首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Questions: What influence do management practices and previous tree and shrub stand structure have on the occurrence and development of natural regeneration of Pinus sylvestris in Mediterranean mountain forests? How are the fine‐scale and environmental patterns of resources affected and what impact does this have on the distribution of the regeneration? Location: A Pinus sylvestris Mediterranean mountain forest in central Spain. Methods: Upperstory trees and regeneration (seedlings and saplings) were mapped in four 0.5‐ha plots located in two types of stand with different management intensities (even‐aged and uneven‐aged stands). Environmental variables were recorded at the nodes of a grid within the plots. The relationships between the upperstory and regeneration were evaluated by bivariate point pattern analysis; redundancy analysis ordination and variation partitioning were performed to characterize regeneration niches and the importance of the spatial component. Results: Seedlings and saplings presented a clumped structure under both types of management and their distribution was found to be related to the spatial distribution of favourable microsites. Regeneration was positively related to conditions of partial cover with high soil water content during the summer. More than half of the explained variance was spatially structured in both types of stand. This percentage was particularly high in the even‐aged stands where the pattern of regeneration was highly influenced by the gaps created by harvesting. Conclusions: The spatial distribution of the tree and shrub upperstory strongly influences regeneration patterns of P. sylvestris. Current management practices, promoting small gaps, partial canopy cover and moderate shade in even‐aged stands, or favouring tree and shrub cover in the case of uneven‐aged stands, appears to provide suitable conditions for the natural regeneration of P. sylvestris in a Mediterranean climate.  相似文献   

2.
Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995–2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly (Pinus taeda) and longleaf pine (P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual number of fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 ± 37,444 fruits; 12,009 ± 2,392 g/ha), upland hardwoods (60,769 ± 7,667 fruits; 5,079 ± 529 g/ha), and bottomland hardwoods (65,614 ± 8,351 fruits; 4,621 ± 677 g/ha), and lowest in longleaf pine (44,104 ± 8,301 fruits; 4,102 ± 877 g/ha) and loblolly (39,532 ± 5,034 fruits; 3,261 ± 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995–2003). Fruit availability was highest June–September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. Land managers could enhance fruit availability for wildlife by creating and maintaining diverse forest types and age classes. © 2012 The Wildlife Society.  相似文献   

3.
Forest responses to the large-scale east coast fires in Korea   总被引:2,自引:0,他引:2  
The east coast forest fires of April 2000 were Koreas largest recorded fires. This, along with the fact that they took place in the region most frequently affected by fire, attracted a great deal of attention. Due to the variations in wind, topography and pre-fire forest stands, a heterogeneous landscape mosaic of burn severity was created across the region. It turned out to be an excellent opportunity to study various landscape-scale impacts of fires on forest dynamics. Therefore, we investigated stands in the 23794ha of burned forest region, in terms of burn severity, vegetation regeneration and forested landscape change as a measure of community stability. Using the geographic information system technique, we analyzed the differential severity and post-fire recovery of pre-fire forest types of different stand age both at stand and species level. Analysis showed that pre-fire vegetation was composed of mainly pine (Pinus densiflora) stands that occupied 70% of the whole forested area, while pine-hardwood and hardwood stands occupied only 28% and 3%, respectively. In addition, two-thirds of all stands were less than 30-years-old. Pine stands were the most severely burned, while conversely pine-hardwood and hardwood stands were less vulnerable. This implied that pine forests had fire-prone characteristics. Vegetation recovery went the opposite way; that is, the regenerating vegetation cover was 71% at pre-fire hardwood stands, and 65% and 53% at pine-hardwood and pine stands, respectively. However, these recovery rates were strikingly fast, considering that investigation took place about 3months after the fires. Fire did not initiate successional processes, but tended to accelerate the predicted successional changes by releasing pre-fire understory species that survived the fires and regenerated by sprouting. The dominant pre-fire tree species (P. densiflora) was susceptible to fire and not resilient enough to reestablish in competition with oak species. Contrary to pines, the abilities of oak species, mainly Quercus mongolica and Q. variabilis, to survive fires and to resprout vigorously made them dominant at most post-fire stands. These shifts in species abundance caused drastic changes to the landscape: from pine-dominated to oak-dominated stands without any notable change in species composition. The patterns in forest regeneration that we observed in Korea may be representative of forest responses to any long-term repeated disturbances, including fire.  相似文献   

