首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in cryopyrin and pyrin proteins are responsible for several autoinflammatory disorders in humans, suggesting that these proteins play important roles in regulating inflammation. Using a HEK293 cell-based reconstitution system that stably expresses ASC and procaspase-1 we demonstrated that neither cryopyrin nor pyrin or their corresponding disease-associated mutants could significantly activate NF-kappaB in this system. However, both cryopyrin and two disease-associated cryopyrin mutants induced ASC oligomerization and ASC-dependent caspase-1 activation, with the disease-associated mutants being more potent than the wild-type (WT) cryopyrin, because of increased self-oligomerization. Contrary to the proposed anti-inflammatory activity of WT pyrin, our results demonstrated that pyrin, like cryopyrin, can also assemble an inflammasome complex with ASC and procaspase-1 leading to ASC oligomerization, caspase-1 activation and interleukin-1beta processing. Thus, we propose that pyrin could function as a proinflammatory molecule.  相似文献   

2.
Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/target of methylation-induced silencing/PYCARD represents one of only two proteins encoded in the human genome that contains a caspase recruitment domain (CARD) together with a pyrin, AIM, ASC, and death domain-like (PAAD)/PYRIN/DAPIN domain. CARDs regulate caspase family proteases. We show here that ASC binds by its CARD to procaspase-1 and to adapter proteins involved in caspase-1 activation, thereby regulating cytokine pro-IL-1beta activation by this protease in THP-1 monocytes. ASC enhances IL-1beta secretion into the cell culture supernatants, at low concentrations, while suppressing at high concentrations. When expressed in HEK293 cells, ASC interferes with Cardiak/Rip2/Rick-mediated oligomerization of procaspase-1 and suppresses activation this protease, as measured by protease activity assays. Moreover, ASC also recruits procaspase-1 into ASC-formed cytosolic specks, separating it from Cardiak. We also show that expression of the PAAD/PYRIN family proteins pyrin or cryopyrin/PYPAF1/NALP3 individually inhibits IL-1beta secretion but that coexpression of ASC with these proteins results in enhanced IL-1beta secretion. However, expression of ASC uniformly interferes with caspase-1 activation and IL-1beta secretion induced by proinflammatory stimuli such as LPS and TNF, suggesting pathway competition. Moreover, LPS and TNF induce increases in ASC mRNA and protein expression in cells of myeloid/monocytic origin, revealing another level of cross-talk of cytokine-signaling pathways with the ASC-controlled pathway. Thus, our results suggest a complex interplay of the bipartite adapter protein ASC with PAAD/PYRIN family proteins, LPS (Toll family receptors), and TNF in the regulation of procaspase-1 activation, cytokine production, and control of inflammatory responses.  相似文献   

3.
Cryopyrin (CIAS1, NLRP3) and ASC are components of the inflammasome, a multiprotein complex required for caspase-1 activation and cytokine IL-1beta production. CIAS1 mutations underlie autoinflammation characterized by excessive IL-1beta secretion. Disease-associated cryopyrin also causes a program of necrosis-like cell death in macrophages, the mechanistic details of which are unknown. We find that patient monocytes carrying disease-associated CIAS1 mutations exhibit excessive necrosis-like death by a process dependent on ASC and cathepsin B, resulting in spillage of the proinflammatory mediator HMGB1. Shigella flexneri infection also causes cryopyrin-dependent macrophage necrosis with features similar to the death caused by mutant CIAS1. This necrotic death is independent of caspase-1 and IL-1beta, and thus independent of the inflammasome. Furthermore, necrosis of primary macrophages requires the presence of Shigella virulence genes. While similar proteins mediate pathogen-induced cell death in plants, this report identifies cryopyrin as an important host regulator of programmed pathogen-induced necrosis in animals, a process we term pyronecrosis.  相似文献   

4.
NF-kappaB is a critical regulator of genes involved in inflammation. Gastric epithelial cells and macrophages are considered the main sources of pro-inflammatory cytokines. We investigated NF-kappaB activation by Helicobacter pylori in MKN45 gastric epithelial cells and THP-1 monocytic cells. Although, cag pathogenicity island (PAI)-positive H. pylori (wild type) activated NF-kappaB in both cells, isogenic mutant of cagE (DeltacagE) activated it only in THP-1 cells. Supernatant from the wild type culture could activate NF-kappaB in THP-1 cells but not in MKN45 cells. High density cDNA array analysis revealed that mRNA expression of NF-kappaB-regulated genes such as interleukin (IL)-8, tumor necrosis factor-alpha (TNFalpha), and IL-1beta was significantly up-regulated by the wild type in both cells, whereas it was up-regulated by DeltacagE only in THP-1 cells. Experiments using CD14-neutralizing antibody and IL-1 receptor-associated kinase (IRAK) assay showed that both wild type and DeltacagE H. pylori activated NF-kappaB through CD14 and IRAK in THP-1 cells but not in MKN45 cells. Macrophages from C3H/HeJ mice carrying point mutation in the Toll-like receptor 4 (TLR4) gene showed decreased NF-kappaB activation and TNFalpha secretion compared with C3H/HeN mouse macrophage when treated with H. pylori. In conclusion, H. pylori-induced NF-kappaB activation in epithelial cells is dependent on cag PAI and contact but does not involve CD14 and IRAK, whereas in macrophage/monocytic cells it is independent of cag PAI or contact but involves CD14 and TLR4.  相似文献   

5.
Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) is an adaptor molecule that has recently been implicated in the activation of caspase-1. We have studied the role of ASC in the host defense against the intracellular pathogen Listeria monocytogenes. ASC was found to be essential for the secretion of IL-1beta/IL-18, but dispensable for IL-6, TNF-alpha, and IFN-beta production, in macrophages infected with Listeria. Activation of caspase-1 was abolished in ASC-deficient macrophages, whereas activation of NF-kappaB and p38 was unaffected. In contrast, secretion of IL-1beta, IL-6, and TNF-alpha was reduced in TLR2-deficient macrophages infected with Listeria; this was associated with impaired activation of NF-kappaB and p38, but normal caspase-1 processing. Analysis of Listeria mutants revealed that cytosolic invasion was required for ASC-dependent IL-1beta secretion, consistent with a critical role for cytosolic signaling in the activation of caspase-1. Secretion of IL-1beta in response to lipopeptide, a TLR2 agonist, was greatly reduced in ASC-null macrophages and was abolished in TLR2-deficient macrophages. These results demonstrate that TLR2 and ASC regulate the secretion of IL-1beta via distinct mechanisms in response to Listeria. ASC, but not TLR2, is required for caspase-1 activation independent of NF-kappaB in Listeria-infected macrophages.  相似文献   

6.
Viral infection induces the production of interleukin (IL)-1beta and IL-18 in macrophages through the activation of caspase-1, but the mechanism by which host cells sense viruses to induce caspase-1 activation is unknown. In this report, we have identified a signaling pathway leading to caspase-1 activation that is induced by double-stranded RNA (dsRNA) and viral infection that is mediated by Cryopyrin/Nalp3. Stimulation of macrophages with dsRNA, viral RNA, or its analog poly(I:C) induced the secretion of IL-1beta and IL-18 in a cryopyrin-dependent manner. Consistently, caspase-1 activation triggered by poly(I:C), dsRNA, and viral RNA was abrogated in macrophages lacking cryopyrin or the adaptor ASC (apoptosis-associated speck-like protein containing a caspase-activating and recruitment domain) but proceeded normally in macrophages deficient in Toll-like receptor 3 or 7. We have also shown that infection with Sendai and influenza viruses activates the cryopyrin inflammasome. Finally, cryopyrin was required for IL-1beta production in response to poly(I:C) in vivo. These results identify a mechanism mediated by cryopyrin and ASC that links dsRNA and viral infection to caspase-1 activation resulting in IL-1beta and IL-18 production.  相似文献   

7.
Familial cold autoinflammatory syndrome (FCAS) and the related autoinflammatory disorders, Muckle-Wells syndrome and neonatal onset multisystem inflammatory disease, are characterized by mutations in the CIAS1 gene that encodes cryopyrin, an adaptor protein involved in activation of IL-converting enzyme/caspase-1. Mutations in cryopyrin are hypothesized to result in abnormal secretion of caspase-1-dependent proinflammatory cytokines, IL-1beta and IL-18. In this study, we examined cytokine secretion in PBMCs from FCAS patients and found a marked hyperresponsiveness of both IL-1beta and IL-18 secretion to LPS stimulation, but no evidence of increased basal secretion of these cytokines, or alterations in basal or stimulated pro-IL-1beta levels. VX-765, an orally active IL-converting enzyme/caspase-1 inhibitor, blocked IL-1beta secretion with equal potency in LPS-stimulated cells from FCAS and control subjects. These results further link mutations in cryopyrin with abnormal caspase-1 activation, and support the clinical testing of caspase-1 inhibitors such as VX-765 in autoinflammatory disorders.  相似文献   

8.
Genes encoding proteins with PYRIN/PAAD/DAPIN domains, a nucleotide binding fold (NACHT), and leucine rich repeats have recently been recognized as important mediators in autoimmune inflammatory disorders. Here we characterize the expression and function of a member of the PYRIN and NACHT domain (PAN) family, PAN1 (also known as NALP2 and PYPAF2). PAN1 protein expression is regulated by lipopolysaccharide (LPS) and interferons (IFNbeta and IFNgamma) in THP-1 macrophage cells. In gene transfection studies PAN1 manifests an inhibitory influence on NF-kappaB activation induced by various pro-inflammatory stimuli, including tumor necrosis factor TNFalpha and interleukin-1beta (IL-1beta). