首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adiponectin high molecular weight isoform (HMW-adp) and its relation with the other adiponectin isoforms (adiponectin index, S(A)), have been identified as essential for the adiponectin insulin sensitizing effects. The objective of this study is to gain further insight on the effect of the insulin sensitizing agents, PPAR-γ agonists, on the distribution of the adiponectin isoforms and the adiponectin receptors, adipoR1 and adipoR2 in an animal model of obesity and insulin resistance. To achieve the objective, Zucker fatty rats were treated with pioglitazone, rosiglitazone or placebo for six weeks. At the end of the treatment, total adiponectin, adiponectin isoforms and adiponectin receptors expression were measured. In order to see the possible relation with insulin sensitivity parameters, HOMA-IR, muscle insulin-stimulated glucose transport, muscle GLUT4 and plasma free fatty acids were also measured. The two glitazones improved insulin sensitivity and both muscle insulin-stimulated glucose transport and GLUT4 total content. Total plasma adiponectin and visceral fat HMW-adp were increased only by pioglitazone. On the other hand, both glitazones changed the distribution of adiponectin isoforms in plasma, leading to an increase in the S(A) of 21% by pioglitazone and 31% by rosiglitazone. Muscle adipoR1 expression was increased by both glitazones whereas liver adipoR2 expression was increased by rosiglitazone and tended to increase in the pioglitazone group. The insulin sensitizing action of glitazones is mediated, at least in part, by their effect on muscle insulin-stimulated glucose transport and by their direct influence on the adiponectin index and the adiponectin receptors expression.  相似文献   

2.
Adipose tissue plays an important role in glucose homeostasis and affects insulin sensitivity in other tissues. In obesity and type 2 diabetes, glucose transporter 4 (GLUT4) is downregulated in adipose tissue, and glucose transport is also impaired in muscle. To determine whether overexpression of GLUT4 selectively in adipose tissue could prevent insulin resistance when glucose transport is impaired in muscle, we bred muscle GLUT4 knockout (MG4KO) mice to mice overexpressing GLUT4 in adipose tissue (AG4Tg). Overexpression of GLUT4 in fat not only normalized the fasting hyperglycemia and glucose intolerance in MG4KO mice, but it reduced these parameters to below normal levels. Glucose infusion rate during a euglycemic clamp study was reduced 46% in MG4KO compared with controls and was restored to control levels in AG4Tg-MG4KO. Similarly, insulin action to suppress hepatic glucose production was impaired in MG4KO mice and was restored to control levels in AG4Tg-MG4KO. 2-deoxyglucose uptake during the clamp was increased approximately twofold in white adipose tissue but remained reduced in skeletal muscle of AG4Tg-MG4KO mice. AG4Tg and AG4Tg-MG4KO mice have a slight increase in fat mass, a twofold elevation in serum free fatty acids, an approximately 50% increase in serum leptin, and a 50% decrease in serum adiponectin. In MG4KO mice, serum resistin is increased 34% and GLUT4 overexpression in fat reverses this. Overexpression of GLUT4 in fat also reverses the enhanced clearance of an oral lipid load in MG4KO mice. Thus overexpression of GLUT4 in fat reverses whole body insulin resistance in MG4KO mice without restoring glucose transport in muscle. This effect occurs even though AG4Tg-MG4KO mice have increased fat mass and low adiponectin and is associated with normalization of elevated resistin levels.  相似文献   

3.
Adiponectin, an adipokine secreted by adipocytes, exerts beneficial effects on glucose and lipid metabolism and has been found to improve insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. Adiponectin is found in several isoforms and the high-molecular weight (HMW) form has been linked most strongly to the insulin-sensitizing effects. Fat content in skeletal muscle (intramyocellular lipids, IMCL) and liver (intrahepatic lipids, IHL) can be quantified noninvasively using proton magnetic resonance spectroscopy ((1)H-MRS). The purpose of our study was to assess the relationship between HMW adiponectin and measures of glucose homeostasis, IMCL and IHL, and to determine predictors of adiponectin levels. We studied 66 premenopausal women (mean BMI 31.0 ± 6.6 kg/m(2)) who underwent (1)H-MRS of calf muscles and liver for IMCL and IHL, computed tomography (CT) of the abdomen for abdominal fat depots, dual-energy X-ray absorptiometry (DXA) for fat and lean mass assessments, HMW and total adiponectin, fasting lipid profile and an oral glucose tolerance test (homeostasis model assessment of insulin resistance (HOMA(IR)), glucose and insulin area under the curve). There were strong inverse associations between HMW adiponectin and measures of insulin resistance, IMCL and IHL, independent of visceral adipose tissue (VAT) and total body fat. IHL was the strongest predictor of adiponectin and adiponectin was a predictor of HOMA(IR). Our study showed that in premenopausal obese women HMW adiponectin is inversely associated with IMCL and IHL content. This suggests that adiponectin exerts positive effects on insulin sensitivity in obesity by decreasing intracellular triglyceride content in skeletal muscle and liver; it is also possible that our results reflect effects of insulin on adiponectin.  相似文献   

