates and binding of AGM to these cells. Treatment of cells with heparinase, but not chondroitinase, inhibited both cell adhesion to AGM and AGM binding to cells. These results strongly suggested that heparan sulfates are the major receptor for AGM. Furthermore, we determined a 20-amino acid sequence within AGM molecule as its major cell-binding site. The synthetic peptide for the cell-binding sequence showed cell adhesion activity comparable to that of AGM, and the activity was inhibited by heparin and heparan sulfate. The peptide competitively inhibited cell adhesion to AGM and the binding of AGM to cells. These results indicated that AGM binds to cells through interaction of the identified cell-binding sequence with heparan sulfates on cell surface. It was also found that the heparan sulfate-binding peptide inhibited the formation of capillary tube-like structures of vascular endothelial cells in culture.  相似文献   

12.
Heparin and heparin‐like molecules are known to modulate the cellular responses to vascular endothelial growth factor‐A (VEGF‐A). In this study, we investigated the likely mechanisms for heparin's influence on the biological activity of VEGF‐A. Previous studies have shown that exogenous heparin's effects on the biological activity of VEGF‐A are many and varied, in part due to the endogenous cell‐surface heparan sulfates. To circumvent this problem, we used mutant endothelial cells lacking cell‐surface heparan sulfates. We showed that VEGF‐induced cellular responses are dependent in part on the presence of the heparan sulfates, and that exogenous heparin significantly augments VEGF's cellular effects especially when endogenous heparan sulfates are absent. Exogenous heparin was also found to play a cross‐bridging role between VEGF‐A165 and putative heparin‐binding sites within its cognate receptor, VEGFR2 when they were examined in isolation. The cross‐bridging appears to be more dependent on molecular weight than on a specific heparin structure. This was confirmed by surface plasmon resonance binding studies using sugar chips immobilized with defined oligosaccharide structures, which showed that VEGF‐A165 binds to a relatively broad range of sulfated glycosaminoglycan structures. Finally, studies of the far‐UV circular dichroism spectra of VEGF‐A165 showed that heparin can also modulate the conformation and secondary structure of the protein. J. Cell. Biochem. 111: 461–468, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Endothelial monolayer permeability to macromolecules   总被引:9,自引:0,他引:9  
The barrier function of the endothelial monolayer has not been extensively investigated using the cultured endothelium. The in vitro approach may contribute to a more complete understanding of microvessel wall permeability. Our studies using an in vitro endothelial monolayer system have led us to the following conclusions: the endothelial monolayer is more permeable to small-molecular-weight substances than to large molecules; the permeability of albumin is different for endothelial cells derived from different vascular sites (higher for pulmonary venous than pulmonary arterial endothelium); basement membrane components may have a significant role in the permeability of albumin across the endothelium; control of endothelial monolayer permeability is determined not only by the characteristics of the macromolecule (i.e., size and charge) but also by the shape of the endothelial cells and the size of interendothelial space.  相似文献   

14.
Our understanding of vascular endothelial cell physiology is based on studies of endothelial cells cultured from various vascular beds of different species for varying periods of time. Systematic analysis of the properties of endothelial cells from different parts of the vasculature is lacking. Here, we compare Ca2+ homeostasis in primary cultures of endothelial cells from human internal mammary artery and saphenous vein and how this is modified by hypoxia, an inevitable consequence of bypass grafting (2.5% O2, 24 h). Basal [Ca2+] i and store depletion-mediated Ca2+ entry were significantly different between the two cell types, yet agonist (ATP)–mediated mobilization from endoplasmic reticulum stores was similar. Hypoxia potentiated agonist-evoked responses in arterial, but not venous, cells but augmented store depletion-mediated Ca2+ entry only in venous cells. Clearly, Ca2+ signaling and its remodeling by hypoxia are strikingly different in arterial vs. venous endothelial cells. Our data have important implications for the interpretation of data obtained from endothelial cells of varying sources.  相似文献   

15.
Patients with systemic lupus erythematosus (SLE) have an increased incidence of arterial and venous thromboses. The mechanism by which thromboses develop in these patients is unknown. We had previously observed that the sera of patients with SLE contain antibodies and immune complexes that can bind to endothelial cells. Because endothelial cells can synthesize tissue factor, a potent activator of coagulation, we studied the effect of IgG complexes and sera from patients with SLE on the production of tissue factor by these cells. Human umbilical venous endothelial cells incubated with heat-aggregated IgG (HA-IgG) (0.5 to 4.0 mg) elaborate procoagulant activity in a dose-dependent manner. All procoagulant activity was found in the particulate cell fraction, and none was secreted into the medium. Maximum expression of procoagulant activity required 6 to 8 hr, and its production was totally inhibited by the addition of cyclohexamide or actinomycin D. The presence of gel-filtered platelets augmented production of procoagulant activity by endothelial cells stimulated by HA-IgG. Endothelial cell procoagulant activity was not inactivated by diisofluoropropylphosphate, required the presence of Factor VII for its expression, and was neutralized by a specific anti-tissue factor antibody. Endothelial cells incubated with sera from 14 of 16 patients with SLE produced increased amounts of tissue factor compared with 21 normal sera (p less than 0.025). Fractions of two SLE sera containing monomeric IgG, IgA, or IgM, as well as fractions containing IgG complexes, each stimulated endothelial cells to produce more tissue factor than similar fractions prepared from two normal sera. These studies demonstrate that endothelial cells will produce the procoagulant tissue factor after exposure to anti-endothelial cell antibodies or IgG-containing immune complexes. The production of tissue factor by endothelial cells at sites of immune vascular injury may play a role in the development of thromboses in patients with SLE.  相似文献   

