首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Males are the heterogametic sex in salmonid fishes. In brown trout (Salmo trutta) the sex-determining locus, SEX, has been mapped to the end of linkage group BT-28, which corresponds to linkage group AS-8 and chromosome SSA15 in Atlantic salmon (Salmo salar). We set out to identify the sex chromosomes in brown trout. We isolated Atlantic salmon BAC clones containing microsatellite markers that are on BT-28 and also on AS-8, and used these BACs as probes for fluorescent in situ hybridization (FISH) analysis. SEX is located on the short arm of a small subtelocentric/acrocentric chromosome in brown trout, which is consistent with linkage analysis. The acrocentric chromosome SSA15 in Atlantic salmon appears to have arisen by a centric fusion of 2 small acrocentric chromosomes in the common ancestor of Salmo sp. We speculate that the fusion process that produced Atlantic salmon chromosome SSA15 disrupted the ancestral sex-determining locus in the Atlantic salmon lineage, providing the impetus either for the relocation of SEX or selection pressure for a novel sex-determining gene to arise in this species. Thus, the sex-determining genes may differ in Atlantic salmon and brown trout.  相似文献   

2.
A better understanding of the genotype–phenotype correlation of Atlantic salmon is of key importance for a whole range of production, life history and conservation biology issues attached to this species. High-density linkage maps integrated with physical maps and covering the complete genome are needed to identify economically important genes and to study the genome architecture. Linkage maps of moderate density and a physical bacterial artificial chromosome (BAC) fingerprint map for the Atlantic salmon have already been generated. Here, we describe a strategy to combine the linkage mapping with the physical integration of newly identified single nucleotide polymorphisms (SNPs). We resequenced 284 BAC-ends by PCR in 14 individuals and detected 180 putative SNPs. After successful validation of 152 sequence variations, genotyping and genetic mapping were performed in eight salmon families comprising 376 individuals. Among these, 110 SNPs were positioned on a previously constructed linkage map containing SNPs derived from expressed sequence tag (EST) sequences. Tracing the SNP markers back to the BACs enabled the integration of the genetic and physical maps by assigning 73 BAC contigs to Atlantic salmon linkage groups.  相似文献   

3.
Unlike other Pacific salmon, sockeye salmon (Oncorhynchus nerka) have an X(1)X(2)Y sex chromosome system, with females having a diploid chromosome number of 2n = 58 and males 2n = 57 in all populations examined. To determine the origin of the sockeye Y chromosome, we mapped microsatellite loci from the rainbow trout (O. mykiss; OMY) genetic map, including those found on the Y chromosomes of related species, in kokanee (i.e. non-anadromous sockeye) crosses. Results showed that 3 microsatellite loci from the long arm of rainbow trout chromosome 8 (OMY8q), linked to SEX (the sex-determining locus) in coho salmon (O. kisutch), are also closely linked to SEX in the kokanee crosses. We also found that 3 microsatellite loci from OMY2q are linked to those markers from OMY8q and SEX in kokanee, with both linkage groups fused to form the neo-Y. These results were confirmed by physical mapping of BAC clones containing microsatellite loci from OMY8q and OMY2q to kokanee chromosomes using fluorescence in situ hybridization. The fusion of OMY2q to the ancestral Y may have resolved sexual conflict and, in turn, may have played a large role in the divergence of sockeye from a shared ancestor with coho.  相似文献   

4.
Current data on the Y-specific sex-determining region of salmonid fishes from genera Salvelinus, Salmo, and Oncorhynchus indicate variable polymorphisms in the homologous chromosomal locations of the sex-specific determining region. In the majority of the Atlantic lineage Arctic charr, including populations from the Fraser River, in Labrador Canada, as well as Swedish and Norwegian strains, the sex-determining locus maps to linkage group AC-4. Previously, sex-linked polymorphisms (i.e., variation in the associated sex-linked markers on AC-4) have been described in Arctic charr. Here, we report further evidence for intraspecific sex linkage group polymorphisms in Arctic charr (i.e., the detection of the SEX locus on either the AC-1 or AC-21 linkage group) and a possible conservation of a sex linkage arrangement in Icelandic Arctic charr and Atlantic salmon, involving sex-linked markers on the AC-1/21 homeologs and the European AS-1/6 homeologous linkage groups in Atlantic salmon. The evolutionary origins for the multiple sex-determining regions within the salmonid family are discussed. We also relate the variable sex-determining regions in salmonids to their ancestral proto-teleost karyotypic origins and compare these findings with what has been observed in other teleost species in general.  相似文献   