4.
Wang Y  Lu G  Wong WP  Vliegenthart JF  Gerwig GJ  Lam KS  Cooper GJ  Xu A 《Proteomics》2004,4(12):3933-3942
Adiponectin is a plasma protein exclusively secreted from fat tissue. Many recent pharmacological studies suggest that recombinant adiponectin has multiple therapeutic potentials for obesity-related metabolic disorders, including type 2 diabetes, dyslipidemia, insulin resistance and atherosclerosis. However, the physiological relevance of these findings remains to be further established. In the present study, we have purified endogenous adiponectin from fetal bovine serum and characterized its post-translational modifications and physiological functions in animal models. Endogenous bovine serum adiponectin consists predominantly of full-length proteins that form multiple oligomeric complexes, including trimers, hexamers and higher molecular species. Two-dimensional gel electrophoresis revealed that bovine serum adiponectin exists as multiple post-translationally modified isoforms with distinct molecular weight and isoelectric point. Further analysis using mass spectrometry and Edman degradation sequencing demonstrated that five conserved lysine residues (Lys 28, 60, 63, 72 and 96) within the collagenous domain of bovine adiponectin are hydroxylated and glycosylated by a glucosyl alpha(1-2)galactosyl group. Injection of endogenous bovine adiponectin into C57 mice potently decreased circulating glucose levels and enhanced lipid clearance after a high fat meal. Chronic administration of this protein for a period of two weeks significantly increased insulin sensitivity and glucose tolerance, and depleted hepatic lipid accumulation in high-fat fed mice. These results provide direct evidence that endogenous bovine adiponectin is a physiological hormone that can regulate lipid and glucose metabolism.  相似文献   

5.
Objective: Our objective was to test the effect of biliopancreatic diversion (BDP) in adiponectin multimerization. Adiponectin, the major protein secreted by adipose tissue, circulates in plasma in different isoforms. The most clinically relevant oligomers are high‐molecular weight (HMW) multimers and low‐molecular weight (LMW) trimers. Contrasting data on the effect of weight loss on adiponectin isoforms have been reported. Research Methods and Procedures: We measured total plasma adiponectin and HMW and LMW adiponectin oligomers (by Western blot analysis) before and 1 month after BPD, in 18 severely obese subjects. Results: One month after BPD, body weight decreased ~11%. Total adiponectin showed significant increase after BPD. In addition, we found a significant increase in HMW (percentage) adiponectin oligomers. We found a significant inverse correlation between HMW (percentage) and BMI before and after BPD. Homeostasis model of assessment‐insulin resistance decreased significantly after the BPD, without any significant correlation with total serum adiponectin and adiponectin oligomers. Discussion: A moderate weight loss after BPD increases total and HMW adiponectin oligomers. The significant correlation between BMI and HMW (percentage) adiponectin oligomers but not between BMI and total adiponectin might indicate a role of body fat mass in regulation of adiponectin multimerization. These data suggest that HMW oligomers represent a very sensitive parameter to short‐term BMI changes after BPD.  相似文献   

