首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The relative hydraulic conductivities of major and minor longitudinal veins, and the apoplastic permeability of the bundle sheaths surrounding all longitudinal and transverse veins were investigated in representatives of the C3, C4/NAD-ME, C4/NAD-ME/PCK intermediate, C4/PCK and C4/NADP-ME photosynthetic types. Using the Hagen-Poiseuille equation and measurements of tracheary element diameters, the number of elements in each vein type and the numbers of each vein type, we calculated that 87–99% of the water flow in a longitudinal direction would be expected to occur in the major veins. The permeability of the mestome sheaths and parenchymatous bundle sheaths surrounding the veins was tested using the negatively-charged, fluorescent dye, trisodium 3-hydroxy-5,8,10-pyrenetrisulfonate (PTS). This dye proved nontoxic to plant tissue at a concentration of 0.5%, according to a deplasmolysis test with onion epidermal strips. The PTS concentration achieved in the tested grass leaves was about 0.035%, well below the toxic limit. When a solution of PTS was fed to the leaves by means of a basal cut, the dye moved into the veins of all orders. From there, it moved outward into the surrounding tissues, indicating that the sheaths surrounding the veins of all orders in all species tested were permeable. Therefore, contrary to previous predictions based on structural observations and some tracer studies, bundle sheaths with suberized cell walls do not function as endodermal layers.  相似文献   

2.
The ultrastructural aspects ofCyperus iria leaves showing the C4 syndrome and the typical C3 species,Carex siderosticta, in the Cyperaceae family were examined.C. iria exhibited the chlorocyperoid type, showing an unusual Kranz structure with vascular bundles completely surrounded by two bundle sheaths. The cellular components of the inner Kranz bundle sheath cells were similar to those found in the NADP-ME C4 subtype, having centrifugally arranged chloroplasts with greatly reduced grana and numerous starch grains. Their chloroplasts contained convoluted thyla-koids and a weakly-developed peripheral reticulum, although it was extensive mostly in mesophyll cell chloroplasts. The outer mestome bundle sheath layer was sclerenchymatous and generally devoid of organelles, but had unevenly thickened walls. Suberized lamellae were present on its cell walls, and they became polylamellate when traversed by plasmodesmata. Mesophyll cell chloroplasts showed well-stacked grana with small starch grains. InC. siderosticta, vascular bundles were surrounded by the inner mestome sheath and the outer parenchymatous bundle sheath with intercellular spaces. The mestome sheath cells degraded in their early development and remained in a collapsed state, although the suberized lamellae retained polylamellate features. Plastids with a crystalline structure, sometimes membrane-bounded, were found in the epidermal cells. The close interveinal distance was 35–50 μm inC. iria, whereas it was 157–218 μm inC. siderosticta. These ultrastructural characteristics were discussed in relation to their photosynthetic functions.  相似文献   

3.
Summary The development of mestome sheath cells ofAegilops comosa var.thessalica was studied by electron microscopy. Anatomical and cytological observations show that this grass belongs to the C3 or non-Kranz plants. In the asymmetrically thickened walls of mestome sheath cells a suberized lamella is present. This lamella is deposited asynchronously. In the midrib and the large lateral bundles it appears first in the outer and inner walls and usually later in the radial walls. In the small lateral bundles its appearance is delayed in the inner walls of those cells situated on the xylem side. At maturity the suberized lamella is observed in all cell walls; however, in the small lateral bundles it is partly or totally absent from the walls of some cells situated on the xylem side. Tertiary wall formation is asynchronous as well, for it generally follows the deposition pattern of the suberized lamella.During the development of the mestome sheath cells microtubules show marked changes in their number and orientation, being fewer and longitudinal during suberin deposition. Dictyosomes are very active and may be involved in primary and tertiary wall formation. Endoplasmic reticulum cisternae are abundant and partly smooth, while plasmalemmasomes may function to reduce the plasmalemma extension. However, cytoplasmic structures that are clearly involved in suberin synthesis could not be identified.Suberized lamellae react strongly with silver hexamine. This is probably due to post-fixation with osmium tetroxide.On the basis of structural characteristics the mestome sheath may be regarded as an endodermis (cf., alsoFahn 1974). The significance of this view for water and assimilate exchange between the mesophyll and the bundle is discussed.This report represents a portion of a doctoral dissertation.  相似文献   