4.
Although elevated atmospheric CO2 has been shown to increase growth of tree seedlings and saplings, the response of intact forest ecosystems and established trees is unclear. We report results from the first large-scale experimental system designed to study the effects of elevated CO2 on an intact forest with the full complement of species interactions and environmental stresses. During the first year of exposure to ^ 1.5 Ë ambient CO2, canopy loblolly pine (Pinus taeda, L.) trees increased basal area growth rate by 24% but understorey trees of loblolly pine, sweetgum (Liquidambar styraciflua L.), and red maple (Acer rubrum L.) did not respond. Winged elm (Ulmus alata Michx.) had a marginally significant increase in growth rate (P = 0.069). These data suggest that this ecosystem has the capacity to respond immediately to a step increase in atmospheric CO2; however, as exposure time increases, nutrient limitations may reduce this initial growth stimulation.  相似文献   

5.
R. Leemans 《Plant Ecology》1991,93(2):157-165
The spatial pattern of seedlings, saplings and canopy trees was studied in two spruce (Picea abies (L.) Karst.) forests in central Sweden. Canopy and forest structure were determined in five 0.25 ha plots. Life stage classes were distinguished on the basis of age and size distributions. Ripley's K-function (1977) was used to analyze the spatial patterns within each class. A random distribution of seedlings gave way to a more aggregated pattern on a small scale during the establishment phase. Saplings and sub-canopy trees were strongly aggregated and canopy trees were again randomly distributed within the plots. The proportion of individuals growing in gaps was used as an index of association between the spatial pattern in saplings and sub-canopy trees and the occurrence of small (50–350 m2) canopy gaps. Under the null hypothesis of independence the expected value of this statistic would equal the canopy gap ratio for the stand. Monte Carlo simulation of this statistic, using fixed sapling positions and randomly repositioned canopy gaps, confirmed the importance of canopy gaps for the final success of establishment of spruce. The association of understorey trees with gaps suggest that small gaps are typically closed by recruitment of new saplings from a sapling bank rather than by the release of larger suppressed trees.  相似文献   

6.
Renata Nowińska 《Biologia》2010,65(2):265-272
This study examines the impact of canopy and canopy gaps on the development of lower forest layers in five protected phytocoenoses of oak-hornbeam habitats (natural and regeneration stands) and oak-pine habitats in the Wielkopolska National Park (WPN). In the studied forests the most common form of dead trees are those which are uprooted (45–59%), while the most frequently dying tree is pine (40–88%). The total area of gaps in relation to the studied forest area ranges from 329 to 2356 m2/ha.  相似文献   

7.
Relationships between canopy cover and tree regeneration were determined for various species in cove forests of the Great Smoky Mountains. Old-growth stands were sampled with six plots covering a total area of 4.8 ha. Each plot was subdivided into contiguous 10×10 m quadrats. Canopy cover overlying each of the 480 quadrats was characterized with three different indices based on visual estimates of cover. Influences of: (1) overlying cover, (2) proximate openings, and (3) total area of proximate openings on quadrat regeneration densities were determined. Most species reproducing by seed and some species reproducing by vegetative means had higher densities in quadrats with openings, but only the intolerants were highly dependent on gaps. Tsuga canadensis, a very shade-tolerant species, was one of the few species with abundant regeneration beneath dense canopy cover. In general, understory areas near gaps had somewhat higher regeneration densities than other areas with overlying cover. Several shade-tolerant species showed a positive regeneration density response to canopy openings and an ability to regenerate in gaps 0.01–0.03 ha in area. These openings were too small for intolerant species. Many species exhibited a positive response to total size of the proximate opening(s). A sharp increase in regeneration density with area of the opening(s) was evident at approximately 0.04 ha for the shade-intolerant species.  相似文献   

