首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.  相似文献   

2.
Some studies on the adsorption of cellulase on cellulose revealed part of the mechanisms involved in the enzymatic hydrolysis of cellulose and provided some clues to the synergistic mechanism of cellulase complex. The adsorption of cellulase was significantly affected by the reaction conditions and physical chemical characteristics of cellulose. Endoglucanase consisted of adsorbable and nonadsorbable components. Cellobiohydrolase had the strongest adsorption affinity. Each cellulase component is postulated to have distinctly different adsorption sites on cellulose, corresponding to the active sites in the hydrolysis reaction. Competitive adsorption kinetics between cellulase components were also observed during the adsorption process. The degree of competitive adsorption was most remarkable when the composition of cellulase components was nearly the same as that in the crude cellulase complex. This seems to show the optimal relative composition of cellulase components. The synergism between cellobiohydrolase and endoglucananse could be elucidated more clearly by this competitive adsorption model of the reaction mechanism.  相似文献   

3.
The kinetics of the hydrolysis of microcrystalline cellulose (MC) by a Trichoderma reesei cellulase complex and by the individual endoglucanase (pI 4.4–5.2) and cellobiohydrolase (pI 4.0–4.2) has been studied. A flow chart for the enzymatic hydrolysis of the cellulose has been revealed, which formed a basis for a computer simulation of the kinetic regularities observed. As a result of it, the values of the catalytic rate constants for the individual stages of the enzymatic degradation of MC have been calculated. Then, the synergistic behaviour of endoglucanase and cellobiohydrolase in the hydrolysis of MC has been described both quantitatively and graphically. The relative efficiency of the individual stages for the MC hydrolysis in terms of glucose and cellobiose formation for cellulase complexes of various composition has been calculated. It was quantitatively shown that cellobiohydrolase plays the key role in the MC hydrolysis by T. reesei cellulase preparations, because it gives up to 80% glucose and up to 80–90% cellobiose in the presnce of endoglucanase which in turn plays a relatively minor role in a direct formation of both soluble products of the hydrolysis.  相似文献   

4.
1. A purified cellulolytic component C(1) was isolated free from associated activities of the cellulase complex and shown to act as a beta-1,4-glucan cellobiohydrolase on both simple and complex forms of native cellulose. 2. The enzyme releases terminal cellobiose units from cellulose, its extent of action being determined principally by the product and by the nature of the substrate. 3. Component C(x) of the cellulase system is not required for the action of component C(1) (cellobiohydrolase). The enzyme synergizes extensively with cellobiase in extending the hydrolysis of native and of less-complex forms of cellulose to at least 70% with the liberation of glucose. 4. The cellobiohydrolase is relatively unstable, with an optimum at pH5 and a K(m) of 0.05mg/ml. The enzyme is inhibited by its product, from which it is released by cellobiase. 5. Of other compounds tested against the cellobiohydrolase the metal ions Cu(2+), Zn(2+), phenylmercuric and Fe(3+) are increasingly effective inhibitors. Glucose has no action at concentrations found inhibitory with cellobiose. 6. The relationship of the enzyme to the entire cellulase complex is discussed.  相似文献   

