首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The source-sink ratio of 1-year-old, potted sour cherry trees ( Prunus cerasus L.) was altered by whold-plant partial defoliation or continuous illumination to determine if trees were primarily sink limited and to elucidate the means whereby photosynthetic enhancement or inhibition occurs. Leaf xylem water potential was not affected by either treatment. Although stomatal conductance was reduced by 1 to 3 days of continuous illumination, internal CO2 concentration was not significantly affected indicating that the enhanced physical limitation imposed by the stomata was of no physiological significance. Net CO2 assimilation (A) was significantly higher 4 days after partial defoliation and lower from 1 to 4 days following continuious illumination. The increase in A in partially defoliated plants was associated with reduced leaf starch and increased surose and sorbitol concentrations. The decrease in A in continuously illuminated plants was associated with a decrease in variable fluorescence, photochemical efficiency of photosystem II (PSII) and an increase in instantaneous fluorescence, indicating that leaves were photoinhibited and that irreversible damage had occurred to PSII. In addition, leaves of continuously illuminated plants had 80% more starch and significantly less sucrose and sorbitol. These altered leaf carbohydrate concentrations indicate that the existing sink limitation may have been aggravated by continuous illumination leading to an insufficient utilization of sucrose from the leaf. Whether the altered photochemical and biochemical events occurred simultaneously and/or to the same degree to lead to the observed responses remains equivocal.  相似文献   

2.
Six genes of the Arabidopsis thaliana monosaccharide transporter-like (MST-like) superfamily share significant homology with polyol transporter genes previously identified in plants translocating polyols (mannitol or sorbitol) in their phloem (celery [Apium graveolens], common plantain [Plantago major], or sour cherry [Prunus cerasus]). The physiological role and the functional properties of this group of proteins were unclear in Arabidopsis, which translocates sucrose and small amounts of raffinose rather than polyols. Here, we describe POLYOL TRANSPORTER5 (AtPLT5), the first member of this subgroup of Arabidopsis MST-like transporters. Transient expression of an AtPLT5–green fluorescent protein fusion in plant cells and functional analyses of the AtPLT5 protein in yeast and Xenopus oocytes demonstrate that AtPLT5 is located in the plasma membrane and characterize this protein as a broad-spectrum H+-symporter for linear polyols, such as sorbitol, xylitol, erythritol, or glycerol. Unexpectedly, however, AtPLT5 catalyzes also the transport of the cyclic polyol myo-inositol and of different hexoses and pentoses, including ribose, a sugar that is not transported by any of the previously characterized plant sugar transporters. RT-PCR analyses and AtPLT5 promoter-reporter gene plants revealed that AtPLT5 is most strongly expressed in Arabidopsis roots, but also in the vascular tissue of leaves and in specific floral organs. The potential physiological role of AtPLT5 is discussed.  相似文献   

3.
Sorbitol is a major photosynthetic product and a major phloem-translocated component in Rosaceae (e.g. apple, pear, peach, and cherry). We isolated the three cDNAs, MdSOT3, MdSOT4, and MdSOT5 from apple (Malus domestica) source leaves, which are homologous to plant polyol transporters. Yeasts transformed with the MdSOTs took up sorbitol significantly. MdSOT3- and MdSOT5-dependent sorbitol uptake was strongly inhibited by xylitol and myo-inositol, but not or only weakly by mannitol and dulcitol. Apparent K(m) values of MdSOT3 and MdSOT5 for sorbitol were estimated to be 0.71 mM and 3.2 mM, respectively. The protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), strongly inhibited the sorbitol transport. MdSOT3 was expressed specifically in source leaves, whereas MdSOT4 and MdSOT5 were expressed in source leaves and also in some sink organs. MdSOT4 and MdSOT5 expressions were highest in flowers. Fruits showed no or only weak MdSOT expression. Although MdSOT4 and MdSOT5 were also expressed in immature leaves, MdSOT expressions increased with leaf maturation. In addition, in situ hybridization revealed that all MdSOTs were expressed to high levels in phloem of minor veins in source leaves. These results suggest that these MdSOTs are involved in sorbitol loading in Rosaceae.  相似文献   