8.
Dennstaedtia punctilobula (hay‐scented fern) can act as a native invasive species in forests in eastern North America where prolonged deer browsing occurs in stands with partially open overstory canopies. Ferns dominate the understory with a 60‐cm tall canopy, with little regeneration of native tree species. It has been hypothesized that, once established, ferns may continue to inhibit tree regeneration after deer browsing has been reduced. To test this hypothesis, we documented the pattern of recovery of the tree seedling understory in plantations of Pinus strobus (white pine) and Pinus resinosa (red pine) on the Quabbin Reservation watershed protection forest in central Massachusetts, where after 40 years of intensive deer browsing the deer herd was rapidly reduced through controlled hunting. Dense fern understories occur on nearly 4,000 ha of the predominantly oak–pine forest. Three years after deer herd reduction, stands with the highest density fern cover (77% of plots with>90% cover) had significantly fewer seedlings at least 30 cm in height, compared with stands with lower fern density, and those seedlings consisted almost entirely of Betula lenta (black birch) and white pine. Height growth analysis showed that black birch and white pine grew above the height of the fern canopy in 3 and 6 years, respectively. In contrast, two common species, Fraxinus americana (white ash) and Quercus rubra (red oak), grew beneath the dense fern cover for 5 years with height growth less than 5 cm/yr after the first year. A study of spring phenology indicated that the ability of black birch to grow through the fern canopy might have been due to its early leaf development in spring before the fern canopy was formed, in contrast to oak and ash with delayed leaf development. Thus, the ferns showed differential interference among species with seedling development after reduction of deer browse.  相似文献   

9.
《新西兰生态学杂志》2011,31(2):208-222
The forests of Rangatira Island (218 ha) in the Chatham Islands are a critical breeding site for a number of rare and threatened forest bird species, but are also home to more than three million seabirds, which could significantly affect forest regeneration processes. We surveyed the forests of Rangatira Island by establishing 40 permanent forest plots, estimated seabird density through burrow counts, and analysed soil properties. To determine if seabirds were impacting on forest regeneration, we established exclosures (0.25 m2) in 30 of the forest plots, and examined the role of canopy gaps in forest regeneration. The tallest current forest (c. 15 m), dominated by Plagianthus chathamicus, has mostly regenerated since stock were removed in 1959. Mean burrow density was estimated to be 1.19 per square metre, all soils were highly acidic (pH 3.36–5.18), and burrow density was positively correlated with soil phosphorus. Seedling density of woody species in seabird exclosures measured after 9, 24 and 33 months was significantly higher than in the adjacent non-gap plots, and seedling density was positively associated with reduced canopy cover. Seedling densities were also significantly higher in canopy gaps than in adjacent non-gap plots, but seabird burrow density was significantly lower in gaps. These results suggest that canopy gaps allow forest regeneration despite the negative impacts of seabird burrowing. However, the gap makers, largely senescing Olearia traversii, are slowly disappearing from the forests. The cohort of Plagianthus that has regenerated following farm abandonment may progressively collapse, allowing regeneration to continue in small openings, but there is also the potential for a catastrophic blowdown. This might have serious implications for forest-dwelling birds, invertebrates, and plants.  相似文献   