6.
Liu IM  Tzeng TF  Liou SS  Lan TW 《Life sciences》2007,81(21-22):1479-1488
The present study was conducted to explore the effects of myricetin on insulin resistance in rats fed for 6 weeks with a diet containing 60% fructose. Repeated intravenous (i.v.) injection of myricetin (1 mg/kg per injection, 3 times daily) for 14 days was found to significantly decrease the high glucose and triglyceride levels in plasma of fructose chow-fed rats. Also, the higher degree of insulin resistance in fructose chow-fed rats as measured by homeostasis model assessment of basal insulin resistance was significantly decreased by myricetin treatment. Myricetin increased the whole-body insulin sensitivity in fructose chow-fed rats, as evidenced by the marked elevation of composite whole-body insulin sensitivity index during the oral glucose tolerance test. Myricetin was found to reverse the defect in expression of insulin receptor substrate-1 (IRS-1) and the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) in soleus muscle of fructose chow-fed rats under the basal state, despite the protein expression of insulin receptor (IR). Increased basal phosphorylation of IR and IRS-1 as well as Akt was observed in parallel. The reduced level of insulin action on phosphorylation of IR, IRS-1 and Akt in soleus muscle of fructose chow-fed rats was reversed by myricetin treatment. Furthermore, myricetin treatment improved the defective insulin action on the translocation of glucose transporter subtype 4 (GLUT 4) in insulin-resistant soleus muscle. These findings indicate that myricetin improves insulin sensitivity through the enhancement of insulin action on IRS-1-associated PI 3-kinase and GLUT 4 activity in soleus muscles of animals exhibiting insulin resistance.  相似文献   

7.
BACKGROUND: Adiponectin is an adipose tissue-specific protein, which possesses anti-atherogenic and antidiabetic properties, yet its plasma levels are decreased in subjects with metabolic syndrome. Although high fat diet has been linked to hypoadiponectinemia, the effect of high-carbohydrate diet on adiponectin levels is not known. Therefore, we studied the effect of high-carbohydrate diet on adiponectin levels in the rat models of hypertension and insulin resistance. METHODS: Rats were randomly assigned to the high carbohydrate diet [Sprague-Dawley rats with fructose enriched diet (SDR-F) and spontaneously hypertensive rats with sucrose enriched diet (SHR-S model)] or chow diet (Control group). Rats were followed for 6 weeks (SDR-F model) and 8 weeks (SHR-S model). Body weight, systolic blood pressure, plasma levels of glucose, insulin, triglycerides and adiponectin, were recorded. RESULTS: Both models were associated with features of the metabolic syndrome, namely, high insulin levels, increased blood pressure and triglyceride levels. Plasma adiponectin levels did not change in the control groups. In contrast, adiponectin levels increased by 39 and 30% compared to baseline following four and six weeks of fructose enriched diet in SDR (from 3.3+/-0.2 to 4.5+/-0.4 and 4.3+/-0.2 microg/ml, respectively, p<0.05). Likewise, five and eight weeks of sucrose enriched diet in SHR, induced a 54 and 81% increase in adiponectin levels compared to baseline (from 4.2+/-0.3 to 6.3+/-0.3 and 7.3+/-0.5 microg/ml, respectively, p<0.01). CONCLUSION: Metabolic stress with a high-carbohydrate diet increases plasma levels of adiponectin. Further studies will elucidate whether this is a transitory compensatory mechanism or a sign of target organ resistance to adiponectin.  相似文献   

8.
The role for melatonin in glucose homeostasis and insulin resistance is not very clear and has recently been an active area of investigation. The present study investigated the role of melatonin in seasonal accumulation of adipose tissue in Scotophilus heathi, with particular reference to its role in glucose homeostasis and development of insulin resistance. The circulating melatonin levels correlated positively (p < 0.05) with the changes in body mass due to fat accumulation and circulating insulin level, but correlated negatively with the blood glucose level in S. heathi. The bats showed high circulating blood glucose levels and impaired glucose tolerance during the period of fat deposition suggesting insulin resistance condition which improves after winter when most of the fat has been utilized as a metabolic fuel. The high circulating melatonin levels during the period of maximum body fat at the beginning of winter prepare the bats for winter dormancy by modulating the glucose homeostasis through affecting blood glucose levels, muscle and liver glycogen stores, insulin receptor and glucose transporter 4 (GLUT 4) expression. This is also confirmed by in vivo study in which melatonin injection improves the glucose tolerance, increases muscle insulin receptor and GLUT 4 expression, and enhances glucose clearance from the blood. The results of present study further showed that the effect of melatonin injection on the blood glucose levels is determined by the metabolic state of the bats and may protect from decrease in blood glucose level during extreme starvation, however, melatonin when injected during fed state increases glucose clearance from the blood. In summary, the present study suggested that melatonin interferes with the glucose homeostasis through modulating intracellular glucose transport and may protect bats from hypoglycemia during winter dormancy.  相似文献   

