首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae invertase was chemically modified with chitosan and further immobilized on sodium alginate-coated chitin support. The yield of immobilized protein was determined as 85% and the enzyme retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 °C and its thermostability was enhanced by about 9 °C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was four-fold more resistant to thermal treatment at 65 °C than the native counterpart. The biocatalyst prepared retained 80% of the original catalytic activity after 50 h under continuous operational regime in a packed bed reactor.  相似文献   

2.
Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on a carboxymethylcellulose-coated chitin support via polyelectrolyte complex formation. The yield of immobilized protein was determined to be 72% and the enzyme retained 68% of the initial invertase activity. The optimum temperature for invertase was increased by 5 degrees C and its thermostability was enhanced by about 9 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 12.6-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The prepared biocatalyst retained 98% and 100% of the original catalytic activity after 10 cycles of reuse and 70 h of continuous operational regime in a packed bed reactor, respectively. The immobilized enzyme retained 95% of its activity after 50 days of storage at 37 degrees C.  相似文献   

3.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

4.
Endo-polygalacturonase from Aspergillus ustus when immobilized on to modified silica gel retained 28% of its original activity. The immobilized enzyme could be re-used through 10 cycles of reaction with almost 90% retention of its original activity. It had increased thermostability over its soluble form: the half-life of the soluble enzyme at 40 °C was less than 10 h whereas the immobilized enzyme retained 82% of its activity after 10 h at 40 °C. Similarly, at 50 °C the half-life of the soluble enzyme was 30 min whereas that of the immobilized enzyme was 5 h.  相似文献   

5.
Mucor miehei lipase was immobilized on magnetic polysiloxane-polyvinyl alcohol particles by covalent binding. The resulting immobilized biocatalyst was recycled by seven assays, with a retained activity around 10% of its initial activity. Km and Vmax were respectively 228.3 M and 36.1 U mg of protein–1 for immobilized enzyme. Whereas the optimum temperature remained the same for both soluble and immobilized lipase (45 °C), there was a shift in pH profiles after immobilization. Optimum pH for the immobilized lipase was 8.0. Immobilized enzyme showed to be more resistant than soluble lipase when assays were performed out of the optimum temperature or pH.  相似文献   

6.
When grown on a sucrose-containing medium, Candida utilis synthesizes and secretes two invertases: one of molecular size of 280 kDa (the S-form – Slow-migrating) and a new form of Mr of 62 kDa (the F-form – Fast-migrating). Prior to immobilization, purification of S- and F-forms of invertase increased the immobilization yield to 89–100%, in comparison with that of crude invertase preparation (52%). The immobilized purified S- and F-form of invertase remained partially active after 15 min at 100 °C; the F-form retained almost 30% of its maximum activity. The immobilized S-form or F-form of invertase almost completely inverted (95% hydrolysis) 60% (w/v) sucrose over 5 h continuous reaction at 80 °C. Moreover, at 90 °C the immobilized F-form hydrolysed 70% of 60% (w/v) sucrose over 5 h, while the capability of the immobilized S-form of inverting sucrose over 5 h reaction decreased from 80% to 45%.  相似文献   

7.
An immobilized d-hydantoinase was characterized and employed to produce n-carbamoyl-d-p-hydroxyphenylglycine (CpHPG) in a repeated batch process. The Vmax and Km of the immobilized d-hydantoinase at 50°C were 6.28 mm min−1 g−1 biocatalyst and 71.6 mm, respectively. The product CpHPG did not inhibit the activity of d-hydantoinase. Optimal reaction temperature was 60°C. A decrease in activity of immobilized d-hydantoinase due to thermal inactivation could be described as first-order decay; the deactivation energy was 23.97Kcal mol−1. Under process conditions (50°C, 10% w/v substrate, and pH 8.5), the half-life of the immobilized d-hydantoinase was eight batches. The attrition of immobilized d-hydantoinase particles with a large amount of insoluble substrate particles during stirring resulted in fine biocatalyst particles. In addition to the thermal inactivation, the loss of fine biocatalyst particles during the recovery step contributed to the low operational stability.  相似文献   

8.
Cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacter sp. was covalently immobilized on glutaraldehyde-activated chitosan spheres and used in a packed bed reactor to investigate the continuous production of β-cyclodextrin (β-CD). The optimum temperatures were 75 °C and 85 °C at pH 6.0, respectively for free and immobilized CGTase, and the optimum pH (5.0) was the same for both at 60 °C. In the reactor, the effects of flow rate and substrate concentration in the β-CD production were evaluated. The optimum substrate concentration was 4% (w/v), maximizing the β-CD production (1.32 g/L) in a flow rate of 3 mL/min. In addition, the biocatalyst had good operational stability at 60 °C, maintaining 61% of its initial activity after 100 cycles of batch and 100% after 100 h of continuous use. These results suggest the possibility of using this immobilized biocatalyst in continuous production of CDs.  相似文献   

9.
Extracellular exoinulinase from Kluyveromyces marxianus YS-1, which hydrolyzes inulin into fructose, was immobilized on Duolite A568 after partial purification by ethanol precipitation and gel exclusion chromatography on Sephadex G-100. Optimum temperature of immobilized enzyme was 55 °C, which was 5 °C higher than the free enzyme and optimal pH was 5.5. Immobilized biocatalyst retained more than 90% of its original activity after incubation at 60 °C for 3 h, whereas in free form its activity was reduced to 10% under same conditions, showing a significant improvement in the thermal stability of the biocatalyst after immobilization. Apparent K m values for inulin, raffinose and sucrose were found to be 3.75, 28.5 and 30.7 mM, respectively. Activation energy (E a) of the immobilized biocatalyst was found to be 46.8 kJ/mol. Metal ions like Co2+ and Mn2+ enhanced the activity, whereas Hg2+ and Ag2+ were found to be potent inhibitors even at lower concentrations of 1 mM. Immobilized biocatalyst was effectively used in batch preparation of high fructose syrup from Asparagus racemosus raw inulin and pure inulin, which yielded 39.2 and 40.2 g/L of fructose in 4 h; it was 85.5 and 92.6% of total reducing sugars produced, respectively.  相似文献   

10.
A partially purified -fructofuranosidase from Aspergillus japonicus was covalently immobilized on to chitosan beads using either glutaraldehyde or tris(hydroxymethyl)phosphine (THP) as a coupling agent. Compared with the glutaraldehyde-immobilized and the free enzyme, the THP-immobilized enzyme had the highest thermal stability with 78% activity retained after 12 days at 37 ° C. The THP-immobilized enzyme also had higher reusability than that immobilized by glutaraldehyde, 75% activity was retained after 11 batches (or 11 days) at 37° C for the THP immobilized enzyme system. Less yield (48%) of fructooligosaccharides (FOS) were produced by the THP-immobilized enzyme compared with the free enzyme system (58%) from 50 (w/v) sucrose at 50 ° C.  相似文献   

11.
Homodimeric thymidine phosphorylase from Escherichia coli (TP, E.C. 2.4.2.4) was immobilized on solid support with the aim to have a stable and recyclable biocatalyst for nucleoside synthesis. Immobilization by ionic adsorption on amine-functionalized agarose and Sepabeads® resulted in a very high activity recovery (>85%). To prevent undesirable leakage of immobilized enzyme away from the support, the ionic preparations were cross-linked with aldehyde dextran (MW 20 kDa) and the influence of the dextran oxidation degree on the resulting biocatalyst activity was evaluated. Although in all cases the percentage of expressed activity after immobilization drastically decreased (≤25%), this procedure allowed to obtain an active catalyst which resulted up to 6-fold and 3-fold more stable than the soluble (non immobilized) enzyme and the just adsorbed (non cross-linked) counterpart, respectively, at pH 10 and 37 °C. No release of the enzyme from the support could be observed. Covalent immobilization on aldehyde or epoxy supports was generally detrimental for enzyme activity. Optimal TP preparation, achieved by immobilization onto Sepabeads® coated with polyethyleneimine and cross-linked, was successfully used for the one-pot synthesis of 5-fluoro-2′-deoxyuridine starting from 2′-deoxyuridine or thymidine (20 mM) and 5-fluorouracil (10 mM). In both cases, the reaction proceeded at the same rate (3 μmol min−1) affording 62% conversion in 1 h.  相似文献   

