首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions Between Signaling Compounds Involved in Plant Defense   总被引:17,自引:0,他引:17  
To elude or minimize the effects of disease and herbivory, plants rely on both constitutive and inducible defenses. In response to attack by pathogens or pests, plants activate signaling cascades leading to the accumulation of endogenous hormones that trigger the induction of defenses. Salicylic acid (SA), jasmonic acid (JA), and ethylene (E) are plant-specific hormones involved in communicating the attack by many pathogens and pests in a broad range of plant species. SA, JA and E signaling cascades do not activate defenses independently, but rather establish complex interactions that determine the response mounted in each condition. Deployment of defenses is energetically costly, so a trade-off between the activation of resistance against a particular pest or pathogen and down regulation of other defenses is common. Conversely, activation of broad range resistance in response to an initial attack may serve to deter opportunistic agents. Thus, the interaction among SA, JA and E defense signaling pathways can be antagonistic, cooperative or synergistic, depending on the plant species, the combination of organisms attacking the plants, and the developmental and physiological state of the plant. A characterization of the interactions among defense signaling pathways and the determination of the molecular components mediating cross-talk between the different pathways will be essential for the rational design of transgenic plants with increased resistance to disease and/or herbivores without critically compromising other agronomic traits.  相似文献   

2.
Herbivore microbial associates can affect diverse interactions between plants and insect herbivores. Some insect symbionts enable herbivores to expand host plant range or to facilitate host plant use by modifying plant physiology. However, little attention has been paid to the role of herbivore-associated microbes in manipulating plant defenses. We have recently shown that Colorado potato beetle secrete the symbiotic bacteria to suppress plant defenses. The bacteria in oral secretions from the beetle hijack defense signaling pathways of host plants and the suppression of induced plant defenses benefits the beetle’s performance. While the defense suppression by the beetle-associated bacteria has been investigated in local damaged leaves, little is known about the effects of the symbiotic bacteria on the manipulation of plant defenses in systemic undamaged leaves. Here, we demonstrate that the symbiotic bacteria suppress plant defenses in both local and systemic tissues when plants are attacked by antibiotic-untreated larvae.  相似文献   

3.
Plants are often attacked by many herbivorous insects and pathogens at the same time. Two important suites of responses to attack are mediated by plant hormones, jasmonate and salicylate, which independently provide resistance to herbivorous insects and pathogens, respectively. Several lines of evidence suggest that there is negative cross-talk between the jasmonate and salicylate response pathways. This biochemical link between general plant defense strategies means that deploying defenses against one attacker can positively or negatively affect other attackers. In this study, we tested for cross-talk in the jasmonate and salicylate signaling pathways in a wild tomato and examined the effects of cross-talk on an array of herbivores of cultivated tomato plants. In the wild cultivar, induction of defenses signaled by salicylate reduced biochemical expression of the jasmonate pathway but did not influence performance of S. exigua caterpillars. This indicates that the signal interaction is not a result of agricultural selection. In cultivated tomato, biochemical attenuation of the activity of a defense protein (polyphenol oxidase) in dual-elicited plants resulted in increased of performance of cabbage looper caterpillars, but not thrips, spider mites, hornworm caterpillars or the bacteria Pseudomonas syringae pv. tomato. In addition, we tested the effects of jasmonate-induced resistance on the ability of thrips to vector tomato spotted wilt virus. Although thrips fed less on induced plants, this did not affect the level of disease. Thus, the negative interaction between jasmonate and salicylate signaling had biological consequences for two lepidopteran larvae but not for several other herbivores tested or on the spread of a disease.  相似文献   

4.
Biotic elicitors produced by plant pathogens or herbivore pests rapidly activate a range of plant chemical defenses when translocated to plant tissue. The fatty acid conjugate volicitin has proven to be a robust elicitor model for studying herbivore-induced plant defense responses. Here we review the role of insect-derived volicitin (N-[17-hydroxylinolenoyl]-L-glutamine) as an authentic elicitor of defense responses, specifically as an activator of signal volatiles that attract natural enemies of herbivore pests. Comparisons are drawn between volicitin as an elicitor of plant defenses and two other classes of signaling molecules, C6 green-leaf volatiles and C4 bacterial volatiles that appear to prime plant defenses thereby enhancing the capacity to mobilize cellular defense responses when a plant is faced with herbivore or pathogen attack.  相似文献   