4.
Summary Leaf blades of 42 grasses (Poaceae) have been examined ultrastructurally for the occurrence of a suberized lamella in walls of parenchymatous bundle sheaths and PCR (= Kranz) sheaths in both large and small vascular bundles. The sample includes species from a range of major grass taxa, and represents all photosynthetic types found in the grasses. Three grasses with unusual C4 leaf anatomy were also included:Alloteropsis semialata, Aristida biglandulosa, Arundinella nepalensis. The presence of a suberized lamella in PCR cell walls was perfectly correlated with photosynthetic type. All PEP-carboxykinase type and NADP-malic enzyme type C4 species examined possessed a suberized lamella in outer tangential and radial walls, but with variable presence in inner tangential walls. PCR cells of bothAlloteropsis semialata andArundinella nepalensis also possessed a suberized lamella. A lamella was totally absent from parenchymatous bundle sheath cells of the C3 species examined (5 spp.) and ofPanicum milioides, a C3-C4 intermediate. It was also absent from PCR cells of NAD-malic enzyme type C4 species (14 spp.) andAristida biglandulosa. The results are discussed in relation to the leakage of CO2 from PCR cells, and to differences between C4 types in 13C values, chloroplast position in PCR cells, and other anatomical characteristics.  相似文献   

5.
The leaf ultrastructure of NADP-malic enzyme type C4 species possessing different anatomical features in the Cyperaceae was examined: types were the Rhynchosporoid type, a normal Kranz type in which mesophyll cells are adjacent to Kranz cells, and Fimbristyloid and Chlorocyperoid types, unusual Kranz types in which nonchlorophyllous mestome sheath intervenes between the two types of green cells. They show structural characteristics basically similar to the NADP-malic enzyme group of C4 grasses, that is, centrifugally located chloroplasts with reduced grana and no increase of mitochondrial frequency in the Kranz cells. However, the Kranz cell chloroplasts of the Fimbristyloid and Chlorocyperoid types exhibit convoluted thylakoid systems and a trend of extensive development of peripheral reticulum, although those of the Rhynchosporoid type do not possess such particular membrane systems. The suberized lamella, probably a barrier for CO2 diffusion, is present in the Kranz cell walls of the Rhynchosporoid type and in the mestome sheath cell walls of the other two types, and tightly surrounds the Kranz cells (sheaths) that are the sites of the decarboxylation of C4 acids. These ultrastructural features are discussed in relation to C4 photosynthetic function.  相似文献   

6.
Structural aspects of the leaves of two common festucoids,Festuca ovina andPoa sphondylodes, have been examined employing the electron microscopy. The nature of vascular bundles and of sheaths that surround vascular tissues was discussed in the study. The festucoids exhibited a non-Kranz C-3 anatomy with more than four mesophyll cells separating the bundle sheaths of a leaf blade. Vascular tissues in theseFestuca andPoa leaves were surrounded by a double sheath: an inner distinct mestome sheath (MST) and an outer indistinctive layer of parenchymatous bundle sheath (PBS) cells. The PBS cells were much larger than the MST and had thin walls. The MST cells were relatively small and rectangular inP. sphondylodes and more or less hexangular in transverse sections ofF. ovina. InP. sphondylodes, MST had conspicuously thickened inner tangential walls with asymmetrically uninterrupted suberized lamellae in radial and tangential walls. In most differentiated MST cells, all walls were highly suberized. During suberin deposition, MST cells were quite vacuolated and most of the cytoplasm was present as a thin peripheral layer. However, MST walls inF. ovina revealed very thin suberized lamellae with translucent striations. No chloroplasts were detected inP. sphondylodes, whereas the MST inF. ovina contained small chloroplasts. Plasmodesmata were well developed in the primary pit fields of walls between MST and vascular cells, and between adjacent MST cells. Plasmodesmata were less frequent in the walls between the inner and outer sheath cells. Suberized lamellae were totally absent from the PBS cell walls in all veins. External to the PBS, the mesophyll comprised thin walled cells with abundant intercellular spaces. Peripherally arranged chloroplasts in the mesophyll were numerous and often larger than those of PBS and MST cells. Characteristics associated with C-3 and other ultrastructural features were also discussed in the study.  相似文献   