5.
A semimechanistic multi‐reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose‐to‐glucose and two heterogeneous reactions of cellulose‐to‐cellobiose and cellulose‐to‐glucose. Adsorption of cellulase onto pretreated CWR during enzymatic hydrolysis was modeled via a Langmuir adsorption isotherm. This is the first kinetic model which incorporated the negative role of lignin (nonproductive adsorption) using a Langmuir‐type isotherm adsorption of cellulase onto lignin. The model also reflected the competitive inhibitions of cellulase by glucose and cellobiose. The Matlab optimization function of “lsqnonlin” was used to fit the model and estimate kinetic parameters based on experimental data generated under typical conditions (8% solid loading and 15 FPU/g‐cellulose enzyme concentration without the addition of background sugars). The model showed high fidelity for predicting cellulose hydrolysis behavior over a broad range of solid loading (4–12%, w/w, dry basis), enzyme concentration (15–150 FPU/ g‐cellulose), sugar inhibition (glucose of 30 and 60 mg/mL and cellobiose of 10 mg/mL). In addition, sensitivity analysis showed that the incorporation of the nonproductive adsorption of cellulase onto lignin significantly improved the predictability of the kinetic model. Our model can serve as a robust tool for developing kinetic models for system optimization of enzymatic hydrolysis, hydrolysis reactor design, and/or other hydrolysis systems with different type of enzymes and substrates. Biotechnol. Bioeng. 2009;102: 1558–1569. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
《Experimental mycology》1990,14(4):405-415
The relationship between β-linked disaccharide (cellobiose, sophorose) utilization and cellulase, particularly cellobiohydrolase I (CBH I) synthesis by Trichoderma reesei, was investigated. During growth on cellobiose and sophorose as carbon sources in batch as well as resting-cell culture, only sophorose induced cellulase formation. In the latter experiments, sophorose was utilized at a much lower rate than cellobiose, and the more cellulase produced, the lower its rate of utilization. Cellobiose and sophorose were utilized by the fungus mainly via hydrolysis by the cell wall- and cell membrane-bound β-glucosidase. Addition of sophorose to T. reesei growing on cellulose did not further stimulate cellulase synthesis, and addition of cellobiose was inhibitory. Cellobiose, however, promoted cellulase formation in both batch and resting cell cultures, when its hydrolysis by β-glucosidase was inhibited by nojirimycin. No cellulase formation was observed when the uptake of glucose (produced from cellobiose by β-glucosidase) was inhibited by 3-O-methylglucoside. Cellodextrins (C2 to C6) promoted formation of low levels of cellobiohydrolase I in indirect proportion to their rate of hydrolysis by β-glucosidase. Studies on the uptake of [3H]cellobiose, [3H]sophorose, and [14C]glucose in the presence of inhibitors of β-glucosidase (nojirimycin) and glucose transport (3-O-methylglucoside) show that glucose transport occurs at a much higher rate than disaccharide hydrolysis. Extracellular disaccharide hydrolysis accounts for at least 95% of their metabolism. The presence of an uptake system for cellobiose was established by demonstrating the presence of intracellular labeled [3H]cellobiose in T. reesei after its extracellular supply. The data are consistent with induction of cellulase and particularly CBH I formation in T. reesei by β-linked disaccharides under conditions where their uptake is favored at the expense of extracellular hydrolysis.  相似文献   

7.
Igarashi K  Wada M  Samejima M 《The FEBS journal》2007,274(7):1785-1792
The crystalline polymorphic form of cellulose (cellulose I(alpha)-rich) of the green alga, Cladophora, was converted into cellulose III(I) and I(beta) by supercritical ammonium and hydrothermal treatments, respectively, and the hydrolytic rate and the adsorption of Trichoderma viride cellobiohydrolase I (Cel7A) on these products were evaluated by a novel analysis based on the surface density of the enzyme. Cellobiose production from cellulose III(I) was more than 5 times higher than that from cellulose I. However, the amount of enzyme adsorbed on cellulose III(I) was less than twice that on cellulose I, and the specific activity of the adsorbed enzyme for cellulose III(I) was more than 3 times higher than that for cellulose I. When cellulose III(I) was converted into cellulose I(beta) by hydrothermal treatment, cellobiose production was dramatically decreased, although no significant change was observed in enzyme adsorption. This clearly indicates that the enhanced hydrolysis of cellulose III(I) is related to the structure of the crystalline polymorph. Thus, supercritical ammonium treatment activates crystalline cellulose for hydrolysis by cellobiohydrolase.  相似文献   

8.
Cellobiose oxidase from the white rot fungus Phanerochaete chrysosporium has been purified to homogeneity by a new method. The enzyme has been cleaved by papain into two fragments: one containing the heme group and one containing the flavin group. The flavin fragment can oxidize cellobiose and is reoxidized by oxygen. Cellobiose oxidase binds to cellulose to approximately the same extent as cellobiohydrolase I. The cellulose-binding site is located on the flavin domain. The enzyme cannot be totally displaced from cellulose by cellobiose, and it is still active when adsorbed to cellulose. The possible role of the enzyme in lignocellulose degradation is discussed.  相似文献   

9.
Controlled depolymerization of cellulose is essential for the production of valuable cellooligosaccharides and cellobiose from lignocellulosic biomass. However, enzymatic cellulose hydrolysis involves multiple synergistically acting enzymes, making difficult to control the depolymerization process and generate desired product. This work exploits the varying adsorption properties of the cellulase components to the cellulosic substrate and aims to control the enzyme activity. Cellulase adsorption was favored on pretreated cellulosic biomass as compared to synthetic cellulose. Preferential adsorption of exocellulases was observed over endocellulase, while β-glucosidases remained unadsorbed. Adsorbed enzyme fraction with bound exocellulases when used for hydrolysis generated cellobiose predominantly, while the unadsorbed enzymes in the liquid fraction produced cellooligosaccharides majorly, owing to its high endocellulases activity. Thus, the differential adsorption phenomenon of the cellulase components can be used for the controlling cellulose hydrolysis for the production of an array of sugars.  相似文献   