10.
Natural regeneration is the natural process by which plants replace themselves. It is a cost-effective way to re-establish vegetation, and it helps to preserve genetic identity and diversity. In this study, we investigated the natural regeneration of trees in three types of afforested stands in the Taihang Mountains, China, which were dominated by Robinia pseudoacacia (black locust), Quercus variabilis (Chinese cork oak) and Platycladus orientalis (Chinese arborvitae) respectively. A consistent pattern was found among the three types of stands, being that the density of seedlings was positively correlated with the overstory canopy cover and negatively correlated with the covers of shrub, herb and litter layers. While a positive correlation between the density of seedlings and stand age was found for the conifer stands, negative correlations were found for the two types of broadleaf stands. Correlations between the density of saplings and the stand attributes were not consistent among the three types of stands. The two types of broadleaf stands had higher densities of seedlings and saplings than the conifer stands. While the broadleaf stands had adequate recruits for regeneration, the conifer stands did not have enough recruits. Our findings suggest that the overstory canopy should be prevented from being disturbed, any reduction of the canopy cover will decrease the recruits and affect the regeneration.  相似文献   

11.
Decreases in abundances and declines in growth of eastern white pine over the past century due mainly to human activities have resulted in few large intact old-growth white pine forests in Ontario. These stands may be vulnerable to replacement by deciduous species from temperate forests further south, where recruitment in canopy gap disturbances can greatly define the regeneration process. We investigated recruitment dynamics in canopy gaps of an old-growth white pine forest of Temagami, northern Ontario, Canada, the northern limit of the temperate?Cboreal ecotone. White pine, red pine, black spruce and eastern white cedar represented 85?% of the mature canopy abundance, where trees and saplings established equally in gaps and the closed canopy. Balsam fir and paper birch were more abundant in gaps, showing increases of abundance and basal area with increases in gap size representing canopy self-replacement (balsam fir) and autogenic succession (paper birch). Red maple, at its northernmost range limit, was the only species to show linear increases of abundance and basal area with increases in gap size and gap age. This result, along with adult red maples present in gaps but absent from the closed canopy, identifies the establishment of a northward migrating species in gaps as hypothesized for pine forests at the northern limit of this broad ecotone. We discuss how migration pressures, coupled with pine recruitment limitation through reduced fire frequency by regional fire suppression and predicted future increased warming of 2?C4?°C over the next century, threatens replacement of old-growth white pine forests at this latitude with northward migrating tree species found further south.  相似文献   

12.
Smith  Freese  Brown  Arthur V.  Pope  Misty  Michael  Jerry L. 《Hydrobiologia》2001,464(1-3):9-15
Benthic meiofauna were collected from the pools of minute (0 order) streams in the Ouachita National Forest, Arkansas during March 21–23, 1996 to see if benthic communities responded to forest harvest methods in a similar manner as plankton communities collected two years prior. The study streams and their watersheds (2–6 ha) were located in 14–16 ha forest stands that were selected for comparability of stands. Five treatment stands were paired with adjacent undisturbed reference stands (10 total). Treatment stands were subjected to one of five harvest methods listed in order of decreasing severity of harvest disturbance to the stands: (1) clearcut; (2) pine seed-tree; (3) pine shelterwood; (4) pine-hardwood group selection; and (5) pine single-tree selection. The mean number of taxa per site was 14 with a range of 9–20 taxa including rotifers, copepods, nematodes, dipterans, ostracods and `other' meiofauna. Densities of total meiofauna (mean=2449 No. l –1) were significantly higher (p= 0.002) in treated sites. Highest densities occurred in single-tree and clearcut treatments. Rotifers were significantly more numerous at the single-tree treatments (p=0.03) and nematodes were significantly greater at the clearcut treatments (p=0.03). We conclude that benthic meiofauna in these headwater streams are sensitive to silviculture practices and that the impact of forest harvest persists for at least 2.5 years.  相似文献   