5.
Infectious salmon anemia (ISA) has been described as the hoof and mouth disease of salmon farming. ISA is caused by a lethal and highly communicable virus, which can have a major impact on salmon aquaculture, as demonstrated by an outbreak in Chile in 2007. A quantitative trait locus (QTL) for ISA resistance has been mapped to three microsatellite markers on linkage group (LG) 8 (Chr 15) on the Atlantic salmon genetic map. We identified bacterial artificial chromosome (BAC) clones and three fingerprint contigs from the Atlantic salmon physical map that contains these markers. We made use of the extensive BAC end sequence database to extend these contigs by chromosome walking and identified additional two markers in this region. The BAC end sequences were used to search for conserved synteny between this segment of LG8 and the fish genomes that have been sequenced. An examination of the genes in the syntenic segments of the tetraodon and medaka genomes identified candidates for association with ISA resistance in Atlantic salmon based on differential expression profiles from ISA challenges or on the putative biological functions of the proteins they encode. One gene in particular, HIV-EP2/MBP-2, caught our attention as it may influence the expression of several genes that have been implicated in the response to infection by infectious salmon anemia virus (ISAV). Therefore, we suggest that HIV-EP2/MBP-2 is a very strong candidate for the gene associated with the ISAV resistance QTL in Atlantic salmon and is worthy of further study.  相似文献   

6.
Fluorescence in situ hybridization (FISH) was used to identify the X and Y chromosomes of offspring produced by normal and "apparent" XY-female fall-run Chinook salmon (Oncorhynchus tshawytscha) from California. FISH experiments were performed using probes to 2 sex-linked loci, growth hormone pseudogene (GH-Psi), and OtY1, as well as a probe to a sex-linked microsatellite (Omy7INRA). Comparison of FISH staining patterns between the offspring produced by normal and apparent XY-females revealed that the apparent XY-female examined transmitted a "Y-like" chromosome with an attenuated OtY1 and GH-Psi signal to half of its offspring. Segregation analysis of microsatellites derived from rainbow trout (Oncorhynchus mykiss) with respect to phenotypic sex was carried out for 2 normal and 2 apparent XY-female Chinook salmon families. Inheritance patterns of Omy7INRA were consistent with this locus being closely linked to GH-Psi in males and in apparent XY-females carrying the Y-like chromosome. Another microsatellite locus (Omm1077) was closely linked to the primary sex-determining locus (SEX) in males but not to GH-Psi/OtY1 in apparent XY-females. The FISH analyses suggest that apparent XY-female fall-run Chinook salmon in California are not the product of a Y chromosome to autosome translocation. Despite the combined FISH and inheritance analyses, we were unable to differentiate between 2 alternative explanations for apparent XY-females, namely, recombination of markers between the sex chromosomes, or a Y chromosome with a dysfunctional or missing sex-determining region.  相似文献   

7.
Within the framework of the International Solanaceae Genome Project, the genome of tomato (Solanum lycopersicum) is currently being sequenced. We follow a 'BAC-by-BAC' approach that aims to deliver high-quality sequences of the euchromatin part of the tomato genome. BACs are selected from various libraries of the tomato genome on the basis of markers from the F2.2000 linkage map. Prior to sequencing, we validated the precise physical location of the selected BACs on the chromosomes by five-colour high-resolution fluorescent in situ hybridization (FISH) mapping. This paper describes the strategies and results of cytogenetic mapping for chromosome 6 using 75 seed BACs for FISH on pachytene complements. The cytogenetic map obtained showed discrepancies between the actual chromosomal positions of these BACs and their markers on the linkage group. These discrepancies were most notable in the pericentromere heterochromatin, thus confirming previously described suppression of cross-over recombination in that region. In a so called pooled-BAC FISH, we hybridized all seed BACs simultaneously and found a few large gaps in the euchromatin parts of the long arm that are still devoid of seed BACs and are too large for coverage by expanding BAC contigs. Combining FISH with pooled BACs and newly recruited seed BACs will thus aid in efficient targeting of novel seed BACs into these areas. Finally, we established the occurrence of repetitive DNA in heterochromatin/euchromatin borders by combining BAC FISH with hybridization of a labelled repetitive DNA fraction (Cot-100). This strategy provides an excellent means to establish the borders between euchromatin and heterochromatin in this chromosome.  相似文献   

