首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A gas-liquid chromatographic-mass spectrometric (GLC-MS) method was applied to the detection of 3-deoxy-d-manno-2-octulosonic acid (Kdo), a constituent of bacterial lipopolysaccharide (LPS, endotoxin). Samples containing LPS were dried, methanolyzed with 2 M HCl in methanol at 60 degrees C for 1 h and acetylated with acetic anhydride and pyridine (1:1, v/v) solution at 100 degrees C for 30 min, then the products were analyzed by GLC-MS or GLC-MSMS. Four acetylated methylglycoside methyl ester derivatives of Kdo are formed in these conditions, namely one with pyranose ring (Kdo1), two derivatives in the furanose form (Kdo2 and 3) and one derivative of anhydro Kdo (Kdo4), as results from their mass fragmentation patterns. Synthetic Kdo produced mainly Kdo4 derivative, whereas Kdo1 of pyranose ring shape was the predominating derivative formed from LPS. The ion fragment of m/z 375 was selected for the specific detection of this Kdo1 derivative, which might be applied for the endotoxin determination. That approach was used for the analysis of preparations of bacteria, bacteriophages and samples of animal sera. In order to ensure the removal of phosphate substitutions from Kdo, methanolyzed samples can be treated with alkaline phosphatase (2.6 U, pH 9.2, 37 degrees C, 15 min), what was elaborated on Vibrio LPS preparation.  相似文献   

2.
A structural investigation has been carried out on the carbohydrate backbone of Vibrio parahaemolyticus O2 lipopolysaccharides (LPS) isolated by dephosphorylation, O-deacylation and N-deacylation. The carbohydrate backbone is a short-chain saccharide consisting of nine monosaccharide units i.e., 1 mol each of D-galactose (Gal), D-glucose (Glc), D-glucuronic acid (GlcA), L-glycero-D-manno-heptose (L,D-Hep), D-glycero-D-manno-heptose (D,D-Hep), 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (NonlA), and 2 mol of 2-amino-2-deoxy-D-glucose (D-glucosamine, GlcN). Based on the data obtained by NMR spectroscopy, fast-atom bombardment mass spectrometry (FABMS) and methylation analysis, a structure was elucidated for the carbohydrate backbone of O2 LPS. In the native O2 LPS, the 2-amino-2-deoxy-D-glucitol (GlcN-ol) at the reducing end of the nonasaccharide is present as GlcN. The lipid A backbone is a beta-D-GlcN-(1-->6)-D-GlcN disaccharide as is the case for many Gram-negative bacterial LPS. The lipid A proximal Kdo is substituted by the distal part of the carbohydrate chain at position-5. In the native O2 LPS, D-galacturonic acid, which is liberated from LPS by mild acid treatment or by dephosphorylation in hydrofluoric acid, is present although its binding position is unknown at present.  相似文献   

3.
The structure of the lipopolysaccharide from the Pasteurella multocida strain VP161 was elucidated. The lipopolysaccharide was subjected to a variety of degradative procedures. The structures of the purified products were established by monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structures for the lipopolysaccharides were determined on the basis of the combined data from these experiments. [structure: see text]. Based on the NMR data, all sugars were found in pyranose ring forms, and Kdo is 2-keto-3-deoxy-octulosonic acid, L-alpha-D-Hep is L-glycero-D-manno-heptose, PPEtn is pyrophosphoethanolamine and PCho is phosphocholine. Intriguingly, when the O- and fully deacylated LPS was examined, it was evident that there was variability in the arrangement of the Kdo region of the molecule. Glycoforms were found with a Kdo-P moiety, as well as glycoforms elaborating a Kdo-Kdo group. Furthermore the Glc II residue was not attached to Hep I when two Kdo residues were present, but it was attached when the Kdo-P arrangement was elaborated, suggesting a biosynthetic incompatibility due to either steric hindrance or an inappropriate acceptor conformation. This variation in the Kdo region of the LPS was also observed in several other Pasteurella multocida strains investigated including the genome strain Pm70.  相似文献   