12.
Epoxide hydrolase from Aspergillus niger (E.C. 3.3.2.3) was immobilized by covalent linking to epoxide-activated silica gel under mild conditions. A very easy procedure allowed to prepare an immobilized biocatalyst with more than 90% retention of the initial enzymatic activity. Immobilized and free enzyme showed very similar behaviour with respect to the effect of pH on activity and stability. One benefit of immobilizing epoxide hydrolase from A. niger on silica gel was the enhanced enzyme stability in the presence of 20% DMSO. The kinetic resolution of racemic para-nitrostyrene oxide was investigated by using this new immobilized biocatalyst. The enantioselectivity of the enzyme was not altered by the immobilization reaction: both unreacted epoxide and formed diol were obtained with very high ee (99 and 92%, respectively). In addition, the biocatalyst could be easily separated from the reaction mixture and re-used for over nine cycles without any noticeable loss of enzymatic activity or change in the enantioselectivity extent. The activity of immobilized AnEH was retained for several months.  相似文献   

13.
《Process Biochemistry》2014,49(2):244-249
The novel enzyme carrier, polyamidoamine (PAMAM) dendrimers modified macroporous polystyrene, has been synthesized by Michael addition and firstly used in the immobilization of porcine pancreas lipase (PPL) effectively by covalent attachment. The resulting carrier was characterized with the Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), elemental analysis and thermogravimetric (TG) analysis. Meanwhile, the amount of immobilized lipase was up to 100 mg g−1 support and the factors related with the enzyme activity were investigated. The immobilization of the PPL improved their performance in wider ranges of pH and temperature. Thermal stability of the immobilized lipase also increased dramatically in comparison with the free ones and the immobilized lipase exhibited a favorable denaturant tolerance. As a biocatalyst, the immobilized lipase for batch hydrolysis of olive oil emulsion retained 85% activity after 10 times of recycling. This well-reusability of immobilized lipase was very valuable and meaningful in enzyme technology.  相似文献   

14.
Cells of the thermophilic Bacillus subtilis WY34 were immobilized on various formaldehyde-activated polymer membranes and the immobilized cells were used for the production of thermostable mannanase in flasks. The results showed that polyethersulfone membranes (PES) and nylon-6 membranes were the most suitable supports for cell immobilization to produce the mannanase. Moreover, PES and nylon-6 membranes immobilized cells provided 1.78- and 1.74-fold higher mannanase activity compared to the control after 4 days of cultivation, respectively. The immobilized cells on PES and nylon-6 membranes had good stability and retained 131.5 and 114.3% of ability of enzyme production even after six cycles of repeated batch fermentation, respectively. Active cell growth was observed by scanning electron microscopy (SEM) after 16 days (four cycles) repeated batch cultivation. Therefore, the membrane-immobilized cells of B. subtilis WY34 can be proposed as an effective biocatalyst for repeated usage for production of the thermostable mannanase.  相似文献   

15.
A novel immobilized biocatalyst with invertase activity was prepared by adhesion of yeast cells to wool using glutaraldehyde. Yeast cells could be immobilized onto wool by treating either the yeast cells or wool or both with glutaraldehyde. Immobilized cells were not desorbed by washing with 1 M KCl or 0.1 M buffers, pH 3.5–7.5. The biocatalyst shows a maximum enzyme activity when immobilized at pH 4.2–4.6 and 7.5–8.0. The immobilized biocatalyst was tested in a tubular fixed-bed reactor to investigate its possible application for continuous full-scale sucrose hydrolysis. The influence of temperature, sugar concentration and flow rate on the productivity of the reactor and on the specific productivity of the biocatalyst was studied. The system demonstrates a very good productivity at a temperature of 70 °C and a sugar concentration of 2.0 M. The increase of the volume of the biocatalyst layer exponentially increases the productivity. The productivity of the immobilized biocatalyst decreases no more than 50% during 60 days of continuous work at 70 °C and 2.0 M sucrose, but during the first 30 days it remains constant. The cumulative biocatalyst productivity for 60 days was 4.8 × 103kg inverted sucrose/kg biocatalyst. The biocatalyst was proved to be fully capable of continuous sucrose hydrolysis in fixed-bed reactors. Received: 8 November 1996 / Received revision: 31 January 1997 / Accepted: 31 January 1997  相似文献   