9.
The adipose tissue-derived hormone adiponectin improves insulin sensitivity and its circulating levels are decreased in obesity-induced insulin resistance. Here, we report the generation of a mouse line with a genomic disruption of the adiponectin locus. We aimed to identify whether these mice develop insulin resistance and which are the primary target tissues affected in this model. Using euglycemic/insulin clamp studies, we demonstrate that these mice display severe hepatic but not peripheral insulin resistance. Furthermore, we wanted to test whether the lack of adiponectin magnifies the impairments of glucose homeostasis in the context of a dietary challenge. When exposed to high fat diet, adiponectin null mice rapidly develop glucose intolerance. Specific PPARgamma agonists such as thiazolidinediones (TZDs) improve insulin sensitivity by mechanisms largely unknown. Circulating adiponectin levels are significantly up-regulated in vivo upon activation of PPARgamma. Both TZDs and adiponectin have been shown to activate AMP-activated protein kinase (AMPK) in the same target tissues. We wanted to address whether the ability of TZDs to improve glucose tolerance is dependent on adiponectin and whether this improvement involved AMPK activation. We demonstrate that the ability of PPARgamma agonists to improve glucose tolerance in ob/ob mice lacking adiponectin is diminished. Adiponectin is required for the activation of AMPK upon TZD administration in both liver and muscle. In summary, adiponectin is an important contributor to PPARgamma-mediated improvements in glucose tolerance through mechanisms that involve the activation of the AMPK pathway.  相似文献   

10.
This study investigated the biological and molecular mechanisms underlying the antiobesity effect of omija fruit ethanol extract (OFE) in mice fed a high-fat diet (HFD). C57BL/6J mice were fed an HFD (20% fat, w/w) with or without OFE (500 mg/kg body weight) for 16 weeks. Dietary OFE significantly increased brown adipose tissue weight and energy expenditure while concomitantly decreasing white adipose tissue (WAT) weight and adipocyte size by up-regulating the expression of brown fat-selective genes in WAT. OFE also improved hepatic steatosis and dyslipidemia by enhancing hepatic fatty acid oxidation-related enzymes activity and fecal lipid excretion. In addition to steatosis, OFE decreased the expression of pro-inflammatory genes in the liver. Moreover, OFE improved glucose tolerance and lowered plasma glucose, insulin and homeostasis model assessment of insulin resistance, which may be linked to decreases in the activity of hepatic gluconeogenic enzymes and the circulating level of gastric inhibitory polypeptide. These findings suggest that OFE may protect against diet-induced adiposity and related metabolic disturbances by controlling brown-like transformation of WAT, fatty acid oxidation, inflammation in the liver and fecal lipid excretion. Improved insulin resistance may be also associated with its antiobesity effects.  相似文献   

11.
12.
It was reported that either orexigenic neuropeptide galanin or anorexigenic hormone leptin caught benefit insulin sensitivity through increasing the translocation of glucose transporter 4 (GLUT4) in patients with diabetes. To date, it is unknown whether galanin can potentiate the effect of leptin on alleviation of insulin resistance. Therefore, in the current study we sought to assess the combined effect of central leptin and galanin on insulin resistance in the adipose tissues of type 2 diabetic rats. Galanin and leptin were injected into the intracerebroventricle of the diabetic rats, respectively, or cooperatively once a day for 2 weeks. Then, several indexes of insulin resistance were examined. The results showed that glucose infusion rates in the hyperinsulinaemic‐euglycaemic clamp test, plasma adiponectin content and GLUT4 translocation, as well as Akt phosphorylation in fat cells, were higher, not GLUT4 protein and GLUT4 mRNA expression, but HOMA index was lower in the galanin + leptin group than either one of them. Furthermore, treatment with MK‐2206, an Akt inhibitor, blocked the combined effects of galanin + leptin on alleviation of insulin resistance. These results suggest that galanin can improve the leptin‐induced mitigative effects on insulin resistance in the fat cells, and those provided new insights into the potential tactics for prevention and remedy of insulin resistance.  相似文献   