4.
The lipid A domain anchors lipopolysaccharide (LPS) to the outer membrane and is typically a disaccharide of glucosamine that is both acylated and phosphorylated. The core and O-antigen carbohydrate domains are linked to the lipid A moiety through the eight-carbon sugar 3-deoxy-D-manno-octulosonic acid known as Kdo. Helicobacter pylori LPS has been characterized as having a single Kdo residue attached to lipid A, predicting in vivo a monofunctional Kdo transferase (WaaA). However, using an in vitro assay system we demonstrate that H. pylori WaaA is a bifunctional enzyme transferring two Kdo sugars to the tetra-acylated lipid A precursor lipid IV(A). In the present work we report the discovery of a Kdo hydrolase in membranes of H. pylori capable of removing the outer Kdo sugar from Kdo2-lipid A. Enzymatic removal of the Kdo group was dependent upon prior removal of the 1-phosphate group from the lipid A domain, and mass spectrometric analysis of the reaction product confirmed the enzymatic removal of a single Kdo residue by the Kdo-trimming enzyme. This is the first characterization of a Kdo hydrolase involved in the modification of gram-negative bacterial LPS.  相似文献   

5.
In contrast to cholera toxin (CT), which is secreted solubly by Vibrio cholerae across the outer membrane, heat-labile enterotoxin (LT) is retained on the surface of enterotoxigenic Escherichia coli (ETEC) via an interaction with lipopolysaccharide (LPS). We examined the nature of the association between LT and LPS. Soluble LT binds to the surface of LPS deep-rough biosynthesis mutants but not to lipid A, indicating that only the Kdo (3-deoxy-d-manno-octulosonic acid) core is required for binding. Although capable of binding truncated LPS and Kdo, LT has a higher affinity for longer, more complete LPS species. A putative LPS binding pocket is proposed based on the crystal structure of the toxin. The ability to bind LPS and remain associated with the bacterial surface is not unique to LT, as CT also binds to E. coli LPS. However, neither LT nor CT is capable of binding to the surface of Vibrio. The core structures of Vibrio and E. coli LPS differ in that Vibrio contains a phosphorylated single Kdo-lipid A, and E. coli LPS contains unphosphorylated Kdo2-lipid A. We determined that the phosphate group on the Kdo core of Vibrio LPS prevents CT from binding, resulting in the secretion of soluble toxin. Because LT binds E. coli LPS, it remains associated with the extracellular bacterial surface and is released in association with outer membrane vesicles. We propose that difference in the extracellular fates of LT and CT contribute to the differences in disease caused by ETEC and Vibrio cholerae.  相似文献   

6.
Lipopolysaccharides constitute the outer leaflet of the outer membrane of Gram-negative bacteria and are therefore essential for cell growth and viability. The heptosyltransferase WaaC is a glycosyltransferase (GT) involved in the synthesis of the inner core region of LPS. It catalyzes the addition of the first L-glycero-D-manno-heptose (heptose) molecule to one 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue of the Kdo2-lipid A molecule. Heptose is an essential component of the LPS core domain; its absence results in a truncated lipopolysaccharide associated with the deep-rough phenotype causing a greater susceptibility to antibiotic and an attenuated virulence for pathogenic Gram-negative bacteria. Thus, WaaC represents a promising target in antibacterial drug design. Here, we report the structure of WaaC from the Escherichia coli pathogenic strain RS218 alone at 1.9 A resolution, and in complex with either ADP or the non-cleavable analog ADP-2-deoxy-2-fluoro-heptose of the sugar donor at 2.4 A resolution. WaaC adopts the GT-B fold in two domains, characteristic of one glycosyltransferase structural superfamily. The comparison of the three different structures shows that WaaC does not undergo a domain rotation, characteristic of the GT-B family, upon substrate binding, but allows the substrate analog and the reaction product to adopt remarkably distinct conformations inside the active site. In addition, both binary complexes offer a close view of the donor subsite and, together with results from site-directed mutagenesis studies, provide evidence for a model of the catalytic mechanism.  相似文献   