8.
Integration of chicken genomic resources to enable whole-genome sequencing   总被引:1,自引:0,他引:1  
Different genomic resources in chicken were integrated through the Wageningen chicken BAC library. First, a BAC anchor map was created by screening this library with two sets of markers: microsatellite markers from the consensus linkage map and markers created from BAC end sequencing in chromosome walking experiments. Second, HINdIII digestion fingerprints were created for all BACs of the Wageningen chicken BAC library. Third, cytogenetic positions of BACs were assigned by FISH. These integrated resources will facilitate further chromosome-walking experiments and whole-genome sequencing.  相似文献   

9.
BAC contig development by fingerprint analysis in soybean.   总被引:11,自引:0,他引:11  
L F Marek  R C Shoemaker 《Génome》1997,40(4):420-427
We constructed a soybean bacterial artificial chromosome (BAC) library suitable for map-based cloning and physical mapping in soybean. This library consists of approximately 40 000 clones (4-5 genome equivalents) stored individually in 384-well microtiter dishes. A random sampling of 224 clones yielded an average insert size of 150 kb, giving a 98% probability of recovering any specific sequence. We screened the library for seven single or very low copy genie or genomic sequences using the polymerase chain reaction (PCR) and found between one and seven BACs for each of the seven sequences. When testing the library with a portion of the soybean psbA chloroplast gene, we found less than 1% chloroplast DNA representation. We also screened the library for eight different classes of disease resistance gene analogs (RGAs) and identified BACs containing all RGAs except class 8. We arranged nine of the class 1 RGA BACs and six of the class 3 RGA BACs into individual contigs based on fingerprint patterns observed after Southern probing of restriction digests of the member BACs with a class-specific sequence. This resulted in the partial localization of the different multigene family sequences without precise definition of their exact positions. Using PCR-based end rescue techniques and RFLP mapping of BAC ends, we mapped individual BACs of each contig onto linkage group J of the soybean public map. The class 1 contig mapped to the region on linkage group J that contains several disease resistance genes. The class 1 contig extended approximately 400 kb. The arrangement of the BACs within this contig has been confirmed using PCR. One end of the class 1 contig core BAC mapped to two positions on linkage group J and cosegregated with two class 1 RGA loci, suggesting that this segment is within an area of regional duplication.  相似文献   

10.
A physical map of the Atlantic salmon (Salmo salar) genome was generated based on HindIII fingerprints of a publicly available BAC (bacterial artificial chromosome) library constructed from DNA isolated from a Norwegian male. Approximately 11.5 haploid genome equivalents (185,938 clones) were successfully fingerprinted. Contigs were first assembled via FPC using high-stringency (1e-16), and then end-to-end joins yielded 4354 contigs and 37,285 singletons. The accuracy of the contig assembly was verified by hybridization and PCR analysis using genetic markers. A subset of the BACs in the library contained few or no HindIII recognition sites in their insert DNA. BglI digestion fragment patterns of these BACs allowed us to identify three classes: (1) BACs containing histone genes, (2) BACs containing rDNA-repeating units, and (3) those that do not have BglI recognition sites. End-sequence analysis of selected BACs representing these three classes confirmed the identification of the first two classes and suggested that the third class contained highly repetitive DNA corresponding to tRNAs and related sequences.  相似文献   

11.
The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the foremost pest of soybean (Glycine max L. Merr.). The rhg1 allele on linkage group (LG) G and the Rhg4 allele on LG A2 are important in conditioning resistance. Markers closely linked to the Rhg4 locus were used previously to screen a library of bacterial artificial chromosome (BAC) clones from susceptible 'Williams 82' and identified a single 150-kb BAC, Gm_ISb001_056_G02 (56G2). End-sequenced subclones positioned onto a restriction map provided landmarks for identifying the corresponding region from a BAC library from accession PI 437654 with broad resistance to SCN. Seventy-three PI 437654 BACs were assigned to contigs based upon HindIII restriction fragment profiles. Four contigs represented the PI 437654 counterpart of the 'Williams 82' BAC, with PCR assays connecting these contigs. Some of the markers on the PI 437654 contigs are separated by a greater physical distance than in the 'Williams 82' BAC and some primers amplify bands from BACs in the mid-portion of the connected PI 437654 BAC contigs that are not amplified from the 'Williams 82' BAC. These observations suggest that there is an insertion in the PI 437654 genome relative to the 'Williams 82' genome in the Rhg4 region.  相似文献   