5.
6.
Plants have evolved and diversified to reduce the damages imposed by infectious pathogens and herbivorous insects. Living in a sedentary lifestyle, plants are constantly adapting to their environment. They employ various strategies to increase performance and fitness. Thus, plants developed cost‐effective strategies to defend against specific insects and pathogens. Plant defense, however, imposes selective pressure on insects and pathogens. This selective pressure provides incentives for pathogens and insects to diversify and develop strategies to counter plant defense. This results in an evolutionary arms race among plants, pathogens and insects. The ever‐changing adaptations and physiological alterations among these organisms make studying plant–vector–pathogen interactions a challenging and fascinating field. Studying plant defense and plant protection requires knowledge of the relationship among organisms and the adaptive strategies each organism utilize. Therefore, this review focuses on the integral parts of plant–vector–pathogen interactions in order to understand the factors that affect plant defense and disease development. The review addresses plant–vector–pathogen co‐evolution, plant defense strategies, specificity of plant defenses and plant–vector–pathogen interactions. Improving the comprehension of these factors will provide a multi‐dimensional perspective for the future research in pest and disease management.  相似文献   

7.
Despite impressive advances in the study of plant resistance to pathogens, little is known about the molecular basis of plant susceptibility to virulent pathogens. Recent progress in susceptible plant-Pseudomonas syringae interactions has provided a glimpse into the battles fought between plants and bacterial pathogens. A key step for pathogenesis appears to be the suppression of host defenses. Suppression of host defenses, including basal defense, gene-for-gene resistance and nonhost resistance, is a key step for pathogenesis. Defense suppression is mediated by bacterial effector proteins, which are secreted through the type III secretion system, and by coronatine, a bacterial toxin that structurally and functionally mimics methyl jasmonate, a plant defense signaling molecule.  相似文献   

8.
To ameliorate the impact of disease, social insects combine individual innate immune defenses with collective social defenses. This implies that there are different levels of selection acting on investment in immunity, each with their own trade-offs. We present the results of a cross-fostering experiment designed to address the influences of genotype and social rearing environment upon individual and social immune defenses. We used a multiply mating leaf-cutting ant, enabling us to test for patriline effects within a colony, as well as cross-colony matriline effects. The worker's father influenced both individual innate immunity (constitutive antibacterial activity) and the size of the metapleural gland, which secretes antimicrobial compounds and functions in individual and social defense, indicating multiple mating could have important consequences for both defense types. However, the primarily social defense, a Pseudonocardia bacteria that helps to control pathogens in the ants' fungus garden, showed a significant colony of origin by rearing environment interaction, whereby ants that acquired the bacteria of a foster colony obtained a less abundant cover of bacteria: one explanation for this pattern would be co-adaptation between host colonies and their vertically transmitted mutualist. These results illustrate the complexity of the selection pressures that affect the expression of multilevel immune defenses.  相似文献   

9.
Plants are continually exposed to a variety of potentially pathogenic microbes, and the interactions between plants and pathogenic invaders determine the outcome, disease or disease resistance. To defend themselves, plants have developed a sophisticated immune system. Unlike animals, however, they do not have specialized immune cells and, thus all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. Using genetic, genomic and biochemical methods, tremendous advances have been made in understanding how plants recognize pathogens and mount effective defenses. The primary immune response is induced by microbe-associated molecular patterns (MAMPs). MAMP receptors recognize the presence of probable pathogens and evoke defense. In the co-evolution of plant-microbe interactions, pathogens gained the ability to make and deliver effector proteins to suppress MAMP-induced defense responses. In response to effector proteins, plants acquired R-proteins to directly or indirectly monitor the presence of effector proteins and activate an effective defense response. In this review we will describe and discuss the plant immune responses induced by two types of elicitors, PAMPs and effector proteins.  相似文献   

10.
When a pathogen is perceived by a host plant, a series of defense responses can be activated. One of these are "local" defenses that occur rapidly at the site of pathogen invasion. Another are "systemic" defenses that are induced in uninoculated parts of the plant. Recently, molecular genetic studies have revealed genes that are signaling components of systemic resistance pathways. Cloning of these genes and characterization of the function of their proteins is now providing insights to processes regulating plant defense against pathogens. Evidence that "systemic" defenses are important for resistance is that when the way is blocked in transgenic plants or in mutants, the plant's defense is compromised. When the pathway is stimulated by exogenous compounds or in mutants, the host resistance is strengthened. A detailed understanding of this pathway is important for both practical and theoretical reasons.  相似文献   

11.
Plant disease resistance (R) proteins recognize potential pathogens expressing corresponding avirulence (Avr) proteins through 'gene-for-gene' interactions. RPM1 is an Arabidopsis R-protein that triggers a robust defense response upon recognizing the Pseudomonas syringae effector AvrRpm1. Avr-proteins of phytopathogenic bacteria include type III effector proteins that are often capable of enhancing virulence when not recognized by an R-protein. In rpm1 plants, AvrRpm1 suppresses basal defenses induced by microbe-associated molecular patterns. Here, we show that expression of AvrRpm1 in rpm1 plants induced PR-1, a classical defense marker, and symptoms including chlorosis and necrosis. PR-1 expression and symptoms were reduced in plants with mutations in defense signaling genes ( pad4 , sid2 , npr1 , rar1 , and ndr1 ) and were strongly reduced in rpm1 rps2 plants, indicating that AvrRpm1 elicits defense signaling through the Arabidopsis R-protein, RPS2. Bacteria expressing AvrRpm1 grew more on rpm1 rps2 than on rpm1 plants. Thus, independent of its classical 'gene-for-gene' activation of RPM1, AvrRpm1 also induces functionally relevant defenses that are dependent on RPS2. Finally, AvrRpm1 suppressed host defenses and promoted the growth of type III secretion mutant bacteria equally well in rps2 and RPS2 plants, indicating that virulence activity of over-expressed AvrRpm1 predominates over defenses induced by weak activation of RPS2.  相似文献   

12.
Induced systemic resistance (ISR) in plants: mechanism of action   总被引:1,自引:0,他引:1  
Plants possess a range of active defense apparatuses that can be actively expressed in response to biotic stresses (pathogens and parasites) of various scales (ranging from microscopic viruses to phytophagous insect). The timing of this defense response is critical and reflects on the difference between coping and succumbing to such biotic challenge of necrotizing pathogens/parasites. If defense mechanisms are triggered by a stimulus prior to infection by a plant pathogen, disease can be reduced. Induced resistance is a state of enhanced defensive capacity developed by a plant when appropriately stimulated. Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of induced resistance wherein plant defenses are preconditioned by prior infection or treatment that results in resistance against subsequent challenge by a pathogen or parasite. Selected strains of plant growth-promoting rhizobacteria (PGPR) suppress diseases by antagonism between the bacteria and soil-borne pathogens as well as by inducing a systemic resistance in plant against both root and foliar pathogens. Rhizobacteria mediated ISR resembles that of pathogen induced SAR in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Several rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface whereas other rhizobacteria trigger different signaling pathway independent of SA. The existence of SA-independent ISR pathway has been studied in Arabidopsis thaliana, which is dependent on jasmonic acid (JA) and ethylene signaling. Specific Pseudomonas strains induce systemic resistance in viz., carnation, cucumber, radish, tobacco, and Arabidopsis, as evidenced by an enhanced defensive capacity upon challenge inoculation. Combination of ISR and SAR can increase protection against pathogens that are resisted through both pathways besides extended protection to a broader spectrum of pathogens than ISR/SAR alone. Beside Pseudomonas strains, ISR is conducted by Bacillus spp. wherein published results show that several specific strains of species B. amyloliquifaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B.sphaericus elicit significant reduction in the incidence or severity of various diseases on a diversity of hosts.  相似文献   

13.
Plants appear to have two types of active defenses, a broad-spectrum basal system and a system controlled by R-genes providing stronger resistance to some pathogens that break the basal defense. However, it is unknown if the systems are separate entities. Therefore, we analyzed proteins from leaves of the dry bean crop plant Phaseolus vulgaris using a high-throughput liquid chromatography tandem mass spectrometry method. By statistically comparing the amounts of proteins detected in a single plant variety that is susceptible or resistant to infection, depending on the strains of a rust fungus introduced, we defined basal and R-gene-mediated plant defenses at the proteomic level. The data reveal that some basal defense proteins are potential regulators of a strong defense weakened by the fungus and that the R-gene modulates proteins similar to those in the basal system. The results satisfy a new model whereby R-genes are part of the basal system and repair disabled defenses to reinstate strong resistance.  相似文献   

14.
Bacterial pathogens and symbionts must suppress or negate host innate immunity. However, pathogens release conserved oligomeric and polymeric molecules or MAMPs (Microbial Associated Molecular Patterns), which elicit host defenses [1], [2] and [3]. Extracellular polysaccharides (EPSs) are key virulence factors in plant and animal pathogenesis, but their precise function in establishing basic compatibility remains unclear [4], [5], [6] and [7]. Here, we show that EPSs suppress MAMP-induced signaling in plants through their polyanionic nature [4] and consequent ability to chelate divalent calcium ions [8]. In plants, Ca2+ ion influx to the cytosol from the apoplast (where bacteria multiply [4], [5] and [9]) is a prerequisite for activation of myriad defenses by MAMPs [10]. We show that EPSs from diverse plant and animal pathogens and symbionts bind calcium. EPS-defective mutants or pure MAMPs, such as the flagellin peptide flg22, elicit calcium influx, expression of host defense genes, and downstream resistance. Furthermore, EPSs, produced by wild-type strains or purified, suppress induced responses but do not block flg22-receptor binding in Arabidopsis cells. EPS production was confirmed in planta, and the amounts in bacterial biofilms greatly exceed those required for binding of apoplastic calcium. These data reveal a novel, fundamental role for bacterial EPS in disease establishment, encouraging novel control strategies.  相似文献   

15.
16.
In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.  相似文献   

17.
Plants are under continuous threat of infection by pathogens endowed with diverse strategies to colonize their host. Comprehensive biochemical and genetic approaches are now starting to reveal the complex signaling pathways that mediate plant disease resistance. Initiation of defense signaling often involves specific recognition of invading pathogens by the products of specialized host resistance (R) genes. Potential resistance signaling components have been identified by mutational analyses to be required for specific resistance in the model Arabidopsis and some crop species. Strikingly, many of the components share similarity to that of innate immune systems in animals. Evidence is also accumulating that plant pathogens have a number of ways to evade host defenses during the early stages of infection, similar to animal pathogens. These strategies are becoming much better understood in a number of plant–pathogen interactions. In this review, we focus on the current knowledge of host factors that control plant resistance and susceptibility to fungal pathogens. The knowledge accumulated in these studies will serve a fundamental basis for combating diseases in strategic molecular agriculture.  相似文献   

18.
Plant activators are chemicals that induce plant defense responses to a broad spectrum of pathogens. Here, we identified a new potential plant activator, 5-(cyclopropylmethyl)-6-methyl-2-(2-pyridyl)pyrimidin-4-ol, named PPA (pyrimidin-type plant activator). Compared with benzothiadiazole S-methyl ester (BTH), a functional analog of salicylic acid (SA), PPA was fully soluble in water and increased fresh weight of rice (Oryza sativa) and Arabidopsis plants at low concentrations. In addition, PPA also promoted lateral root development. Microarray data and real-time PCR revealed that PPA-treated leaves not challenged with pathogen showed up-regulation of genes related to reactive oxygen species (ROS), defenses and SA. During bacterial infection, Arabidopsis plants pretreated with PPA showed dramatically decreased disease symptoms and an earlier and stronger ROS burst, compared with plants pretreated with BTH. Microscopy revealed that H2O2 accumulated in the cytosol, plasma membrane and cell wall around intracellular bacteria, and also on the bacterial cell wall, indicating that H2O2 was directly involved in killing bacteria. The increase in ROS-related gene expression also supported this observation. Our results indicate that PPA enhances plant defenses against pathogen invasion through the plant redox system, and as a water-soluble compound that can promote plant growth, has broad potential applications in agriculture.  相似文献   

19.
The extent to which organisms can protect themselves from disease depends on both the immune defenses they maintain and the pathogens they face. At the same time, immune systems are shaped by the antigens they encounter, both over ecological and evolutionary time. Ecological immunologists often recognize these interactions, yet ecological immunology currently lacks major efforts to characterize the environmental, host-independent, antigenic pressures to which all animals are exposed. Failure to quantify relevant diseases and pathogens in studies of ecological immunology leads to contradictory hypotheses. In contrast, including measures of environmental and host-derived commensals, pathogens, and other immune-relevant organisms will strengthen the field of ecological immunology. In this article, we examine how pathogens and other organisms shape immune defenses and highlight why such information is essential for a better understanding of the causes of variation in immune defenses. We introduce the concept of "operative protection" for understanding the role of immunologically relevant organisms in shaping immune defense profiles, and demonstrate how the evolutionary implications of immune function are best understood in the context of the pressures that diseases and pathogens bring to bear on their hosts. We illustrate common mistakes in characterizing these immune-selective pressures, and provide suggestions for the use of molecular and other methods for measuring immune-relevant organisms.  相似文献   

20.
Unraveling mycorrhiza-induced resistance   总被引:5,自引:0,他引:5  
Arbuscular mycorrhizal symbioses have a significant impact on plant interactions with other organisms. Increased resistance to soil-borne pathogens has been widely described in mycorrhizal plants. By contrast, effects on shoot diseases largely rely on the lifestyle and challenge strategy of the attacker. Among the potential mechanisms involved in the resistance of mycorrhizal systems, the induction of plant defenses is the most controversial. During mycorrhiza formation, modulation of plant defense responses occurs, potentially through cross-talk between salicylic acid and jasmonate dependent signaling pathways. This modulation may impact plant responses to potential enemies by priming the tissues for a more efficient activation of defense mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号