13.
Stand structure and regeneration in a Kamchatka mixed boreal forest   总被引:1,自引:0,他引:1  
Abstract. A 1‐ha plot was established in a Betula platyphylla‐Picea ajanensis mixed boreal forest in the central Kamchatka peninsula in Russia to investigate stand structure and regeneration. This forest was relatively sparse; total density and stand basal area were 1071/ha and 25.8 m2/ha, respectively, for trees > 2.0 cm in trunk diameter at breast height (DBH). 25% of Betula regenerated by sprouting, and its frequency distribution of DBH had a reverse J‐shaped pattern. In contrast, Picea had a bimodal distribution. The growth rates of both species were high, reaching 20 m in ca. 120 yr. The two species had clumped distributions, especially for saplings. Betula saplings were not distributed in canopy gaps. Small Picea saplings were distributed irrespective of the presence/absence of gaps, while larger saplings aggregated in gaps. At the examined spatial scales (6.25–400 m2) the spatial distribution of Betula saplings was positively correlated with living Betula canopy trees and negatively with dead Picea canopy trees. This suggests that Betula saplings regenerated under the crowns of Betula canopy trees and did not invade the gaps created by Picea canopy trees. The spatial distribution of Picea saplings was negatively correlated with living and dead Betula canopy trees and positively with dead Picea canopy trees. Most small Picea seedlings were distributed under the crowns of Picea trees but not under the crowns of Betula trees or in gaps. This suggests that Picea seedlings establish under the crowns of Picea canopy trees and can grow to large sizes after the death of overhead Picea canopy trees. Evidence of competitive exclusion between the two species was not found. At a 20 m × 20 m scale both skewness and the coefficient of variation of DBH frequency distribution of Picea decreased with an increase in total basal area of Picea while those of Betula were unchanged irrespective of the increase in total basal area of Betula. This indicates that the size structure of Picea is more variable with stand development than that of Betula on a small scale. This study suggests that Betula regenerates continuously by sprouting and Picea regenerates discontinuously after gap formation and that the species do not exclude each other.  相似文献   

14.
The paper presents the results of the studying of the parameters of post-fire structure and seed-bearing capacity of tree stands, factors of surface medium (thickness of burnt duff, projective cover of herb and moss vegetation) as well as number, vitality, and age structure of self-seeded Scots pine (Pinus sylvestris L.) and accompanying small-leaved species in the Lower Selenga pine forest massif of the forest-steppe in Southwestern Transbaikalia. The seed harvests were 1.5–2 times higher than in the geographically replacing forest types in the forest-steppe of West Siberia, and vitality of the undergrowth of the pine under the canopy of fire-affected stands was extremely low. It is shown that the pine reforests successfully on the fire-sites in the zone of insemination from the forest walls and on the thin fire-sites in the cowberry-rhododendron pine forests, where it is 2–3 times more abundant than in forest-steppe of the West Siberia. The reforestation is insufficient on the fire-sites in the bearberry-lichen pine forests.  相似文献   

15.
In regenerating coastal dune forest, the canopy consists almost exclusively of a single species, Acacia karroo. When these trees die, they create large canopy gaps. If this promotes the persistence of pioneer species to the detriment of other forest species, then the end goal of a restored coastal dune forest may be unobtainable. We wished to ascertain whether tree species composition and richness differed significantly between canopy gaps and intact canopy, and across a gradient of gap sizes. In three known‐age regenerating coastal dune forest sites, we measured 146 gaps, the species responsible for gap creation, the species most likely to reach the canopy and the composition of adults, seedlings and saplings. We paired each gap with an adjacent plot of the same area that was entirely under intact canopy and sampled in the same way. Most species (15 of 23) had higher abundance in canopy gaps. The probability of self‐replacement was low for A. karroo even in the largest gaps. Despite this predominance of shade‐intolerant species, regenerating dune forest appears to be in the first phase of succession with ‘forest pioneers’ replacing the dominant canopy species. The nature of these species should lead to successful regeneration of dune forest.  相似文献   