13.
Circulating adiponectin reflects the degree of energy homeostasis and insulin sensitivity of adult individuals. Low abundance of the high molecular weight (HMW) multimers, the most active forms mediating the insulin‐sensitizing effects of adiponectin, is indicative of impaired metabolic status. The increase in fetal adiponectin HMW compared with adults is a distinctive features of human neonates. To further understand the functional properties of adiponectin during fetal life, we have evaluated the associations of adiponectin with insulin sensitivity, body composition, and gender. Umbilical cord adiponectin, adiponectin complexes, and metabolic parameters were measured at term by elective cesarean delivery. The associations between adiponectin, measures of body composition, and insulin sensitivity were evaluated in relation to fetal gender in 121 singleton neonates. Higher total adiponectin concentrations in female compared with male fetuses (34.3 ± 9.5 vs. 24.9 ± 8.6, P < 0.001) were associated with a 3.2‐fold greater abundance in circulating HMW complexes (0.20 ± 0.03 vs. 0.08 ± 0.03, P < 0.001, n = 9). Adiponectin was positively correlated with neonatal fat mass (r = 0.27, P < 0.04) and percent body fat in female fetuses (r = 0.28, P < 0.03) and with lean mass in males (r = 0.28, P < 0.03). There was no significant correlation between cord adiponectin and fasting insulin concentrations or fetal insulin sensitivity as estimated by homeostasis model assessment of insulin resistance (HOMA‐IR). The gender dimorphism for plasma adiponectin concentration and complex distribution first appears in utero. In sharp contrast to the inverse correlation found in adults, the positive relationship between adiponectin and body fat is a specific feature of the fetus.  相似文献   

14.
Objective: This study was designed to test whether adiponectin plays a role in diet‐induced obesity and insulin resistance and acts as a mediator to induce or inhibit specific metabolic pathways involved in lipid metabolism Research Methods and Procedures: Forty C57BL/6J male mice were fed either a high‐fat (HF) or control diet for 4 months, and adiponectin, its receptors, and enzyme expression in liver and muscle tissue were measured. Results: Mice fed the HF diet exhibited significantly greater weight gain, abnormal oral glucose tolerance test curves, and elevated homeostasis model assessment of insulin resistance (5.3 ± 0.89 vs. 2.8 ± 0.39). A significant reduction of adiponectin RNA expression (51%) and protein levels (15%) was observed in the adipose tissue of HF animals; however, serum adiponectin levels did not differ between groups (7.12 ± 0.34 μg/mL vs. 6.44 ± 0.38 μg/mL). Expression of hepatic mRNA of AdipoR1 and AdipoR2 was reduced by 15% and 25%, respectively, in animals fed the HF diet. In contrast, receptor mRNA expression of AdipoR1 and AdipoR2 increased by 25% and 30%, respectively, in muscle tissue. No effect was found on hepatic adenosine monophosphate‐activated protein kinase expression; however, a significant reduction of phosphoadenosine monophosphate kinase levels in muscles was observed. Hepatic acetyl‐coenzyme A carboxylase was similar between groups, but in muscles, the inactive form phosphoacetyl‐coenzyme A carboxylase was significantly reduced (p < 0.05). Discussion: The HF diet led to decreased insulin sensitivity accompanied by impaired activity of adiponectin‐related enzymes in skeletal muscles but not in the liver. These results suggest that the HF diet has a tissue‐specific effect on adiponectin and associated enzyme expression.  相似文献   

15.
Lipid infusion and high fat feeding are established causes of systemic and adipose tissue insulin resistance. In this study, we treated 3T3-L1 adipocytes with a mixture of free fatty acids (FFAs) to investigate the molecular mechanisms underlying fat-induced insulin resistance. FFA treatment impaired insulin receptor-mediated signal transduction and decreased insulin-stimulated GLUT4 translocation and glucose transport. FFAs activated the stress/inflammatory kinases c-Jun N-terminal kinase (JNK) and IKKbeta, and the suppressor of cytokine signaling protein 3, increased secretion of the inflammatory cytokine tumor necrosis factor (TNF)-alpha, and decreased secretion of adiponectin into the medium. RNA interference-mediated down-regulation of JNK blocked JNK activation and prevented most of the FFA-induced defects in insulin action. Blockade of TNF-alpha signaling with neutralizing antibodies to TNF-alpha or its receptors or with a dominant negative TNF-alpha peptide had a partial effect to inhibit FFA-induced cellular insulin resistance. We found that JNK activation by FFAs was not inhibited by blocking TNF-alpha signaling, whereas the FFA-induced increase in TNF-alpha secretion was inhibited by RNA interference-mediated JNK knockdown. Together, these results indicate that 1) JNK can be activated by FFAs through TNF-alpha-independent mechanisms, 2) activated JNK is a major contributor to FFA-induced cellular insulin resistance, and 3) TNF-alpha is an autocrine/paracrine downstream effector of activated JNK that can also mediate insulin resistance.  相似文献   