7.
A 2-kb region that complements the Tn5-derived lipopolysaccharide (LPS) rough mutant Rhizobium leguminosarum RU301 was sequenced. Two open reading frames (ORFs) were identified. The first ORF (lpcA) is homologous to a family of bacterial sugar transferases involved in LPS core tetrasaccharide biosynthesis. ORF2 (lpcB), in which Tn5 transposed, has no significant homology to any DNA in the GenBank-EMBL databases. Chemical characterization of LPS produced by strain RU301 demonstrated that the 3-deoxy-D-manno-2-octulosonic acid (Kdo) residue which normally attaches the core tetrasaccharide to the O chain was missing, suggesting that IpcB may encode a CMP-Kdo:LPS Kdo transferase.  相似文献   

8.
To explore the molecular basis of antigen recognition by germline antibodies, we have determined to high resolution the structures of the near-germline monoclonal antibody S25-2 in complex with seven distinct carbohydrate antigens based on the bacterial sugar 3-deoxy-α-d-manno-oct-2-ulosonic acid (Kdo). In contrast to previous findings, the inherited germline Kdo monosaccharide binding site is not restricted to this bacterial sugar but is able to accommodate an array of substitutions and chemical modifications of Kdo, including naturally occurring antigens containing the related monosaccharide d-glycero-α-d-talo-oct-2-ulosonic acid as well as nonterminal Kdo residues. However, we show by surface plasmon resonance and ELISA how antibody S25-2 specificity is so dependent on the context in which the antigen is presented that a free disaccharide displays strong binding while the same lipid-A-bound disaccharide does not bind. These structures provide insight into how inherited germline genes code for immunoglobulins of limited flexibility that are capable of binding a range of epitopes from which affinity-matured antibodies are generated.  相似文献   

9.
The structure of the lipopolysaccharide core of Vibrio vulnificus type strain 27562 is presented. LPS hydrolysis gave two oligosaccharides, OS-1 and OS-2, as well as lipid A. NMR spectroscopic data corresponded to the presence of one Kdo residue, one β-glucopyranose, three heptoses, one glyceric acid, one acetate, three PEtN, and one 5,7-diacylamido-3,5,7,9-tetradeoxynonulosonic acid residue (pseudaminic acid, Pse) in OS1. OS2 differed form OS 1 by the absence of glyceric acid, acetate, and Pse residues. Lipid A was analyzed for fatty acid composition and the following fatty acids were found: C14:0, C12:0-3OH, C16:0, C16:1, C14:0-3OH, C18:0, C18:1 in a ratio of 1:3:3:1:2.5:0.6:0.8.  相似文献   

10.
From the lipopolysaccharide (LPS) fraction of the plant-pathogenic bacterium Burkholderia caryophylli, the linkage between O-specific caryan and core region was characterised. The LPS fraction was first treated with 48% aqueous HF at 4 degrees C and successively with 1% acetic acid at 100 degrees C. A main oligosaccharide representing the carbohydrate backbone of the core region and a portion of the caryan (three unit of caryose) was isolated by high-performance anion-exchange chromatography. Compositional and methylation analyses, matrix-assisted laser desorption/ionisation mass spectrometry and 2D NMR spectroscopy identified the structure: [carbohydrate structure: see text]. The above residues are alpha-linked pyranose rings, if not stated otherwise. Hep is L-glycero-D-manno-heptose, Car is 4,8-cyclo-3,9-dideoxy-L-erythro-D-ido-nonose and Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid. This finding indicates that QuiNAc residue is the primer monosaccharide, which connects the core oligosaccharide to caryan O-chain.  相似文献   