4.
5.
The western cherry fruit fly, Rhagoletis indifferens Curran, infests introduced, domesticated sweet [Prunus avium (L.) L.], and tart cherries (Prunus cerasus L.) as well as native bitter cherry, Prunus emarginata (Douglas) Eaton. Bitter cherries are smaller than sweet and tart cherries and this could affect various life history traits of flies. The objectives of the current study were to determine 1) if body size and egg loads of flies infesting sweet, tart, and bitter cherries differ from one another; and 2) if any observed body size differences are genetically based or caused by the host fruit environment. Pupae and adults of both sexes reared from larval-infested sweet and tart cherries collected in Washington and Montana were larger than those reared from bitter cherries. In addition, flies of both sexes caught on traps in sweet and tart cherry trees were larger than those caught in bitter cherry trees and females trapped from sweet and tart cherry trees had 54.0-98.8% more eggs. The progeny of flies from naturally-infested sweet and bitter cherries reared for one generation in the laboratory on sweet cherry did not differ in size. The same also was true for progeny of sweet and bitter cherry flies reared in the field on bitter cherry. The results suggest that the larger body sizes of flies from sweet and tart cherries than bitter cherries in the field are caused by host fruit and not genetic factors.  相似文献   

6.
In apple (Malus domestica Borkh.) sorbitol is the primary product of photosynthesis, the major translocated form of carbon, and a common fruit constituent and storage compound. Previous work on sorbitol metabolism has revealed a NADPH-dependent aldose 6-phosphate reductase (A6PR) in green tissues, and a NAD-dependent sorbitol dehydrogenase in nongreen tissues. Results here show a decrease in sorbitol dehydrogenase activity and an increase in A6PR activity as leaves developing in the spring undergo the transition from sink to source. Sorbitol dehydrogenase activity reached a minimum as A6PR peaked. These changes were related to increases in leaf carbohydrate levels, especially sorbitol, and to increases in rates of net photosynthesis. Studies conducted in the autumn on senescing leaves also showed changes in enzyme activites, leaf carbohydrate levels, and photosynthesis. At this time, however, sorbitol dehydrogenase increased in specific activity, whereas A6PR activity, leaf carbohydrates, and photosynthetic rates all decreased substantially. Other experiments showed differences in the ability of young and mature leaves to metabolize sorbitol and in the distribution of sorbitol enzymes in leaves at transitional developmental stages. The results suggest that sorbitol metabolism in apple is tightly controlled and may be related to mechanisms regulating partitioning or source and sink activity.  相似文献   

7.
果实中糖的运输、代谢与积累及其调控   总被引:42,自引:0,他引:42  
叶片光合产物向果实运输的主要形态是蔗糖,但在木本蔷薇科果树中,光合产物的主要运输形态为山梨醇.糖从质外体空间跨膜运入共质体的过程由糖运输蛋白介导,而糖运输蛋白的基因表达伴随着果实糖的积累而增强.蔗糖代谢酶参与了细胞内外4个与糖运输有关的无效循环.己糖代谢抑制是果实糖快速积累的前提.在木本蔷薇科果实中,蔗糖代谢酶活力仍非常活跃,表明蔗糖可能与山梨醇在果实生长发育中都起重要的作用.糖作为信号分子,调节了承担糖运输与代谢的基因的表达.自然环境因子和栽培措施能有效调控糖运输、代谢与积累.反义抑制Ivr基因表达能提高番茄果实含糖量的实验结果表明遗传工程调控糖积累的潜力.阐明糖信号与其它信号互作对糖运输与代谢的调控机制是今后研究的重点.  相似文献   

8.
9.
Chloroplast inheritance and DNA variation in sweet, sour, and ground cherry   总被引:1,自引:0,他引:1  
Sour cherry (Prunus cerasus L.) is an allotetraploid and both sweet cherry (P avium L.) and ground cherry (P. fruticosa Pall.) are the proposed progenitor species. The study investigated the maternal species origin(s) of sour cherry using chloroplast DNA (cpDNA) markers and a diverse set of 22 sweet, 25 sour, and 7 ground cherry selections. Two cpDNA restriction fragment length polymorphisms (RFLPs) and one polymerase chain reaction (PCR) fragment length polymorphism were identified among the 54 selections. The three polymorphisms considered together resolved four haplotypes. Analysis of sour cherry progeny indicated that the chloroplast genome is maternally inherited and therefore appropriate to use in determining maternal phylogenetic relationships. Ground cherry was found more likely than sweet cherry to be the maternal progenitor species of sour cherry since 23 of 25 of the sour cherry selections had the most prevalent ground cherry haplotype. However, the other two sour cherry selections tested had the most prevalent sweet cherry haplotype and a wild French sweet cherry selection had the most prevalent ground cherry haplotype. The results underscore the importance of using diverse Prunus germplasm to investigate phylogenetic relationships.  相似文献   

10.
Tetraploid sour cherry (Prunus cerasus L.) exhibits gametophytic self-incompatibility (GSI) whereby the specificity of self-pollen rejection is controlled by alleles of the stylar and pollen specificity genes, S-RNase and SFB (S haplotype-specific F-box protein gene), respectively. As sour cherry selections can be either self-compatible (SC) or self-incompatible (SI), polyploidy per se does not result in SC. Instead the genotype-dependent loss of SI in sour cherry is due to the accumulation of non-functional S-haplotypes. The presence of two or more non-functional S-haplotypes within sour cherry 2x pollen renders that pollen SC. Two new S-haplotypes from sour cherry, S(33) and S(34), that are presumed to be contributed by the P. fruticosa species parent, the complete S-RNase and SFB sequences of a third S-haplotype, S(35), plus the presence of two previously identified sweet cherry S-haplotypes, S(14) and S(16) are described here. Genetic segregation data demonstrated that the S(16)-, S(33)-, S(34)-, and S(35)-haplotypes present in sour cherry are fully functional. This result is consistent with our previous finding that 'hetero-allelic' pollen is incompatible in sour cherry. Phylogenetic analyses of the SFB and S-RNase sequences from available Prunus species reveal that the relationships among S-haplotypes show no correspondence to known organismal relationships at any taxonomic level within Prunus, indicating that polymorphisms at the S-locus have been maintained throughout the evolution of the genus. Furthermore, the phylogenetic relationships among SFB sequences are generally incongruent with those among S-RNase sequences for the same S-haplotypes. Hypotheses compatible with these results are discussed.  相似文献   

11.
Potassium (K+) plays a pivotal role in fruit quality improvement. Four K2O levels of 0 (K0), 150 (K1), 300 (K2), and 450 (K3) kg ha?1 were applied to pear (Pyrus bretschneideri Rehd) trees at different growth stages. The results showed that K increased individual fruit weight and yield, leading to a higher yield (16.7% on average) than K0. The leaf K concentration and sorbitol concentration in leaves and fruit were significantly increased by all four K2O levels. At all stages of development, the expression of sorbitol-6-phosphate dehydrogenase (PbS6PDH1), sorbitol dehydrogenase (PbSDH4 and PbSDH14), and sorbitol transporter (PbSOT9) genes in leaves was up-regulated by K, whereas PbS6PDH3, PbSDH2, PbSDH13, and PbSOT22 were down-regulated. During the young fruit stage, the expression of PbSDH2 and PbSDH4 in fruit was up-regulated by K, whereas at maturity, it was the opposite. Meanwhile, the up-regulation of PbS6PDH3, PbSDH12, PbSDH13, PbSDH14, and PbSOT22 in fruit was promoted by K from the enlargement stage II to the maturity stage, indicating that sorbitol assimilation and transport between source (leaf) and sink (fruit) were regulated by K. In conclusion, K regulated expression of key genes involved in sorbitol metabolism in both source and sink, leading to sugar accumulation for the improvement of fruit quality.  相似文献   

12.
Katherine C. Larson 《Oecologia》1998,115(1-2):161-166
The impact of herbivores on host plant photosynthetic rates can range from negative to positive. While defoliation by chewing herbivores can result in increases in photosynthesis followed by compensatory growth, other herbivore guilds, such as mesophyll feeders which damage photosynthetic leaf tissues, almost always reduce photosynthetic rates. The impact of galling herbivores on host photosynthesis has rarely been examined, even though the limited tissue disruption and the strong metabolic sinks induced by gall-forming herbivores could potentially stimulate photosynthetic rates. I examined the hypothesis that gall-inducing herbivores could stimulate photosynthesis in neighboring leaves in response to increased sink-demand by the gall. To address this hypothesis, I measured photosynthetic rates of galled leaves or leaflets, neighboring ungalled leaves or leaflets, and ungalled leaves or leaflets on ungalled shoots on naturally growing Prunus serotina (wild cherry) and Rhus glabra (smooth sumac). The leaves of wild cherry were galled by an eriophyid mite, Phytoptus cerasicrumena; the leaves of smooth sumac by an aphid, Melaphis rhois. I found that both species reduced the photosynthetic rates of the leaves or leaflets they galled from 24 to 52% compared to ungalled leaves in ungalled areas of the plants. Contrary to my hypothesis, mite galls on wild cherry reduced photosynthesis of neighboring ungalled leaves within the same shoot by 24% compared to ungalled leaves on gall-free shoots. Aphid galls on sumac leaflets did not significantly alter the photosynthetic rates of neighboring leaflets relative to ungalled leaves on ungalled shoots. Although gall-formers would appear to have the potential to stimulate photosynthesis in the same manner as defoliating herbivores, i.e., by increasing sink demand relative to source supply, I found only negative impacts on photosynthesis. I suggest that sink competition for nutrients between developing leaves and growing gall tissue may account for the negative impacts of sink-inducing gallers on photosynthesis. Received: 17 October 1997 / Accepted: 2 February 1998  相似文献   

13.
NII  N. 《Annals of botany》1997,79(2):139-144
Changes in contents of nonstructural carbohydrates in leaves,as well as some characteristics of leaves before and after fruitremoval, were investigated in potted peach (Prunus persica L.)trees. Leaf area and dry mass per unit leaf area (SLW) at thefruit-maturation stage decreased with increasing numbers ofpeaches per tree, whereas the chlorophyll content per unit areain leaves of fruiting trees increased. The chlorophyll contentdecreased more rapidly upon removal of fruit than that in leavesof fruiting trees. The starch content per unit dry mass in leavesof fruiting trees at the fruit-maturation stage was lower thanthat in leaves of non-fruiting trees. Starch accumulated significantlyin leaves within 1 d of removal of fruit during the fruit-maturationstage and continued to increase thereafter. The accumulationof starch after removal of fruit occurred more rapidly thanthe decrease in chlorophyll content. Reducing and non-reducingsugars (total sugars) per unit dry mass in the leaves were higherin fruiting trees than in non-fruiting trees. After fruit removal,the total sugar content of leaves increased temporarily andthen gradually decreased. The sorbitol content per unit freshmass in leaves of fruiting trees during the fruit-maturationstage was slightly higher than that in leaves of non-fruitingtrees. One day after removal of fruit, the sorbitol contentincreased in parallel with the accumulation of starch and remainedhigh. The sucrose content of leaves did not change markedlyupon removal of fruit. Prunus persica L.; peach leaves; nonstructural carbohydrate; starch and sorbitol; fruit removal  相似文献   

14.
Several plant families generate polyols, the reduced form of monosaccharides, as one of their primary photosynthetic products. Together with sucrose (Suc) or raffinose, these polyols are used for long-distance allocation of photosynthetically fixed carbon in the phloem. Many species from these families accumulate these polyols under salt or drought stress, and the underlying regulation of polyol biosynthetic or oxidizing enzymes has been studied in detail. Here, we present results on the differential regulation of genes that encode transport proteins involved in phloem loading with sorbitol and Suc under salt stress. In the Suc- and sorbitol-translocating species Plantago major, the mRNA levels of the vascular sorbitol transporters PmPLT1 and PmPLT2 are rapidly up-regulated in response to salt treatment. In contrast, mRNA levels for the phloem Suc transporter PmSUC2 stay constant during the initial phase of salt treatment and are down-regulated after 24 h of salt stress. This adaptation in phloem loading is paralleled by a down-regulation of mRNA levels for a predicted sorbitol dehydrogenase (PmSDH1) in the entire leaf and of mRNA levels for a predicted Suc phosphate synthase (PmSPS1) in the vasculature. Analyses of Suc and sorbitol concentrations in leaves, in enriched vascular tissue, and in phloem exudates of detached leaves revealed an accumulation of sorbitol and, to a lesser extent, of Suc within the leaves of salt-stressed plants, a reduced rate of phloem sap exudation after NaCl treatment, and an increased sorbitol-to-Suc ratio within the phloem sap. Thus, the up-regulation of PmPLT1 and PmPLT2 expression upon salt stress results in a preferred loading of sorbitol into the phloem of P. major.  相似文献   

15.
Diurnal and seasonal net photosynthetic rates (Pn) of sour cherry were determined. Leaf Pn was not significantly affected by shoot excision. Under constant environmental conditions (PFD, 1200 μmol m-2s-1; temp. 25; relative humidity, 80–90%) there was no significant diurnal fluctuation in Pn for individual leaves. However, there was a pronounced fluctuation in Pn for whole trees measured under constant temperature but natural variation in sunlight from sunrise to sunset. Maximum Pn occurred before solar noon, remained constant for 1–2 hr, then declined. Photosynthetic rate of recently expanded leaves fluctuated through out the season but, in general, was greatest in the spring as leaves expanded, reached a peak, remained stable for several weeks, then gradually declined. The Pn of leaves on terminal shoots was not significantly different from the Pn of leaves on spurs of the same physiological age. The presence of fruit did not have a consistent effect on the Pn of sour cherry leaves.  相似文献   

16.
Boron is generally considered to be phloem immobile or to haveonly limited phloem mobility in higher plants. Evidence suggests,however, that B may be mobile in some species within thePyrus,Malus andPrunusgenera. These genera utilize sorbitol as a primarytranslocated photosynthate and it has been clearly demonstratedthat B forms stable complexes with sorbitolin vitro.In the researchpresented here we demonstrate, further, that B is freely phloemmobile inPyrus, MalusandPrunusspecies and suggest that thisis mediated by the formation and transport of B-sorbitol complexes. The pattern of B distribution within shoot organs and the translocationof foliar-applied, isotopically-enriched10B was studied in sixtree species. Results demonstrate that in species in which sorbitolis a major sugar (sorbitol-rich), B is freely mobile while inspecies that produce little or no sorbitol (sorbitol-poor) Bis largely immobile. The sorbitol-rich species used here werealmond [Prunus amygdalusB. syn.P. dulcis(Mill.)], apple (MalusdomesticaB.) and nectarine (Prunus persicaL. B. var.nectarinaM.),sorbitol-poor species included fig (Ficus caricaL.), pistachio(Pistacia veraL.) and walnut (Juglans regiaL.). In sorbitol-richspecies foliar applied10B was transported from the treated leavesto adjacent fruit and specifically to the fruit tissues (hull,shell or kernel) that developed during the experimental period.Whereas, foliar-applied10B was rapidly translocated out of leaves,only a small percentage of the11B present in the leaf at thetime of foliar application was retranslocated. In sorbitol-richspecies, B concentrations differed only slightly between oldand young leaves while fruit tissue had significantly greaterB concentrations than leaves. In contrast, sorbitol-poor specieshad significantly higher B concentrations in older leaves thanyoung leaves while fruit tissue had the lowest B concentration.This occurred irrespective the source of plant B (soil, solutionor foliar-applied). In a subsequent experiment the growth ofapple trees in solutions free of applied B was maintained solelyby foliar applications of B to mature leaves. These resultsindicate that B is mobile in species that produce significantamounts of sorbitol. We propose that the mobility of B in thesespecies is mediated by the formation of B-sorbitol complexes. Almond; Prunus amygdalus ; apple; Malus domestica; nectarine; Prunus persica; fig; Ficus carica; pistachio; Pistacia vera; walnut; Juglans regia; boron; phloem mobility; deficiency; toxicity; inductively coupled plasma-mass; spectrometer  相似文献   

17.
Experiments were conducted in controlled growth chambers to evaluate how increases in CO2 concentration ([CO2]) affected carbon metabolism and partitioning into sorbitol, sucrose, and starch in various ages of apple leaves. Apple plants (Malus domestica), 1 year old, were exposed to [CO2] of 200, 360, 700, 1000, and 1600 μl l−1 up to 8 days. Six groups of leaves (counted from the shoot apex): leaves 1–5 (sink), 6–7 (sink to source transition), 8–9 (sink to source transition), 10–11 (nearly-matured source), 21–22 (mid-age source), and 30–32 (aged source), were sampled at 1, 2, 4, and 8 days after [CO2] treatments for carbohydrate analysis. Increases in [CO2] from a sub-ambient (200 μl l−1) to an ambient level (360 μl l−1) significantly increased the concentrations of sorbitol, sucrose, glucose, and fructose tested in all ages of leaves. Continuous increase in [CO2] from ambient to super-ambient levels up to 1600 μl l−1 also increased sorbitol concentration by ≈50% in source leaves, but not in sink and sink to source transition leaves. Increases in [CO2] from 360 to 1600 μl l−1, however, had little effect on sucrose content in all ages of leaves. Starch concentrations increased in all ages of leaves as [CO2] increased. Rapid starch increases (e.g. 5-, 6-, 20-, and 50-fold increases for leaf groups 1–5, 6–7, 10–11, and 21–22, respectively) occurred from 700 to 1600 μl l−1 [CO2] during which increases in sorbitol concentration either ceased or slowed down. Our results indicate that changes in carbohydrates were much more responsive to CO2 enrichment in source leaves than in sink and sink to source transition leaves. Carbon partitioning was favored into starch and sorbitol over sucrose in all ages of leaves when [CO2] was increased from 200 to 700 μl l−1, and was favored into starch over sorbitol from 700 to 1600 μl l−1 [CO2].  相似文献   

18.
The effect of fruiting on carbon fixation and retention in leaves was monitored by measuring net photosynthesis (Pn) and total non-structural carbohydrates (TNC) on a seasonal basis on mature fruiting and non-fruiting sweet cherry trees ( Prunus avium L. cv. Bing). Pn was also measured diurnally during stages II and III of fruit development. Pn rates increased to between 18 and 20 mg CO2 dm-2 h-1 during stage II of fruit development and were maintained until harvest. Diurnally, Pn increased in the morning to 20 mg CO2 dm-2 h-1 and this rate continued until sunset. Leaf carbohydrate levels decreased in both fruiting and non-fruiting trees beginning at the equivalent of stage II of fruit growth. Carbohydrates were lower in leaves and woody portions of current, 1- and 2-year-old shoots of fruiting trees. Although differences were found in levels of non-structural carbohydrates, no differences in Pn were found in fruiting vs non-fruiting plants on either a seasonal or a diurnal basis. Pn rates in swet cherry in the field were primarily affected by ontogeny and environment and not by sink strength.  相似文献   