16.
采用野外调查、样品采集和统计分析等相结合的方法,对小兴安岭天然红松混交林3种不同林型(椴树红松混交林(TP)、枫桦红松混交林(BP)、云冷杉红松混交林(PAP))的林隙及其邻近郁闭林分的土壤特征因子和树木更新的相关性进行了研究,旨在阐明林隙土壤特征因子对树木更新的影响,从而为小兴安岭天然红松混交林植被更新、退化生态系统的恢复和可持续经营提供基础数据和实践参考。结果表明:郁闭林分土壤有机质、全氮质量分数显著高于3种不同林型的林隙。有效磷和速效钾含量在BP内与其他林型之间差异显著。3种林型林隙内p H值均略高于其郁闭林分,但与其差异均不显著。3种林型林隙内更新总密度、幼树更新密度与郁闭林分差异显著(P0.05),PAP林隙中更新总密度和幼树更新密度最高。BP林隙面积与更新密度相关不显著,乔木幼苗、幼树更新密度与有机质(r=-0.400,r=-0.475)、全氮均呈显著负相关(r=-0.519,r=-0.603)。TP林隙内全氮与乔木幼苗更新密度呈正相关(r=0.092),而与乔木幼树更新密度呈显著负相关(r=-0.585)。PAP林隙内全氮与乔木幼苗、幼树更新密度均呈负相关。郁闭林分幼苗更新密度分别与有机质、全氮、速效钾、p H值、脲酶和蛋白酶呈负相关。主成分分析表明,全氮是影响林隙和郁闭林分树木更新的关键因素。  相似文献   

17.
Regeneration in fringe mangrove forests damaged by Hurricane Andrew   总被引:1,自引:0,他引:1  
Baldwin  Andrew  Egnotovich  Michael  Ford  Mark  Platt  William 《Plant Ecology》2001,157(2):151-164
Mangrove forests along many tropical coastlines are frequently andseverely damaged by hurricanes. The ability of mangrove forests to regeneratefollowing hurricanes has been noted, but changes that occur in vegetationfollowing disturbance by hurricane winds and storm tides have not been studied.We measured changes in plant community structure and environmental variables intwo fringe mangrove forests in south Florida, USA that experienced high windvelocities and storm tides associated with Hurricane Andrew (August1992). Loss of the forest canopy stimulated regeneration via seedlinggrowth and recruitment, as well as resprouting of some trees that survived thehurricane. Initial regeneration differed among species in both forests:Rhizophora mangle L. regenerated primarily via growth ofseedlings present at the time of the hurricane (i.e., release of advancerecruits), but many trees of Avicennia germinans(L.) Stearn and Laguncularia racemosa Gaertn.f.resprouted profusely from dormant epicormic buds. In one forest, which wasformerly dominated by Laguncularia, high densities ofRhizophora seedlings survived the hurricane and grew toform dense stands of saplings and small trees ofRhizophora. In the other forest, there were lowerdensitiesof surviving Rhizophora seedlings (possibly due tohigher storm tide), and extensive bare areas that were colonized byAvicennia, Laguncularia, andherbaceous species. This forest, predominantly Rhizophoraat the time of the hurricane, now contains stands of saplings and small treesofall three species, interspersed with patches dominated by herbaceous plants.These findings indicate that moderately damaged fringe forests may regenerateprimarily via release of Rhizophora advance recruits,leading to single-species stands. In severely damaged forests, seedlingrecruitment may be more important and lead to mixed-species stands.Regeneration of mangrove forests following hurricanes can involve differentpathways produced by complex interactions between resprouting capability,seedling survival, post-hurricane seedling recruitment, and colonizationby herbaceous vegetation. These differences in relative importance ofregeneration pathways, which may result in post-hurricane forestsdifferent from their pre-hurricane structure, suggest that models forregeneration of mangrove forests will be more complex than directregeneration models proposed for other tropical forests whereregeneration after hurricanes is dominated by resprouting.  相似文献   

