首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   7篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2015年   3篇
  2014年   9篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2010年   9篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   1篇
  2005年   6篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1988年   3篇
  1985年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
Mitochondrial DNA/protein complexes (nucleoids) appear as discrete entities inside the mitochondrial network when observed by live-cell imaging and immunofluorescence. This somewhat trivial observation in recent years has spurred research towards isolation of these complexes and the identification of nucleoid-associated proteins. Here we show that whole cell formaldehyde crosslinking combined with affinity purification and tandem mass-spectrometry provides a simple and reproducible method to identify potential nucleoid associated proteins. The method avoids spurious mitochondrial isolation and subsequent multifarious nucleoid enrichment protocols and can be implemented to allow for label-free quantification (LFQ) by mass-spectrometry. Using expression of a Flag-tagged Twinkle helicase and appropriate controls we show that this method identifies many previously identified nucleoid associated proteins. Using LFQ to compare HEK293 cells with and without mtDNA, but both expressing Twinkle-FLAG, identifies many proteins that are reduced or absent in the absence of mtDNA. This set not only includes established mtDNA maintenance proteins but also many proteins involved in mitochondrial RNA metabolism and translation and therefore represents what can be considered an mtDNA gene expression proteome. Our data provides a very valuable resource for both basic mitochondrial researchers as well as clinical geneticists working to identify novel disease genes on the basis of exome sequence data.  相似文献   
2.
Current knowledge of the succession of fungi in decaying wood is mostly based on fruit bodies and in vitro culture. Here, we investigated the changing community of metabolically active fungi during the decomposition of fallen Picea abies logs by directly extracting and barcode sequencing precursor rRNA. We also compared rRNA-derived amplicons of the 18S and ITS regions in 21 isolates and discuss the use of RNA as a marker of metabolically active fungi. The richness of active fungi, revealed as separated bands in DGGE, peaked in logs at an advanced stage of decay. Soft-rot fungi were common in the early stages but white- and brown-rot fungi became dominant as decay progressed. Ectomycorrhizal fungi were detected at an early stage, and they became the most abundant group in the late stages of succession. A comparison of rRNA-derived amplicons revealed that although ITS was detected in the form of precursor rRNA, introns within 18S rDNA were already spliced. As such, rRNA- and rDNA-derived amplicons would yield different profiles of active and total communities if profiling method is affected by amplicon length.  相似文献   
3.
We previously reported a ligand‐independent and rhodopsin‐dependent insulin receptor (IR) neuroprotective signaling pathway in both rod and cone photoreceptor cells, which is activated through protein–protein interaction. Our previous studies were performed with either retina or isolated rod or cone outer segment preparations and the expression of IR signaling proteins were examined. The isolation of outer segments with large portions of the attached inner segments is a technical challenge. Optiprep? density gradient medium has been used to isolate the cells and subcellular organelles, Optiprep? is a non‐ionic iodixanol‐based medium with a density of 1.320 g/mL. We employed this method to examine the expression of IR and its signaling proteins, and activation of one of the downstream effectors of the IR in isolated photoreceptor cells. Identification of the signaling complexes will be helpful for therapeutic targeting in disease conditions.  相似文献   
4.

Introduction  

Improvement of rheumatoid arthritis (RA) during pregnancy has been causatively associated with increased galactosylation of immunoglobulin G (IgG) N-glycans. Since previous studies were small, did not include the postpartum flare and did not study sialylation, these issues were addressed in the present study.  相似文献   
5.

Introduction

Ultrasonography (US) might have an added value to clinical examination in diagnosing early rheumatoid arthritis (RA) and assessing remission of RA. We aimed to clarify the added value of US in RA in these situations performing a systematic review.

Methods

A systematic literature search was performed for RA, US, diagnosis and remission. Methodological quality was assessed; the wide variability in the design of studies prohibited pooling of results.