11.
Mouse mAb were produced against the deep rough strains Salmonella minnesota R 595, Salmonella typhimurium SL 1102, and Escherichia coli D21f2 and screened by enzyme immunoassay against LPS of several chemotypes. Five antibodies were selected for their ability to bind to chemotype deep rough (Re) LPS which has two 3-deoxy-D-manno-octulosonic acid (Kdo) residues in its nonreducing end. Structurally verified oligosaccharides isolated from rough LPS and synthetic analogues of Kdo were used in an enzyme immunoassay inhibition test to determine the binding epitopes for the antibodies. According to their specificities, the antibodies could be divided into three groups. For two of the groups, the recognized structure was the alpha-Kdo (2----4) Kdo disaccharide and for one group the alpha-Kdo (2----4) alpha-Kdo beta-D-GlcN (1----6) alpha-D-GlcN tetrasaccharide, representing a partial structure of the Re LPS. Inhibition studies with synthetic analogues of Kdo showed that the anomeric configuration and the free carboxyl group of the Kdo residue are important features for antibody binding. Changes in the C-1 to C-6 region of the Kdo molecule do influence the antibody recognition considerably whereas changes in the exocyclic C-7 to C-8 region are of secondary importance. Calculation of the conformation of the inner core region showed that the alpha-Kdo (2----4) alpha-Kdo (2---- disaccharide was free and accessible in chemotype Re LPS, but that linkage of a L-glycero-D-manno-heptose to O-5 of the subterminal Kdo both changes the conformation of the Kdo-disaccharide and covers it thereby making it less accessible.  相似文献   

12.
The waaA gene encoding the essential, lipopolysaccharide (LPS)-specific 3-deoxy-Dmanno-oct-2-ulosonic acid (Kdo) transferase was inactivated in the chromosome of a heptosyltransferase I and II deficient Escherichia coli K-12 strain by insertion of gene expression cassettes encoding the waaA genes of Chlamydia trachomatis, Chlamydophila pneumoniae or Chlamydophila psittaci. The three chlamydial Kdo transferases were able to complement the knockout mutation without changing the growth or multiplication behaviour. The LPS of the mutants were serologically and structurally characterized in comparison to the LPS of the parent strain using compositional analyses, high performance anion exchange chromatography, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and specific monoclonal antibodies. The data show that chlamydial Kdo transferases can replace in E. coli K-12 the host's Kdo transferase and retain the product specificities described in their natural background. In addition, we unequivocally proved that WaaA from C. psittaci transfers predominantly four Kdo residues to lipid A, forming a branched tetrasaccharide with the structure alpha-Kdo-(2-->8)-[alpha-Kdo-(2-->4)]-alpha-Kdo-(2-->4)-alpha-Kdo.  相似文献   

13.
The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS.  相似文献   

14.
Helicobacter pylori produces a unique surface lipopolysaccharide (LPS) characterized by strikingly low endotoxicity that is thought to aid the organism in evading the host immune response. This reduction in endotoxicity is predicted to arise from the modification of the Kdo–lipid A domain of Helicobacter LPS by a series of membrane bound enzymes including a Kdo (3‐deoxy‐d ‐manno‐octulosonic acid) hydrolase responsible for the modification of the core oligosaccharide. Here, we report that Kdo hydrolase activity is dependent upon a putative two‐protein complex composed of proteins Hp0579 and Hp0580. Inactivation of Kdo hydrolase activity produced two phenotypes associated with cationic antimicrobial peptide resistance and O‐antigen expression. Kdo hydrolase mutants were highly sensitive to polymyxin B, which could be attributed to a defect in downstream modifications to the lipid A 4′‐phosphate group. Production of a fully extended O‐antigen was also diminished in a Kdo hydrolase mutant, with a consequent increase in core–lipid A. Finally, expression of O‐antigen Lewis X and Y epitopes, known to mimic glycoconjugates found on human tissues, was also affected. Taken together, we have demonstrated that loss of Kdo hydrolase activity affects all three domains of H. pylori LPS, thus highlighting its role in the maintenance of the bacterial surface.  相似文献   

15.
Abstract Structural analysis of the 2-keto-3-deoxyoctonate region of lipopolysaccharide (LPS) isolated from Porphyromonas (Bacteroides) gingivalis was carried out. The substitution of the polysaccharide portion on the KDO was determined by gas chromatography/mass spectrometry of the product obtained by sequential derivatization of the LPS, including dephosphorylation, permethylation, carboxyl reduction, partial hydrolysis, carbonyl reduction, complete hydrolysis and O -acetylation. It was revealed that the KDO carries the polysaccharide on its position C5 and is phosphorylated on either position C7 or C8, although its exact position is not determined. The structure of the KDO region of P. gingivalis LPS in Gram-negative bacterial LPS had not hitherto been elucidated.  相似文献   