16.
Highly active antiretroviral therapy (HAART) has improved the prognosis of human immunodeficiency virus (HIV)-infected patients but is associated with severe adverse events, such as lipodystrophy and insulin resistance. Rosiglitazone did not increase subcutaneous fat in patients with HAART-associated lipodystrophy (HAL) in a randomized, double-blind, placebo-controlled trial, although it attenuated insulin resistance and decreased liver fat content. The aim of this study was to examine effects of rosiglitazone on gene expression in subcutaneous adipose tissue in 30 patients with HAL. The mRNA concentrations in subcutaneous adipose tissue were measured using real-time PCR. Twenty-four-week treatment with rosiglitazone (8 mg/day) compared with placebo significantly increased the expression of adiponectin, peroxisome proliferator-activated receptor-gamma (PPARgamma), and PPARgamma coactivator 1 and decreased IL-6 expression. Expression of other genes involved in lipogenesis, fatty acid metabolism, or glucose transport, such as acyl-CoA synthase, adipocyte lipid-binding protein, CD45, fatty acid transport protein-1 and -4, GLUT1, GLUT4, keratinocyte lipid-binding protein, lipoprotein lipase, PPARdelta, and sterol regulatory element-binding protein-1c, remained unchanged. Rosiglitazone also significantly increased serum adiponectin concentration. The change in serum adiponectin concentration was inversely correlated with the change in fasting serum insulin concentration and liver fat content. In conclusion, rosiglitazone induced significant changes in gene expression in subcutaneous adipose tissue and ameliorated insulin resistance in patients with HAL. Increased expression of adiponectin might have mediated most of the favorable insulin-sensitizing effects of rosiglitazone in these patients.  相似文献   

17.
Higher levels of the adipocyte‐specific hormone adiponectin have been linked to increased high‐density lipoprotein (HDL) and lower insulin resistance. This study was conducted to determine the influence of macronutrient intake on adiponectin levels. One hundred and sixty‐four pre‐ and stage‐1 hypertensive adults participated in the Optimal Macro‐Nutrient Intake Heart (OMNI‐Heart) trial, a crossover feeding study originally testing the effects of macronutrients on blood pressure. Participants underwent three 6‐week feeding periods: one rich in carbohydrates (CARB), one rich in monounsaturated fat (MUFA), and one rich in protein (PROT), while maintaining body weight. Their median plasma high molecular weight (HMW) and total adiponectin levels were 2.3 and 8.2 µg/ml, respectively, resulting in an average of 27% HMW adiponectin. Both HMW and total adiponectin levels decreased after baseline while the percent HMW adiponectin remained unchanged. Between diets, the MUFA diet maintained a higher level of both HMW and total adiponectin levels than either the CARB (HMW: +6.8%, P = 0.02; total: +4.5%, P = 0.001) or PROT (HMW: +8.4%, P = 0.003; total: +5.6%, P < 0.001) diets. Changes in total adiponectin levels were positively correlated to changes in HDL cholesterol irrespective of diets (Spearman r = 0.22–0.40). No correlation was found between changes in lipids, blood pressure, or insulin resistance by the homeostasis model assessment (HOMAIR). Macronutrient intake has effects on HMW and total adiponectin levels independent of weight loss. A diet rich in MUFA was associated with higher levels of total and HMW adiponectin in comparison to a carbohydrate‐ or protein‐rich diet. Effects seen in adiponectin paralleled those found with HDL cholesterol.  相似文献   

18.
Kim C  Park J  Park J  Kang E  Ahn C  Cha B  Lim S  Kim K  Lee H 《Obesity (Silver Spring, Md.)》2006,14(7):1164-1171
Objective: Clinical aspects of diabetes and obesity are somewhat different, even at similar levels of insulin resistance. The purpose of this study was to determine differences in body fat distribution and serum adiponectin concentrations in diabetic and non‐diabetic obese participants. We were also interested in identifying the characteristics of insulin resistance in these two groups, particularly from the standpoint of adiponectin. Research Methods and Procedures: Adiponectin concentrations of 112 type 2 diabetic obese participants and 124 non‐diabetic obese participants were determined. Abdominal adipose tissue areas and midthigh skeletal muscle areas were measured by computed tomography. A homeostasis model assessment of the insulin resistance score was calculated to assess insulin sensitivity. The relationships among serum adiponectin, body fat distribution, and clinical characteristics were also analyzed. Results: Both abdominal subcutaneous and visceral fat areas were higher in the non‐diabetic obese group, whereas midthigh low‐density muscle area was higher in the diabetic obese group. The homeostasis model assessment of the insulin resistance score was similar between groups, whereas serum adiponectin was lower in the diabetic obese group. Abdominal visceral fat (β = ?0.381, p = 0.012) was a more important predictor of adiponectin concentration than low‐density muscle (β = ?0.218, p = 0.026) in cases of non‐diabetic obesity, whereas low‐density muscle (β = ?0.413, p = 0.013) was a better predictor of adiponectin level than abdominal visceral fat (β = ? 0.228, p = 0.044) in diabetic obese patients. Discussion: Therefore, factors involved in pathophysiology, including different serum adiponectin levels and body fat distributions, are believed to be responsible for differences in clinical characteristics, even at similar levels of insulin resistance in both diseases.  相似文献   