16.
Summary Whole cells of Saccharomyces bayanus, Saccharomyces cerevisiae and Zymomonas mobilis were immobilized by chelation/metal-link processes onto porous inorganic carriers. The immobilized yeast cells displayed much higher sucrose hydrolyzing activities (90–517 U/g) than the bacterial, Z. mobilis, cells (0.76–1.65 U/g). The yeast cells chelated on hydrous metal oxide derivative of pumice stone presented higher initial -d-fructofuranosidase (invertase, EC 3.2.1.26) activity (161–517 U/g) than on other derivatives (90–201 U/g). The introduction of an organic bridge between the cells and the metal activator led to a decrease of the initial activity of the immobilized cells, however S. cerevisiae cells immobilized on the carbonyl derivative of titanium (IV) activated pumice stone, by covalent linkage, displayed a very stable behaviour, which in continuous operation at 30° C show only a slightly decrease on invertase activity for a two month period (half-life=470 days). The continuous hydrolysis of a 2% w/v sucrose solution at 30° C in an immobilized S. cerevisiae packed bed reactor was described by a simple kinetic model developed by the authors (Cabral et al., 1984a), which can also be used to predict the enzyme activity of the immobilized cells from conversion degree data.  相似文献   

17.
Summary Whole cells of Saccharomyces cerevisiae were entrapped in polymers of 2-hydroxyethylmetha-crylate and sucrose hydrolysis catalysed by its invertase was investigated.Analysis of the experimental results confirmed that diffusional resistance to mass transfer of reactant and product was not induced by immobilization.For the yeast cells in the hydrogel, invertase activity obeyed a Michaelis-Menten kinetic and the value of Km (40 mM) was the same as that for yeast cells in bulk phase.The recovery of biocatalyst activity ranged between 17% and 23%, depending on immobilization temperature; the optimum pH range was found to be slightly wider.Storage stability at refrigerator temperature was quite satisfactory; invertase half-life was 267 days. Operational stability of immobilized cells at 45°C (half-life 110 days) was almost twice that of free cells.Finally, cell distribution in the polymer, observed with a scanning electron microscope, was found to be uniform.Symbols C Active cell concentration, g/mg - Ea Activation energy, cal/mol - Kd kinetic constant of the enzyme deactivation reaction, h - Km Michaelis constant, mM - Nc Active cell amount, mg - r Enzymatic reaction rate, mol/min - S Substrate concentration, mM - t Reaction time, h or days - T Reaction temperature, °C or °K - Tp Polymerization temperature, °C - V max Kinetic constant of enzymatic reaction, mol/min  相似文献   

18.
A new technique using chitosan as support for covalent coupling of invertase via carbohydrate moiety improved the activity and thermal stability of immobilized invertase. The best preparation of immobilized invertase retained 91% of original specific activity (412 U mg–1). The half-life at 60°C was increased from 2.3 h (free invertase) to 7.2 h (immobilized invertase). In contrast, the immobilization of invertase via protein moiety on chitosan or using Sepharose as support resulted in less thermostable preparations. Additionally, immobilization of invertase on both supports caused the optimal reaction pH to shift from 4.5 to 2.5 and the substrate (sucrose) concentration for maximum activity to increase from 0.5 M to 1.0 M.  相似文献   

19.
Cell suspension culture of Eschscholtzia californica Cham. were permeabilized by Tween 20 or 80, and immobilized by glutaraldehyde. The highest invertase activity was at pH 4.5 and temperature 50 °C. The hydrolysis of the substrate was linear for 5 h reaching 60 % conversion. The cells had high invertase activity and a good stability, and in long-term storage they showed convenient physico-mechanical properties.  相似文献   

20.
Catalase was immobilized on alumina carrier and crosslinked with glutaraldehyde. Storing stability, temperature and pH profiles of enzyme activity were studied in a column reactor with recirculation and in a batch stirred-tank reactor. The immobilized enzyme retained 44% of its activity at pH 11, 30 °C and 90% at 80 °C, pH 7. The half-life time of the immobilized catalase was increased to 2 h at pH 12, and 60 °C. Acceptable results were achieved when the residual water from the washing process of H2O2-bleached fabrics was treated with the immobilized enzyme and then reused for dyeing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号