12.
Selection of chromosomal sublibraries from total human genomic libraries is critical for chromosome-based physical mapping approaches. We have previously reported a method of screening total human genomic library using flow sorted chromosomal DNA as a hybridization probe and selection of a human chromosome 22-enriched sublibrary from a total human bacterial artificial chromosome (BAC) library (Nucleic Acids Res 1995; 23: 1838–1839). We describe here further details of the method of construction as well as characterization of the chromosome 22-enriched sublibrary thus constructed. Nearly 40% of the BAC clones that have been mapped by fluorescence in situ hybridization (FISH) analysis were localized to chromosome 22. By screening the sublibrary using chromosome 22-specific hybridization probes, we estimated that the sublibrary represents at least 2.5 × coverage of chromosome 22. This is in good agreement with the results from FISH mapping experiments. FISH map data also indicate that chromosome 22-specific BACs in the sublibrary represent all the subregions of chromosome 22.  相似文献   

13.
Olfactory receptors are encoded by three large multigene superfamilies (OR, V1R and V2R) in mammals. Fish do not possess a vomeronasal system; therefore, it has been proposed that their V1R-like genes be classified as olfactory receptors related to class A G protein-coupled receptors (ora). Unlike mammalian genomes, which contain more than a hundred V1R genes, the five species of teleost fish that have been investigated to date appear to have six ora genes (ora1-6) except for pufferfish that have lost ora1. The common ancestor of salmonid fishes is purported to have undergone a whole genome duplication. As salmonids have a life history that requires the use of olfactory cues to navigate back to their natal habitats to spawn, we set out to determine if ora1 or ora2 is duplicated in a representative species, Atlantic salmon (Salmo salar). We used an oligonucleotide probe designed from a conserved sequence of several teleost ora2 genes to screen an Atlantic salmon BAC library (CHORI-214). Hybridization-positive BACs belonged to a single fingerprint contig of the Atlantic salmon physical map. All were also positive for ora2 by PCR. One of these BACs was chosen for further study, and shotgun sequencing of this BAC identified two V1R-like genes, ora1 and ora2, that are in a head-to-head conformation as is seen in some other teleosts. The gene products, ora1 and ora2, are highly conserved among teleosts. We only found evidence for a single ora1-2 locus in the Atlantic salmon genome, which was mapped to linkage group 6. Fluorescent in situ hybridization (FISH) analysis placed ora1-2 on chromosome 12. Conserved synteny was found surrounding the ora1 and ora2 genes in Atlantic salmon, medaka and three-spined stickleback, but not zebrafish.  相似文献   

14.
Fluorescence in situ hybridization (FISH) using a probe to the male-specific GH-Y (growth hormone pseudogene) was used to identify the Y chromosome in coho salmon (Oncorhynchus kisutch). The sex chromosome pair is morphologically similar to chinook salmon (Oncorhynchus tshawytscha) with the GH-Y localized to the small short arm of the largest subtelocentric chromosome pair. FISH experiments with probes containing sex-linked genes in rainbow trout (Oncorhynchus mykiss) (SCAR163) and chinook salmon (Omy7INRA) showed that the coho sex linkage group is different from chinook and rainbow trout and this was confirmed by segregation analysis for the Omy7INRA locus. The telomeric location of the SEX locus, the presence of shared male-specific markers in coho and chinook salmon, and the lack of conservation of sex-linkage groups suggest that transposition of a small male-specific region may have occurred repeatedly in salmonid fishes of the genus Oncorhynchus.  相似文献   

15.
Integration of the FISH pachytene and genetic maps of Medicago truncatula   总被引:6,自引:0,他引:6  
A molecular cytogenetic map of Medicago truncatula (2n = 2x = 16) was constructed on the basis of a pachytene DAPI karyogram. Chromosomes at this meiotic prophase stage are 20 times longer than at mitotic metaphase, and display a well differentiated pattern of brightly fluorescing heterochromatin segments. We describe here a pachytene karyogram in which all chromosomes can be identified based on chromosome length, centromere position, heterochromatin patterns, and the positions of three repetitive sequences (5S rDNA, 45S rDNA and the MtR1 tandem repeat), visualized by fluorescence in situ hybridization (FISH). We determined the correlation between genetic linkage groups and chromosomes by FISH mapping of bacterial artificial chromosome (BAC) clones, with two to five BACs per linkage group. In the cytogenetic map, chromosomes were numbered according to their corresponding linkage groups. We determined the relative positions of the 20 BACs and three repetitive sequences on the pachytene chromosomes, and compared the genetic and cytological distances between markers. The mapping resolution was determined in a euchromatic part of chromosome 5 by comparing the cytological distances between FISH signals of clones of a BAC contig with their corresponding physical distance, and showed that resolution in this region is about 60 kb. The establishment of this FISH pachytene karyotype, with a far better mapping resolution and detection sensitivity compared to those in the highly condensed mitotic metaphase complements, has created the basis for the integration of molecular, genetic and cytogenetic maps in M. truncatula.  相似文献   