16.
Reductive amination of 3-deoxy-D-manno-octulosonic acid (Kdo) with allylamine (AllN) or 2-(4-aminophenyl)ethylamine (APEA) yields epimer pairs of 2-N-allylamino and 2-N-[2-(4-aminophenyl)ethylamino]-2,3-dideoxy-D-glycero-D-galacto- and-2,3-dideoxy-D-glycero-D-talo-octonic acid. The yields were 50–60% due to reduction of Kdo to the respective polyols as side reaction products. Mass spectrometric analyses proved the amination derivatives to be the expected glycamines. Nuclear magnetic resonance (NMR) studies were performed on 2-N-allylamino-2,3-dideoxyoctonic acid which represents the chain terminus of allylaminated oligosaccharides derived from bacterial lipopolysaccharides (LPS) after acid hydrolysis and reductive allylamination.  相似文献   

17.
The lipopolysaccharide (LPS) core domain of Gram-negative bacteria plays an important role in outer membrane stability and host interactions. Little is known about the biochemical properties of the glycosyltransferases that assemble the LPS core. We now report the purification and characterization of the Rhizobium leguminosarum mannosyl transferase LpcC, which adds a mannose unit to the inner 3-deoxy-d-manno-octulosonic acid (Kdo) moiety of the LPS precursor, Kdo(2)-lipid IV(A). LpcC containing an N-terminal His(6) tag was assayed using GDP-mannose as the donor and Kdo(2)-[4'-(32)P]lipid IV(A) as the acceptor and was purified to near homogeneity. Sequencing of the N terminus confirmed that the purified enzyme is the lpcC gene product. Mild acid hydrolysis of the glycolipid generated in vitro by pure LpcC showed that the mannosylation occurs on the inner Kdo residue of Kdo(2)-[4'-(32)P]lipid IV(A). A lipid acceptor substrate containing two Kdo moieties is required by LpcC, since no activity is seen with lipid IV(A) or Kdo-lipid IV(A). The purified enzyme can use GDP-mannose or, to a lesser extent, ADP-mannose (both of which have the alpha-anomeric configuration) for the glycosylation of Kdo(2)-[4'-(32)P]lipid IV(A). Little or no activity is seen with ADP-glucose, UDP-glucose, UDP-GlcNAc, or UDP-galactose. A Salmonella typhimurium waaC mutant, which lacks the enzyme for incorporating the inner l-glycero-d-manno-heptose moiety of LPS, regains LPS with O-antigen when complemented with lpcC. An Escherichia coli heptose-less waaC-waaF deletion mutant expressing the R. leguminosarum lpcC gene likewise generates a hybrid LPS species consisting of Kdo(2)-lipid A plus a single mannose residue. Our results demonstrate that heterologous lpcC expression can be used to modify the structure of the Salmonella and E. coli LPS cores in living cells.  相似文献   

18.
Mass spectrometric analyses of lipopolysaccharide (LPS) from isogenic Escherichia coli strains with nonpolar mutations in the waa locus or overexpression of their cognate genes revealed that waaZ and waaS are the structural genes required for the incorporation of the third 3-deoxy-α-D-manno-oct-2-ulosonic acid (Kdo) linked to Kdo disaccharide and rhamnose, respectively. The incorporation of rhamnose requires prior sequential incorporation of the Kdo trisaccharide. The minimal in vivo lipid A-anchored core structure Kdo(2)Hep(2)Hex(2)P(1) in the LPS from ΔwaaO (lacking α-1,3-glucosyltransferase) could incorporate Kdo(3)Rha, without the overexpression of the waaZ and waaS genes. Examination of LPS heterogeneity revealed overlapping control by RpoE σ factor, two-component systems (BasS/R and PhoB/R), and ppGpp. Deletion of RpoE-specific anti-σ factor rseA led to near-exclusive incorporation of glycoforms with the third Kdo linked to Kdo disaccharide. This was accompanied by concomitant incorporation of rhamnose, linked to either the terminal third Kdo or to the second Kdo, depending upon the presence or absence of phosphoethanolamine on the second Kdo with truncation of the outer core. This truncation in ΔrseA was ascribed to decreased levels of WaaR glycosyltransferase, which was restored to wild-type levels, including overall LPS composition, upon the introduction of rybB sRNA deletion. Thus, ΔwaaR contained LPS primarily with Kdo(3) without any requirement for lipid A modifications. Accumulation of a glycoform with Kdo(3) and 4-amino-4-deoxy-l-arabinose in lipid A in ΔrseA required ppGpp, being abolished in a Δ(ppGpp(0) rseA). Furthermore, Δ(waaZ lpxLMP) synthesizing tetraacylated lipid A exhibited synthetic lethality at 21-23°C pointing to the significance of the incorporation of the third Kdo.  相似文献   