7.
The origin and early development of procambium and associated ground meristem of major and minor veins have been examined in the leaf blades of seven C4 grass species, representing different taxonomic groups and the three recognized biochemical C4 types (NAD-ME, PCK, and NADP-ME). Comparisons were made with the C3 species, Festuca arundinacea. In “double sheath” (XyMS+) species (Panicum effusum, Eleusine coracana, and Sporoboìus elongatus), the procambium of major veins gives rise to xylem, phloem, and a mestome sheath; associated ground meristem differentiates into PCA (“C4 mesophyll”) tissue and the PCR (“Kranz”) sheath. Development in the C3 species parallels this pattern, except that associated ground meristem differentiates into mesophyll and a parenchymatous bundle sheath. In contrast, major vein procambium of “single sheath” (XyMS–) species (Panicum bulbosum, Digitaria brownii, and Cymbopogon procerus) differentiates into xylem, phloem and a PCR sheath; associated ground meristem gives rise to PCA tissue. These observations of major vein development support W. V. Brown's hypothesis that the PCR sheaths of “double sheath” (XyMS+) C4 grasses are homologous with the parenchymatous bundle sheaths of C3 grasses, while in “single sheath” (XyMS–) C4 species they are homologous with the mestome sheath. Although there are some similarities in the development of the major and minor vascular bundle procambium in the C4 species examined, the ontogeny of the smaller minor veins is characterized by a precocious delineation of the PCR sheath layer that may even precede the appearance of the distinctive cytological features of ground meristem and procambium. This contracted development in minor veins appears to be related to their close spacing in mature leaves and to their comparatively late appearance during leaf ontogeny.  相似文献   

8.
The genusEleocharis, a blade-less sedge group, has been very recently recorded to include NAD-malic enzyme type C4 species. The ultrastructural features of culms of two C4 representatives in the genus were examined in relation to the C4 acid decarboxylation type. They possessed non-chlorophyllous mestome sheath cells between mesophyll cells and Kranz cells, and were confirmed biochemically to be NAD-malic enzyme type. The oval or lenticular chloroplasts with well-developed grana are scattered in the Kranz cells with abundant large mitochondria, and do not show such centripetal position as is known in the “classical NAD-malic enzyme type”. The suberized lamellae occur in the mestome sheath cells internally surrounding the Kranz sheath and may contribute to maintaining high CO2 concentration in the Kranz cells. These new structural features of the NAD-malic enzyme type found inEleocharis are added to the structural and functional relationships of the C4 types in the Cyperaceae reported previously  相似文献   

9.
Permeability of the suberized mestome sheath in winter rye   总被引:4,自引:3,他引:1       下载免费PDF全文
Mestome sheath cells of winter rye (Secale cereale L. cv Puma) deposit suberized lamellae in their secondary cell walls. Histochemical tests including acid digestion and staining with Sudan IV and Chelidonium majus root extract were used to detect the presence of suberin in the primary cell wall. There was no evidence of a Casparian band between adjacent mestome sheath cells. Fluorescent dye techniques were used to trace solute movement through the rye leaf apoplast. Calcofluor white M2R, a fluorescent dye which binds to cell walls as it moves apoplastically, proved to be too limited in its mobility in leaves to test mestome sheath permeability. Trisodium 3-hydroxy-5,8,10 pyrene trisulfonate, a fluorescent dye which is mobile in the apoplast, moved easily up the vascular bundles in the transpiration stream, and diffused outward from the veins to the epidermal cell walls within minutes of reaching a particular level in the leaf. We conclude that the suberized mestome sheath of rye leaves is freely permeable to solutes moving apoplastically through radial primary cell walls.  相似文献   