18.
Field observations of seedlings and saplings of Avicennia marina showed patterns that correlated with salinity, light and sediment. Models that account for these observations were subsequently tested in a series of field experiments. Establishment varied within an estuary under controlled conditions but was not related to salinity or sediment type. Seedling survival was uniform over 3 years regardless of position in estuary and sediment type. Seedling densities and survival under canopies or in canopy gaps were not significantly different. However, seedling growth and density of saplings were greater in canopy gaps. Experiments involving manipulations of canopies showed no differences in seedling survival under canopies or in light gaps, but addition of slow-release fertilizer enhanced growth and survival in canopy gaps and under canopies. Long-term comparison of areas denuded of a canopy and with sediment disturbance showed enhanced establishment and survival when compared with areas with canopy gaps but with undisturbed sediments. Overall there appears to be no restriction to establishment of propagules within mangrove stands other than the supply of propagules and tidal or wave action. In contrast, recruitment to the sapling stage appears to be restricted by light and sediment resources. We suggest that propagules need to establish in a regeneration niche for seedling recruitment to the sapling stage. This differs from the view that seedlings in the under-storey are analogous to a seed pool in the soil.  相似文献   

19.
The persistence of seedlings in the forest understorey is of major importance for the maintenance and regeneration of canopy trees in several forested ecosystems. In the present study, we examine the small-scale spatial pattern of a mixed beech and oak seedling–sapling bank in two areas of an unmanaged temperate deciduous forest with different environmental conditions. We used environmental, biotic and spatial variables to establish the main factors that explain the spatial pattern of these seedling–sapling banks at different scales. The stand structure in both areas was similar, but while in plot A beech dominated the canopy, plot B was dominated by oaks. In both areas, established beech individuals showed a clear reverse J-shaped distribution, whereas established oaks showed a unimodal distribution with only a few young individuals. Seedlings of beech and oak were distributed in aggregates, whereas beech saplings had a random distribution. At broader scales, the abundance of seedlings and saplings is affected by the environment as well as by inter-species competition, while at finer scales the spatial pattern is mainly influenced by stochastic processes, probably related to seed predation and establishment. The structure of the seedling–sapling bank indicates an advantage of beech over oak as far as regeneration is concerned. Beech seedlings and saplings tolerate the stress induced by the canopy and the understorey and persist for many years, while oak seedlings decline in a few years. Therefore, if current conditions persist, after canopy opening beech seedlings and saplings can grow rapidly into the canopy and the stands will move towards beech dominance.  相似文献   

20.
Closed-canopy upland hardwood stands often lack diverse understory structure and composition, limiting available nutrition for white-tailed deer (Odocoileus virginianus) as well as nesting and foraging structure for other wildlife. Various regeneration methods can positively influence understory development; however, non-commercial strategies are needed to improve available nutrition in many stands, as some contain timber that is not ready to harvest and others are owned by landowners who are not interested in harvesting timber. Applications of herbicide and prescribed fire have improved availability of food and cover for deer and other wildlife in pine (Pinus spp.) systems. However, this strategy has not been evaluated in hardwood systems. To evaluate the influence of fire and herbicide treatments on available deer forage in upland hardwood systems, we measured forage availability and calculated nutritional carrying capacity (NCC) at 14% crude protein mixed diet, following 7 silvicultural treatments, including controls, in 4 mixed upland hardwood stands July–September 2007 and 2008. We compared NCC among forest treatments and within 4 paired warm-season forage food plots to evaluate the usefulness of food plots in areas where forests are managed. Nutritional carrying capacity estimates (deer days/ha) were greatest following canopy reduction with prescribed fire treatments in both years. Understory herbicide application did not affect species composition or NCC 1 year or 2 years post-treatment. Production of forage plantings exceeded that of forest treatments both years with the exception of early-maturing soybeans and retention cut with fire 2 years post-treatment. We encourage land managers to use canopy reducing treatments and low-intensity prescribed fire to increase available nutrition and improve available cover where needed in upland hardwood systems. In areas where deer density may limit understory development, high-quality forage food plots may be used to buffer browsing while strategies to reduce deer density and stimulate the forest understory are implemented. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号