16.
Heparin is known to bind to cultured endothelial cells. This report documents that addition of heparin to endothelial cells results in an alteration of the heparan sulfate proteoglycan synthetic pattern. Specifically, the addition of saturating amounts of heparin to confluent cultures of porcine aortic endothelial cells results in an increase in the amount of radiolabeled heparan sulfate proteoglycan secreted into the growth medium. The increase is apparent as early as 8 h after heparin administration. Although there is often a decrease in the amount of cell surface heparan sulfate proteoglycan produced, it is not sufficient to account for the increase in the secreted form. Of the other glycosaminoglycans tested, only dextran sulfate and commercial heparan sulfate induce changes in heparan sulfate proteoglycan synthesis and secretion. Chondroitin sulfate glycosaminoglycans do not elicit this synthetic change. These data indicate that endothelial cells can alter the synthesis of heparan sulfate proteoglycans in response to extracellular signals including heparin and related glycosaminoglycans.  相似文献   

17.
18.
Cloned bovine aortic endothelial cells were cultured with [35S]Na2SO4 and proteolyzed extensively with papain. Radiolabeled heparan sulfate was isolated by DEAE-Sephacel chromatography. The mucopolysaccharide was then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate, which bound tightly to the protease inhibitor, represented 0.84% of the mucopolysaccharide mass, accounted for greater than 99% of the initial anticoagulant activity, and exhibited a specific activity of 1.16 USP units/10(6) 35S-cpm. However, the heparan sulfate that interacted minimally with the protease inhibitor constituted greater than 99% of the mucopolysaccharide mass, represented less than 1% of the starting biologic activity, and possessed a specific anticoagulant potency of less than 0.0002 USP unit/10(6) 35S-cpm. An examination of the disaccharide composition of the two populations revealed that the high-affinity heparan sulfate contained a 4-fold or greater amount of GlcA----GlcN-SO3-3-O-SO3 (where GlcA is glucuronic acid), which is a marker for the antithrombin-binding domain of commercial heparin, as compared with the depleted material. Cloned bovine aortic endothelial cells were incubated with [35S]Na2SO4 as well as tritiated amino acids and completely solubilized with 4 M guanidine hydrochloride and detergents. The double-labeled proteoglycans were isolated by DEAE-Sephacel, Sepharose CL-4B, and octyl-Sepharose chromatography. These hydrophobic macromolecules were then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate proteoglycans which bound tightly to the protease inhibitor represented less than 1% of the starting material and exhibited a specific anticoagulant activity as high as 21 USP units/10(6) 35S-cpm, whereas the heparan sulfate proteoglycan that interacted weakly with the protease inhibitor constituted greater than 99% of the starting material and possessed a specific anticoagulant potency as high as 0.02 USP unit/10(6) 35S-cpm. The high-affinity heparan sulfate proteoglycan is responsible for more than 85% of the anticoagulant activity of the cloned bovine aortic endothelial cells. Binding studies conducted with 125I-labeled antithrombin demonstrated that these biologically active proteoglycans are located on the surface of cloned bovine aortic endothelial cells.  相似文献   

19.
M D Linnik  M A Moskowitz 《Peptides》1989,10(5):957-962
Endothelial cells release both vasodilatory (e.g., PGI2, EDRF, oxygen radicals) and vasoconstrictor (e.g., EDCF) substances which modify vascular tone and contractility. We report the existence of the vasodilatory tachykinin substance P within endothelial cell scraping from human, rat and dog thoracic aorta and human pial arteries with values ranging from 1.0 +/- 0.1 (rat aorta) to 1.9 +/- 0.5 (dog aorta) fmol/mg protein. The immunoreactive component eluted with a retention time identical to that of radiolabelled substance P when analyzed by high performance liquid chromatography combined with radioimmunoassay. Cultured endothelial cells from bovine cerebral microvessels contained measurable levels of substance P in passages 3-8, suggesting the likelihood that these cells synthesize substance P. However, the level of gene expression must be low since efforts to demonstrate the presence of preprotachykinin mRNA by Northern blot analysis of dog and rat aortic endothelial cell RNA or by RNase protection analysis of rat aortic endothelial cell RNA was not successful.  相似文献   

20.
We have determined, using polyacrylamide gel electrophoresis, that endothelial cell cultures derived from rabbit aorta synthesize a wide spectrum of heparan sulfate proteoglycans. The electrophoretically slower-moving heparan sulfate proteoglycans have been isolated from the endothelial cell culture medium. Antibodies to these proteoglycan species have been raised in the goat. The goat antiserum binds selectively the heparan sulfate proteoglycans that were used for the immunization and does not cross-react with the other (faster moving) species. Only a moderate level of cross-reactivity was observed with the heparan sulfate proteoglycans synthesized by another cell line (presumably smooth muscle cells) of vascular derivation. These results support the suggestion that structural differences in the heparan sulfate proteoglycans are responsible for certain differences in function between the various cell types of the vessel wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号