10.
Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

11.
Abstract We investigated the activity of C4 acid decarboxylating enzymes, the PCR (‘photosynthetic carbon reduction’, or ‘Kranz’) bundle sheath anatomy and ultrastructure, and the geographical distribution of Australian species of the C4 grass genus Eragrostis. Species had either the even sheath outline and centripetally located PCR cell chloroplasts characteristic of NAD-malic enzyme (NAD-ME) species (29 spp.), the uneven sheath outline and centrifugal PCR cell chloroplasts characteristic of PEP carboxykinase (PCK) species (28 spp.), or were intermediate between these types (7 spp.). The suberized lamella was present in PCR cell walls of species with PCK-like and intermediate anatomy, and absent from those of species with NAD-ME-like anatomy. Biochemical determination of C4 type for 11 species, however, revealed only NAD-ME activity, irrespective of anatomical type; no PCK activity was detected. PCK-like species arc most numerous in northern, high rainfall, tropical Australia and also predominate in relatively humid coastal and subcoastal areas. NAD-ME-like species are numerically and proportionally dominant where rainfall is < 30 cm year?1. Overall, as many species occur in high as in low rainfall areas. Results are discussed in relation to previously established anatomical/ultrastructural/geographical/biochemical correlations and to Infrageneric taxonomy.  相似文献   

12.
Leaf anatomy, pattern of post-illumination CO2 burst (PIB) and activity of three C4-acid decarboxylating enzymes in C4 photosynthesis were investigated with the leaves of five species in theDichotomiflora group of the genusPanicum. All species had mestome sheaths, exhibited the sharp pattern of PIB in less than 30 sec of darkness and were classified as NAD-malie enzyme species biochemically. However, they clearly fell into two groups according to the difference in chloroplast location in bundle sheath cells (BSC).P. coloratum var.makarikariense, P. lanipes andP. stapfianum had centripetal chloroplasts, whereasP. laevifolium andP. longijubatum had centrifugal chloroplasts, whereas cv. Kabulabula and cv. Solai had centrifugal chlorplasts. The results indicate that theDichotomiflora group had the two leaf anatomical variations of NAD-malic enzyme species. In addition, the results onP. coloratum suggest that this species may be divided into two separate species by chloroplast location in BSC. The ultrastructural features of leaves ofP. dichtomiflorum, NAD-malic enzyme species with centrifugal chloroplasts, were also investigated. Chloroplasts in BSC had well-developed grana, and numerous large mitochondria with extensively developed internal membrane structure were restricted to the area between the chloroplsts and the vacuole in BSC.  相似文献   

13.
PETERSON, C. A. & PERUMALLA, C. J., 1990. A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis.
Roots of 25 species which had either a multiseriate hypodermis or a multiseriate epidermis were tested for the presence of a hypodermal Casparian band. All species save one were in the Liliopsida and six were orchids with both soil and aerial roots. Lignosuberized hypodermal Casparian bands were present in all species tested; those with a biseriate hypodermis had bands in both layers and of those with a multiseriate hypodermis, the three species which were tested had bands in every layer. Although Casparian bands can often be recognized by the presence of sinuous walls in longitudinal views of uniseriate hypodermal layers, these sinuosities were not evident in multiseriate hypodermal layers containing Casparian bands. The lack of air spaces, once thought to be a characteristic feature of the hypodermis, did not hold true for some members of the Liliopsida. All walls of the hypodermis were suberized, indicating that suberin lamellae were probably present in addition to Casparian bands. We recommend using the term 'exodermis' to refer to a hypodermis which has a Casparian band. Epidermal walls of non-orchid roots were suberized whereas those of orchids were lignified. Regardless of their type of modification, all epidermal walls were permeable to the apoplastic dye, Cellufluor.  相似文献   

14.
The aim of this work was to investigate the fate of phosphoenolpyruvate (PEP) produced by decarboxylation of oxaloacetate during photosynthesis in the bundle sheaths of leaves of the PEP-carboxykinase C4 grass Spartina anglica Hubb. Mesophyll protoplasts and bundle sheath cells were separated enzymically and used to investigate activities and distributions of putative enzymes of the C4 cycle and the photosynthetic carbon metabolism of bundle sheath cells. The results indicate that neither conversion of PEP to pyruvate nor its conversion to 3-phosphoglycerate can account for all of the carbon flux through the C4 cycle during photosynthesis. It is likely, therefore, either that PEP moves directly from bundle sheath to mesophyll or that more than one pathway of regeneration of PEP is involved in the C4 cycle in this plant.Abbreviations Chl chlorophyll - PEP phosphoenolpyruvate - Pi phosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