16.
Despite abundant library resources for many organisms, physical mapping of these organisms has been seriously limited due to lack of efficient library screening techniques. We have developed a highly efficient strategy for large-scale screening of genomic libraries based on multiplex oligonucleotide hybridization on high-density genomic filters. We have applied this strategy to generate a bacterial artificial chromosome (BAC) anchored map of mouse chromosome 11. Using the MIT mouse SSLP data, 320 pairs of oligonucleotide probes were designed with an “overgo” computer program that selects new primer sequences that avoid the microsatellite repeat. BACs identified by these probes are automatically anchored to the chromosome. Ninety-two percent of the probes identified positive clones from a 5.9-fold coverage mouse BAC library with an average of 7 positive clones per marker. An average of 4.2 clones was confirmed for 204 markers by PCR. Our data show that a large number of clones can be efficiently isolated from a large genomic library using this strategy with minimal effort. This strategy will have wide application for large-scale mapping and sequencing of human and other large genomes.  相似文献   

17.
A total of 55 expressed sequence tags (ESTs) randomly chosen from our collection of fetal liver ESTs were mapped to chromosomes by fluorescence in situ hybridization (FISH) mapping techniques. To generate FISH mapping probes, the genomic DNAs for each EST were selected by screening an arrayed human bacterial artificial chromosome (BAC) library. In total, 73 BACs were used for mapping of the 55 ESTs. Among them, 70 BACs representing 52 ESTs unequivocally mapped to single chromosomal regions. The remaining 3 BACs representing 3 ESTs were localized to multiple regions, suggesting that BACs may have very low chimerism. Our mapping results were compared with EST mapping databases deposited in NCBI. Thirty-six of 55 ESTs corresponded to previously mapped positions of ESTs, 2 ESTs mapped to different positions from previously determined ones, and it was found that 17 ESTs have been mapped on new locations from this study. These mapping data may be used for completing the framework of the human physical map, and also for providing a good starting point for searching disease-related genes.  相似文献   

18.
Klysik J  Cai WW  Yang C  Bradley A 《Genomics》1999,62(1):123-128
Physical maps are important resources both in sequencing and in functional analyses of large genomes. Global contig-building approaches are regarded to be more efficient relative to the cumulative outcome of scattered and more localized physical mapping studies accompanying positional cloning. This work is part of an effort to assemble a complete physical map of mouse chromosome 11 in which selection of clones containing specific genetic markers from genomic libraries is the first step in the process. Using a previously developed strategy, we identified 361 bacterial artificial chromosomes (BACs) containing 88 gene markers. Since the linkage positions of markers chosen for these studies are known, the BAC framework obtained is anchored to the genetic map and represents about 13% of the length of the entire chromosome. Together with similar assignments of BACs generated previously using D11Mit markers (Cai et al., 1988, Genomics, 54: 387-397), 36-40% of the chromosome 11 is now assembled into contigs, and these contigs correlate through 51 clones carrying both gene and simple sequence length polymorphism markers.  相似文献   

19.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

20.
Bacterial artificial chromosome (BAC) libraries are widely used in map-based cloning of plant genes. Eastern filbert blight (EFB), caused by the pyrenomycete Anisogramma anomala (Peck) E. Müller, is a devastating disease of European hazelnut (Corylus avellana L.) in the Pacific Northwest. A dominant allele at a single locus from the obsolete pollenizer “Gasaway” confers complete resistance. Our map-based cloning efforts use a BAC library for “Jefferson” hazelnut, which is heterozygous for resistance. Screening the library with primer pairs designed from RAPD markers closely linked to the EFB resistance locus identified 38 BACs. We sequenced 28 of these BACs using Illumina technology, by multiplexing with barcoded adapters. De novo sequence assembly using the programs Velvet and SOPRA and further alignment using CodonCode Aligner generated contigs whose length ranged from 393 to 108,194 bp. The number of contigs per BAC ranged from 1 to 19, and estimated coverage of assembled BACs ranged from 64 % to 100 %. Preliminary analysis of the sequences identified 779 simple sequence repeats (SSRs), from which we developed 23 markers. Of these, 17 were assigned to linkage group 6 adjacent to the disease resistance locus, five were placed on other linkage groups, and one could not be assigned to a linkage group. The BAC sequences and new SSR markers will be useful for our efforts at map-based cloning of the disease resistance gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号