19.
Structural characterization studies have been carried out on the carbohydrate backbone of Vibrio parahaemolyticus serotype O6 lipopolysaccharides (LPS). The carbohydrate backbone isolated from O6 LPS by sequential derivatization, that is, dephosphorylation, O-deacylation, pyridylamination, N-deacylation and N-acetylation, is a nonasaccharide consisting of 3 mol of D-glucosamine (GlcN) (of which one is pyridylaminated), 2 mol of L-glycero-D-manno-heptose (Hep), and 1 mol each of D-galactose (Gal), D-glucose (Glc), D-glucuronic acid (GlcA) and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). Structural analyses by nuclear magnetic resonance spectroscopy and fast-atom bombardment mass spectrometry demonstrated that the carbohydrate backbone is β-Galp-(1→2)-α-Hepp-(1→3)-α-Hepp-(1→5)-α-Kdop-(2→6)-β-GlcpNAc-(1→6)-GlcNAc-PA, in which the 3-substituted α-Hepp is further substituted by β-GlcpNAc-(1→4)-β-Glcp at position 4 and by β-GlcpA at position 2. In native O6 LPS, an additional 1 mol of D-galacturonic acid, which is liberated by dephosphorylation in hydrofluoric acid, is present at an unknown position. A previous study by the present authors reported that, of 13 O-serotype LPS of V. parahaemolyticus, the only LPS from which Kdo was detected was from O6 LPS after mild acid hydrolysis. In the present study, we have demonstrated that only 1 mol of Kdo is present at the lipid A proximal position, a component which is common to the LPS in all serotypes of the bacterium, and that there is no additional Kdo in the carbohydrate backbone of O6 LPS. ELISA and ELISA inhibition analysis using antisera against O6 and Salmonella enterica Minnesota R595 and LPS of both strains further revealed that Kdo is not involved as an antigenic determinant of O6 LPS.  相似文献   

20.
Plesiomonas shigelloides is a Gram-negative opportunistic pathogen associated with gastrointestinal and extraintestinal infections, which especially invades immunocompromised patients and neonates. The lipopolysaccharides are one of the major virulence determinants in Gram-negative bacteria and are structurally composed of three different domains: the lipid A, the core oligosaccharide and the O-antigen polysaccharide.In the last few years we elucidated the structures of the O-chain and the core oligosaccharide from the P. shigelloides strain 302-73. In this paper we now report the characterization of the linkage between the core and the O-chain. The LPS obtained after PCP extraction contained a small number of O-chain repeating units. The product obtained by hydrazinolysis was analysed by FTICR-ESIMS and suggested the presence of an additional Kdo in the core oligosaccharide. Furthermore, the LPS was hydrolysed under mild acid conditions and a fraction that contained one O-chain repeating unit linked to a Kdo residue was isolated and characterized by FTICR-ESIMS and NMR spectroscopy. Moreover, after an alkaline reductive hydrolysis, a disaccharide α-Kdo-(2→6)-GlcNol was isolated and characterized. The data obtained proved the presence of an α-Kdo in the outer core and allowed the identification of the O-antigen biological repeating unit as well as its linkage with the core oligosaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号