15.
The fine structure of primary, secondary, and tertiary stages of Zea endodermal cell development was investigated. The casparian strip formed in situ in the anticlinal walls and remained at a fixed point relative to the endodermis-pericycle boundary. The only protoplasmic structure that had a constant spatial association with the developing strip was the plasmalemma. Plasmodesmata appeared to be more numerous on the tangential walls than on radial walls; only rarely were they located in the casparian strip. The suberized lamella developed on inner and outer tangential walls before it appeared on the radial walls. No cytoplasmic organelles were found to have any particular spatial association with this layer. The suberized lamella was about 0.04 μm thick except near plasmodesmata and along the adaxial margin of the casparian strip, where it was thicker. Occasionally it failed to form along the abaxial margin of the strip. The adherent affinity between plasmalemma and casparian strip was lost after the strip was covered by suberized lamella. The secondary wall became asymmetrically thickened by differential deposition of successive lamellae. A thin layer of secondary wall material extended across the floor of each pit. Pit cavities often contained mitochondria, and plasmodesmata were restricted to the pits. The plasmodesmata were constricted where they entered the thin layer of secondary wall material and where they penetrated the suberized lamella. The various stages of cell development tended to be asynchronous. No passage cells were observed. Endodermal cell development in Zea closely resembles that described for barley.  相似文献   

16.
菰(Zizania latifolia)是一种多年生挺水植物,为了探讨该植物根、茎和叶的解剖结构、组织化学及其质外体屏障的通透性生理。该文利用光学显微镜和荧光显微镜,对菰的根、茎、叶进行了解剖学和组织化学研究。结果表明:(1)菰不定根解剖结构由外而内分别为表皮、外皮层、单层细胞的厚壁机械组织层、皮层、内皮层和维管柱;茎结构由外而内分别为角质层、表皮、周缘厚壁机械组织层、皮层、具维管束的厚壁组织层和髓腔。叶鞘具有表皮和具维管束皮层,叶片具有表皮,叶肉和维管束。(2)不定根具有位于内侧的内皮层及其邻近栓质化细胞和外侧的外皮层组成的屏障结构;茎具内侧厚壁机械组织层,外侧的角质层和周缘厚壁机械组织层组成的屏障结构,屏障结构的细胞壁具凯氏带、木栓质和木质素沉积的组织化学特点,叶表面具有角质层。(3)菰通气组织包括根中通气组织,茎、叶皮层的通气组织和髓腔。(4)菰的屏障结构和解剖结构是其适应湿地环境的重要特征,但其茎周缘厚壁层和厚壁组织层较薄。由此推测,菰适应湿地环境,但在旱生环境中分布有一定的局限性。  相似文献   

17.

Background and Aims

Leaf venation in many C4 species is characterized by high vein density, essential in facilitating rapid intercellular diffusion of C4 photosynthetic metabolites between different tissues (mesophyll, bundle sheath). Greater vein density has been hypothesized to be an early step in C4 photosynthesis evolution. Development of C4 vein patterning is thought to occur from either accelerated or prolonged procambium formation, relative to ground tissue development.

Methods

Cleared and sectioned tissues of phylogenetically basal C3 Flaveria robusta and more derived C4 Flaveria bidentis were compared for vein pattern in mature leaves and vein pattern formation in developing leaves.

Key Results

In mature leaves, major vein density did not differ between C3 and C4 Flaveria species, whereas minor veins were denser in C4 species than in C3 species. The developmental study showed that both major and minor vein patterning in leaves of C3 and C4 species were initiated at comparable stages (based on leaf length). An additional vein order in the C4 species was observed during initiation of the higher order minor veins compared with the C3 species. In the two species, expansion of bundle sheath and mesophyll cells occurred after vein pattern was complete and xylem differentiation was continuous in minor veins. In addition, mesophyll cells ceased dividing sooner and enlarged less in C4 species than in C3 species.

Conclusions

Leaf vein pattern characteristic to C4 Flaveria was achieved primarily through accelerated and earlier offset of higher order vein formation, rather than other modifications in the timing of vein pattern formation, as compared with C3 species. Earlier cessation of mesophyll cell division and reduced expansion also contributed to greater vein density in the C4 species. The relatively late expansion of bundle sheath and mesophyll cells shows that vein patterning precedes ground tissue development in C4 species.Key words: Bundle sheath, C4 photosynthesis evolution, Flaveria, heterochrony, leaf development, mesophyll, vein density, vein pattern formation  相似文献   

18.
The C4 pathway: an efficient CO2 pump   总被引:2,自引:0,他引:2  
The C4 pathway is a complex combination of both biochemical and morphological specialisation, which provides an elevation of the CO2 concentration at the site of Rubisco. We review the key parameters necessary to make the C4 pathway function efficiently, focussing on the diffusion of CO2 out of the bundle sheath compartment. Measurements of cell wall thickness show that the thickness of bundle sheath cell walls in C4 species is similar to cell wall thickness of C3 mesophyll cells. Furthermore, NAD-ME type C4 species, which do not have suberin in their bundle sheath cell walls, do not appear to compensate for this with thicker bundle sheath cell walls. Uncertainties in the CO2 diffusion properties of membranes, such as the plasmalemma, choroplast and mitochondrial membranes make it difficult to estimate bundle sheath diffusion resistance from anatomical measurements, but the cytosol itself may account for more than half of the final calculated resistance value for CO2 leakage. We conclude that the location of the site of decarboxylation, its distance from the mesophyll interface and the physical arrangement of chloroplasts and mitochondria in the bundle sheath cell are as important to the efficiency of the process as the properties of the bundle sheath cell wall. Using a mathemathical model of C4 photosynthesis, we also examine the relationship between bundle sheath resistance to CO2 diffusion and the biochemical capacity of the C4 photosynthetic pathway and conclude that bundle sheath resistance to CO2 diffusion must vary with biochemical capacity if the efficiency of the C4 pump is to be maintained. Finally, we construct a mathematical model of single cell C4 photosynthesis in a C3 mesophyll cell and examine the theoretical efficiency of such a C4 photosynthetic CO2 pump. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Abstract Ultrastructural and physiological characteristics of the C3-C4 intermediate Neurachne minor S. T. Blake (Poaceae) are compared with those of C3 and C4 relatives, and C3-C4Panicum milioides Nees ex Trin. N. minor consistently exhibits very low CO2 compensation points (τ: 1.0, usually 0.3–0.6 Pa) yet has C3-like δ13C values. CO2 assimilation rates (A) respond like those of C3 plants to a decrease in O2 partial pressure (2 × 104–1.9 × 103 Pa) at ambient CO2 levels, but this response is progressively attenuated until negligible at very low CO2. By contrast, other species of the Neurachneae are clearly either C4 (two spp.) or C3 (seven spp.). For plants grown and measured at different photon flux densities (PFDs), τ for N. minor and P. milioides increases from 0.5 to 1.0, and from 1.0 to 2.1 Pa, respectively, as PFD is decreased from 1860 to 460 μmol m?2s?1. In N. minor, the O2 response of τ is either biphasic as in P. milioides, but much diminished and with a higher transition point, or is very C4-like. As in C4 relatives, inner sheath cells contain numerous chloroplasts. Their walls possess a suberized lamella, which may make them more CO2-tight than bundle sheath cells of P. milioides, contributing to the almost C4-like τ characteristics of N. minor. The biochemical basis of C3-C4 intermediacy is considered.  相似文献   

20.
Cell walls of the periderm of native potato tuber (Solanum tuberosum L. cv. Primura) consist of a primary wall, a suberized secondary wall and a tertiary wall. With a mixture of pectinase and cellulase intact periderm membranes can be isolated. Isolation does not affect fine structure. It is suggested that the lignin in the middle lamellae and primary walls prevents the enzymes from digesting pectinaceous materials and cellulose. In specimens fixed with OsO4, the suberized walls appear as alternating electrondense and electron-lucent lamellae. This lamellar architecture is not altered by extraction with chloroform. Therefore, the current view that the electronlucent lamellae consist of soluble lipids (waxes) can no longer be maintained. It is argued that the lamellation is a property of the suberin itself, and the suberized wall consists of alternating layers of suberins differing in polarity. A hypothesis of suberin assembly from sub-units is advanced and the subunits are shown for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号