19.
Adipose tissue performs complex metabolic and endocrine functions. This review will focus on the recent literature on the biology and actions of three adipocyte hormones involved in the control of energy homeostasis and insulin action, leptin, acylation-stimulating protein, and adiponectin, and mechanisms regulating their production. Results from studies of individuals with absolute leptin deficiency (or receptor defects), and more recently partial leptin deficiency, reveal leptin's critical role in the normal regulation of appetite and body adiposity in humans. The primary biological role of leptin appears to be adaptation to low energy intake rather than a brake on overconsumption and obesity. Leptin production is mainly regulated by insulin-induced changes of adipocyte metabolism. Consumption of fat and fructose, which do not initiate insulin secretion, results in lower circulating leptin levels, a consequence which may lead to overeating and weight gain in individuals or populations consuming diets high in energy derived from these macronutrients. Acylation-stimulating protein acts as a paracrine signal to increase the efficiency of triacylglycerol synthesis in adipocytes, an action that results in more rapid postprandial lipid clearance. Genetic knockout of acylation-stimulating protein leads to reduced body fat, obesity resistance and improved insulin sensitivity in mice. The primary regulator of acylation-stimulating protein production appears to be circulating dietary lipid packaged as chylomicrons. Adiponectin increases insulin sensitivity, perhaps by increasing tissue fat oxidation resulting in reduced circulating fatty acid levels and reduced intramyocellular or liver triglyceride content. Adiponectin and leptin together normalize insulin action in severely insulin-resistant animals that have very low levels of adiponectin and leptin due to lipoatrophy. Leptin also improves insulin resistance and reduces hyperlipidemia in lipoatrophic humans. Adiponectin production is stimulated by agonists of peroxisome proliferator-activated receptor-gamma; an action may contribute to the insulin-sensitizing effects of this class of compounds. The production of all three hormones is influenced by nutritional status. These adipocyte hormones, the pathways controlling their production, and their receptors represent promising targets for managing obesity, hyperlipidemia, and insulin resistance.  相似文献   

20.
目的:探讨槟榔碱对2型糖尿病大鼠肝脏胰岛素抵抗的影响及其机制。方法:采用高果糖饲料饲养Wistar大鼠12周制备2型糖尿病大鼠模型,实验动物随机分为5组(n=8):对照组、模型组、模型+不同浓度的槟榔碱(0,0.5,1,5mg/kg)组。4周后通过检测血糖、血脂、胰岛素、RT-PCR检测肝脏组成型雄甾烷受体(CAR)、孕甾烷x受体(PXR)、糖代谢相关基因:葡萄糖-6-磷酸酶(G6Pase)、磷酸烯醇式丙酮酸羧激酶(PEPCK)和炎症相关因子:白细胞介素-6(IL-6)、肿瘤坏死因子α(TNF-α)mRNA表达,Western blot检测大鼠肝内p-AKT和葡萄糖转运体4(GLUT4)蛋白表达。结果:1,5mg/kg槟榔碱显著降低糖尿病大鼠体重、空腹血糖、空腹胰岛素、血脂和糖代谢相关基因及炎症相关因子mRNA水平,提高CAR、PXR mRNA水平及p-AKT、GLUT4蛋白水平。结论:槟榔碱可能通过提高CAR和PXR的表达,导致肝脏糖代谢关键酶PEPCK、G6Pase基因表达或者炎性因子肿瘤坏死因子-α(TNF-α)、白介素-6(n-6)表达降低,改善2型糖尿病大鼠肝脏胰岛素抵抗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号