10.
Cellobiohydrolases are the dominant components of the commercially relevant Trichoderma reesei cellulase system. Although natural cellulases can totally hydrolyze crystalline cellulose to soluble sugars, the current enzyme loadings and long digestion times required render these enzymes less than cost effective for biomass conversion processes. It is clear that cellobiohydrolases must be improved via protein engineering to reduce processing costs. To better understand cellobiohydrolase function, new simulations have been conducted using charmm of cellobiohydrolase I (CBH I) from T.reesei interacting with a model segment (cellodextrin) of a cellulose microfibril in which one chain from the substrate has been placed into the active site tunnel mimicking the hypothesized configuration prior to final substrate docking (i.e., the +1 and +2 sites are unoccupied), which is also the structure following a catalytic bond scission. No tendency was found for the protein to dissociate from or translate along the substrate surface during this initial simulation, nor to align with the direction of the cellulose chains. However, a tendency for the decrystallized cellodextrin to partially re-anneal into the cellulose surface hints that the arbitrary starting configuration selected was not ideal.  相似文献   

11.
12.
Adsorption on crystalline cellulose of six endoglucanases (Endo I, II, III, IV, V and VI; 1, 4-beta-D-glucan glucanohydrolase, EC 3.2.1.4) and two exoglucanases (Exo II and III; 1,4-beta-D-glucan cellobiohydrolase, EC 3.2.1.92), purified from a commercial cellulase preparation of Trichoderma viride origin, was studied. Endo I, III, and V adsorbed strongly on Avicel cellulose, while adsorption of Endo II, IV, and VI was much lower. Also, the two exoglucanases could be divided into one enzyme (Exo III) that had a high adsorption affinity and another enzyme (Exo II) that adsorbed only moderately. Adsorption data fitted the Langmuir-type adsorption isotherm. However, adsorption was only partially reversible with respect to dilution. No relation could be found between adsorption affinity and degree of randomness in cellulose hydrolysis, measured as the diversity of released hydrolytic products. Kinetic measurements indicated that only part of the adsorbed enzyme molecules are hydrolytically active.  相似文献   

13.
ABSTRACT. The secretion of cellulose-degrading enzymes by Leishmania promastigotes in culture and in the sandfly vector was demonstrated. Two types of activity of cellulase enzyme-complexes were measured: endoglucanases, which randomly cleave cellulose chains and cellobioydrolases, which remove cellobiose from the nonreducing end of the molecule. The assays demonstrated that enzymes with these activities were secreted into the culture medium by Leishmania major, L. donovani , and L. braziliensis . These activities were also found in cultures of Sauroleishmania agamae, Leptomonas seymouri, Herpetomonas muscarum, Crithidia fasciculata and Trypanosoma brucei brucei that had a relatively low endoglucanase activity. Both endoglucanase and cellobiohydrolase activities were found in the gut of L. major-infected Phlebotomus papatasi , while gut preparations of uninfected sandflies had only cellobiohydrolase activity. The similar growth of L. major parasites in medium supplemented with either cellulose or glucose suggests these parasites can utilize cellulose.  相似文献   

14.
An amperometric biosensor for the detection of cellobiose has been introduced to study the kinetics of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase. By use of a sensor in which pyrroloquinoline quinone-dependent glucose dehydrogenase was immobilized on the surface of electrode, direct and continuous observation of the hydrolysis can be achieved even in a thick cellulose suspension. The steady-state rate of the hydrolysis increased with increasing concentrations of the enzyme to approach a saturation value and was proportional to the amount of the substrate. The experimental results can be explained well by the rate equations derived from a three-step mechanism consisting of the adsorption of the free enzyme onto the surface of the substrate, the reaction of the adsorbed enzyme with the substrate, and the liberation of the product. The catalytic constant of the adsorbed enzyme was determined to be 0.044+/-0.011s(-1).  相似文献   