19.
Sorbitol, a major end-product of photosynthesis in many species of the Rosaceae family, accumulates in response to abiotic stressors. However, the relationship that arises between the expression of sorbitol transporters and sorbitol accumulation under abiotic stress remains unclear. In this study, micropropagated ‘Fuji’ apple plants (Malus domestica Borkh. ‘Fuji’) were exposed to two varying degrees of osmotic stress and compared relative to an unstressed control. The osmotic stress was generated by adding PEG 6000 into full-strength Hoagland solution and adjusted the osmotic potential to either −0.75 MPa (mild drought stress [MIS]) or −1.5 MPa (severe drought stress [SES]). Analysis of sorbitol levels via high performance liquid chromatography (HPLC) showed that the sorbitol concentration was elevated in roots, phloem tissues and leaves in both the MIS and SES treatments compared to controls for the entire duration of the experiment. Three cDNA sequences, encoding sorbitol transporters (MdSOT3, MdSOT4 and MdSOT5), were isolated from leaves. Real-time quantitative PCR (RT-qPCR) data suggests that the expression levels of MdSOT3 and MdSOT5 were higher under MIS and SES in roots, phloem tissues and leaves compared to unstressed controls. The average mRNA levels of MdSOT4 in phloem tissues declined under both drought treatments (with the exception being at 2 h of SES). In roots and leaves under SES, mRNA production was increased. These results indicate that the up-regulation of MdSOT3 and MdSOT5 expression is consistent with the accumulation of sorbitol under conditions of osmotic stress in apple plants. They enhanced drought tolerance in vegetative tissues. Increased MdSOT4 mRNA enhanced drought tolerance under SES.  相似文献   

20.
Beyer M  Lau S  Knoche M 《Planta》2005,220(3):474-485
Water uptake and transpiration were studied through the surface of intact sweet cherry (Prunus avium L.) fruit, exocarp segments (ES) and cuticular membranes (CM) excised from the cheek of sweet cherry fruit and astomatous CM isolated from Schefflera arboricola (Hayata) Hayata, Citrus aurantium L., and Stephanotis floribunda Brongn. leaves or from Lycopersicon esculentum Mill. and Capsicum annuum L. var. annuum Fasciculatum Group fruit. ES and CM were mounted in diffusion cells. Water (deionized) uptake into intact sweet cherry fruit, through ES or CM interfacing water as a donor and a polyethyleneglycol (PEG 6000, osmotic pressure 2.83 MPa)-containing receiver was determined gravimetrically. Transpiration was quantified by monitoring weight loss of a PEG 6000-containing donor (2.83 MPa) against dry silica as a receiver. The permeability coefficients for osmotic water uptake and transpiration were calculated from the amount of water taken up or transpired per unit surface area and time, and the driving force for transport. Permeability during osmotic water uptake was markedly higher than during transpiration in intact sweet cherry fruit (40.2-fold), excised ES of sweet cherry fruit (12.5- to 53.7-fold) and isolated astomatous fruit and leaf CM of a range of species (on average 23.0-fold). Partitioning water transport into stomatal and cuticular components revealed that permeability of the sweet cherry fruit cuticle for water uptake was 11.9-fold higher and that of stomata 56.8-fold higher than the respective permeability during transpiration. Increasing water vapor activity in the receiver from 0 to 1 increased permeability during transpiration across isolated sweet cherry fruit CM about 2.1-fold. Permeability for vapor uptake from saturated water vapor into a PEG 6000 receiver solution was markedly lower than from liquid water, but of similar magnitude to the permeability during self-diffusion of 3H2O in the absence of osmotica. The energy of activation for self-diffusion of water across ES or CM was higher than for osmotic water uptake and decreased with increasing stomatal density. The data indicate that viscous flow along an aqueous continuum across the sweet cherry fruit exocarp and across the astomatous CM of selected species accounted for the higher permeability during water uptake as compared to self-diffusion or transpiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号