Results

Six papers on the added value of US diagnosing early RA were found, in which at least bilateral metacarpophalangeal (MCP), wrists and metatarsophalangeal (MTP) joints were scanned. Compared to clinical examination, US was superior with regard to detecting synovitis and predicting progression to persistent arthritis or RA. Eleven papers on assessing remission were identified, in which at least the wrist and the MCP joints of the dominant hand were scanned. Often US detected inflammation in patients clinically in remission, irrespective of the remission criteria used. Power Doppler signs of synovitis predicted X-ray progression and future flare in patients clinically in remission.

Conclusions

US appears to have added value to clinical examination for diagnosing of RA when scanning at least MCP, wrist and MTP joints, and, when evaluating remission of RA, scanning at least wrist and MCP joints of the dominant hand. For both purposes primarily power Doppler US might be used since its results are less equivocal than those of greyscale US.  相似文献   
6.
7.
The plant parasitic nematode Heterodera schachtii invades the roots of Arabidopsis thaliana to induce nematode feeding structures in the central cylinder. During nematode development, the parasites feed exclusively from these structures. Thus, high sugar import and specific sugar processing of the affected plant cells is crucial for nematode development. In the present work, we found starch accumulation in nematode feeding structures and therefore studied the expression genes involved in the starch metabolic pathway. The importance of starch synthesis was further shown using the Atss1 mutant line. As it is rather surprising to find starch accumulation in cells characterised by a high nutrient loss, we speculate that starch serves as long- and short-term carbohydrate storage to compensate the staggering feeding behaviour of the parasites.Key words: Heterodera schachtii, Arabidopsis, nematode, starch metabolism, syncytiaThe obligate plant parasitic nematode Heterodera schachtii is entirely dependent on a system of nutrient supply provided by the plant. Host plants—among those the model plant Arabidopsis thaliana—have to endure invasion of second stage juveniles and the establishment of nematode feeding structures in the plant''s vascular cylinder. For induction of the specific feeding structures, the juveniles pierce one single plant cell with their stylet and inject secretions, thus triggering the formation of a syncytium by local cell walls dissolutions.1 Further, the central vacuole of the syncytial cells disintegrates, nuclei enlarge and many organelles proliferate.1 About 24 hours after feeding site induction, the nematode juveniles start feeding in repetitive cycles.2 Syncytia have previously been described as strong sinks in the plant''s transport system.3 Thus, in the recent years several studies were carried out to discover solute supply to syncytial cells.47 To our present knowledge, syncytia are symplasmically isolated in the first days of nematode development. During that period, the nematodes depend on transport protein activity in the syncytia plasmamembranes. At later stages plasmodesmata appear to open to the phloem elements, facilitating symplasmic transport.Incoming solutes may either be taken up by the feeding nematode or are synthesised and catalysed by the syncytium''s metabolism. Due to the microscopically observable high density of the cytosol1 and the increased osmotic pressure,8 syncytia appear to accumulate high solute concentrations. In fact, significantly increased sucrose levels have been found in syncytia in comparison to non-infected control roots.7 In case of high sugar levels, plant cells generally synthesize starch in order to reduce emerging osmotic stress.9 The aim of the work of Hofmann et al.,10 was to elucidate if starch is utilised as carbohydrate storage in nematode-induced syncytia and to study expression of genes involved in starch metabolism with an emphasis on nematode development.Starch levels of nematode induced syncytia and roots of non-infected plants grown on sand/soil culture were measured by high performance liquid chromatography (HPLC). The results showed a high accumulation of starch in syncytia that was steadily decreasing during nematode development. The accumulation of starch could further be localised within syncytial cells by electron microscopy. Based on these results, we studied the gene expression of the starch metabolic pathway by Affymetrix gene chip analysis. About half of the 56 involved genes were significantly upregulated in syncytia compared to the control and only two genes were significantly downregulated. Thus, the high induction of the gene expression is consistent with the high starch accumulation. Finally, we applied an Arabidopsis mutant line lacking starch synthase I expression that has been described previously.11 Starch synthase I was the second highest upregulated gene in syncytia. It catalyses the linkage of ADP-glucose to the non-reducing end of an a-glucan, forming the linear glucose chains of amylopectin. In a nematode infection assay we were able to prove the significant importance of the gene for nematode development.With the presented results, we can unambiguously prove the accumulation of starch and the induction of the gene expression of the starch metabolic pathway in nematode-induced syncytia. The primary question however is: why do syncytia accumulate soluble sugars and starch although their metabolism is highly induced and nematodes withdraw solutes during continuously repeating feeding cycles?One explanation may be found where least expected—in nematode feeding. It is the feeding activity that induced solute import mechanisms into syncytia resulting in a newly formed sink tissue. However, during moulting events to the third, the fourth juvenile stage and to the adult stage nematodes interrupt feeding for about 20 hours.2 During this period sugar supply mechanisms will most probably not be altered thus leading to increasing levels of sugars in the syncytium. Starch may serve as short-term carbohydrate buffering sugar excess. Further, starch may serve as long-term carbohydrate storage during nematode development. In the early stages of juvenile development nematodes withdraw considerably small quantities (about 0,8-times the syncytium volume a day).12 At later stages, nutrient demand increases so that adult fertilised females require 4-times the syncytium volume per day in order to accomplish egg production.12 Thus, excessive sugar supply in the first days may be accumulated as starch that gets degraded at later stages when more energy is required from the parasites. Consequently, starch reserve serves as both short-term and long-term carbohydrate storage in nematode-induced syncytia in order to buffer changing feeding pattern of the parasites.? Open in a separate windowFigure 1Arabidopsis wild-type Columbia-0 plants were grown in sand/soil culture. Nematode-induced syncytia and non-infected control roots were harvested at 10, 15 and 20 days after inoculation (dai) and starch content was measured as glucose (Glc) equivalents. Values are means ± SE, n = 3. Different letters indicate significant variations (p < 0.05). © ASPBOpen in a separate windowFigure 2Transmission electron microscope picture of a cross-section of a syncytium associated with female fourth stage juvenile (H. schachtii) induced in roots of Arabidopsis. Bar = 2 µm. S, syncytium; Se, sieve tube; arrow, plastid; asterisk, starch granule. © ASPB  相似文献   
8.
Akt is a phospholipid-binding protein and the downstream effector of the phosphoinositide 3-kinase (PI3K) pathway. Akt has three isoforms: Akt1, Akt2, and Akt3. All of these isoforms are expressed in rod photoreceptor cells, but the individual functions of each isoform are not known. In this study, we found that light induces the activation of Akt1. The membrane binding of Akt1 to rod outer segments (ROS) is insulin receptor (IR)/PI3K-dependent as demonstrated by reduced binding of Akt1 to ROS membranes of photoreceptor-specific IR knockout mice. Membrane binding of Akt1 is mediated through its Pleckstrin homology (PH) domain. To determine whether binding of the PH domain of Akt1 to photoreceptor membranes is regulated by light, various green fluorescent protein (GFP)/Akt1-PH domain fusion proteins were expressed in rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The R25C mutant PH domain of Akt1, which does not bind phosphoinositides, failed to associate with plasma membranes in a light-dependent manner. This study suggests that light-dependent generation of phosphoinositides regulates the activation and membrane binding of Akt1 in vivo. Our results also suggest that actin cytoskeletal organization may be regulated through light-dependent generation of phosphoinositides.  相似文献   
9.
10.
Filamin 2 (FLN2): A muscle-specific sarcoglycan interacting protein   总被引:16,自引:0,他引:16       下载免费PDF全文
Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin-glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with the hope of finding novel members of the dystrophin-glycoprotein complex. Using the yeast two-hybrid method, we have identified a skeletal muscle-specific form of filamin, which we term filamin 2 (FLN2), as a gamma- and delta-sarcoglycan interacting protein. In addition, we demonstrate that FLN2 protein localization in limb-girdle muscular dystrophy and Duchenne muscular dystrophy patients and mice is altered when compared with unaffected individuals. Previous studies of filamin family members have determined that these proteins are involved in actin reorganization and signal transduction cascades associated with cell migration, adhesion, differentiation, force transduction, and survival. Specifically, filamin proteins have been found essential in maintaining membrane integrity during force application. The finding that FLN2 interacts with the sarcoglycans introduces new implications for the pathogenesis of muscular dystrophy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号