15.
Removal of beta-glucosidase (BG) from cellulase is essential to the enzymatic production of cellobiose from cellulose because of the high reactivity of BG with cellobiose to form glucose. Chitosan is a reversibly soluble-insoluble polymer depending on pH, and it has an affinity with the other components, endo-beta-1,4-glucanase and cellobiohydrolase, or cellulase. The affinity precipitation technique using chitosan is an effective way to fractionate cellulase for the above purpose. Hydrolysis experiments of cellulose with the residual fractionated enzyme gave higher cellobiose contents in the soluble sugar products. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
The affinity digestion process for cellulase purification consisting of binding to amorphous cellulose, and amorphous cellulose hydrolysis in the presence of dialysis (Morag et al., 1991), was optimized to obtain high activity recoveries and consistent protein recoveries in the isolation of Clostridium thermocellum cellulase. Experiments were conducted using crude supernatant prepared from C. thermocellum grown on either Avicel or cellobiose. While no difference was observed between Avicel-grown or cellobiose-grown cellulase in the adsorption step, differences were observed during the hydrolysis step. The optimal amorphous cellulose loading was found to be 3 mg amorphous cellulose per milligram supernatant protein. At this loading, 90–100% of activity in the crude supernatant was adsorbed. Twenty-four-hour incubation with the amorphous cellulose during the adsorption stage was found to result in maximal and stable adsorption of activity to the substrate. By fitting the adsorption data to the Langmuir model, an adsorption constant of 410 L/g and a binding capacity of 0.249 g cellulase/g cellulose were obtained. The optimal length of time for hydrolysis was found to be 3 hr for cellulase purified from Avicel cultures and 4 hr for cellulase purified from cellobiose cultures. These loadings and incubation times allowed for more than 85% activity recovery.  相似文献   

17.
Two endoglucanase-containing fractions were separated from Aspergillus niger cellulase by gel filtration and fast protein liquid chromatofocusing (FPLC). They possessed no ability to bind to or hydrolyze insoluble microcrystalline cellulose (Avicel) but were active toward soluble carboxymethylcellulose. No synergism was observed between Trichoderma reesei cellobiohydrolase I and either endoglucanase from A. niger. These findings may indicate that the role of the endoglucanase component of cellulase in insoluble microcrystalline cellulose hydrolysis is dependent upon its ability to be adsorbed upon the substrate.  相似文献   

18.
A mathematical model for enzymatic cellulose hydrolysis, based on experimental kinetics of the process catalysed by a cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] preparation from Trichoderma longibrachiatum has been developed. The model takes into account the composition of the cellulase complex, the structural complexity of cellulose, the inhibition by reaction products, the inactivation of enzymes in the course of the enzymatic hydrolysis and describes the kinetics of d-glucose and cellobiose formation from cellulose. The rate of d-glucose formation decelerated through the hydrolysis due to a change in cellulose reactivity and inhibition by the reaction product, d-glucose. The rate of cellobiose formation decelerated due to inhibition by the product, cellobiose, and inactivation of enzymes adsorbed on the cellulose surface. Inactivation of the cellobiose-producing enzymes as a result of their adsorption was found to be reversible. The model satisfactorily predicts the kinetics of d-glucose and cellobiose accumulation in a batch reactor up to 70–80% substrate conversion on changing substrate concentration from 5 to 100 g l?1and the concentration of the enzymic preparation from 5 to 60 g l?1.  相似文献   

19.
Effect of hydrogen bond breaker (urea) addition on the enzymatic hydrolysis of Avicel and eucalyptus pretreated by dilute acid (Eu-DA) was investigated. Urea enhanced the enzymatic hydrolysis of Eu-DA at 50 or 30 °C when the concentration of urea was below 60 g/L, while it inhibited the hydrolysis of Avicel. Low concentration urea (<?240 g/L) had little effect on the cellulase spatial structure and its activity. But it decreased cellulase binding to cellulose surface to inhibit the cellulose hydrolysis. Meanwhile, urea obviously prevented the adsorption of cellobiohydrolase I (CBHI) on the lignin in spite of little effect on the adsorption of β-glucosidase (BGL) and two endoglucanases (EGIII and EGV) on lignin. It was proposed that urea enhanced the enzymatic efficiency of Eu-DA by decreasing the cellulase adsorption on lignin surface.  相似文献   

20.
The binding of cellobiohydrolases to cellulose is a crucial initial step in cellulose hydrolysis. In the search for a detailed understanding of the function of cellobiohydrolases, much information concerning how the enzymes and their constituent catalytic and cellulose-binding changes during hydrolysis is still needed. The adsorption of purffied two cellobiohydrolases (Ce17A and Ce16A) fromTrichoderma reesei cellulase to microcrystalline cellulose has been studied. Cellobiohydrolase II (Ce16A) does not affect the adsorption of cellobiohydrolase I (Ce17A) significantly, and there are specific binding sites for both Ce17A and Ce16A. The adsorption affinity and tightness of the cellulase binding domain (CBD) for Ce17A are larger that those of the CBD for Ce16A. The CBD for Ce17A binds more rapidly and tightly to Avicel than the CBD for Ce16A. The decrease in adsorption observed when the two cellobihydrolases are studied together would appear to be the result of competition for binding sites on the cellulose. Ce17A competes more efficiently for binding sites than Ce16A. Competition for binding sites is the dominating factor when the two enzymes are acting together, furthermore adsorption to sites specific for Ce17A and Ce16A, also contributes to the total adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号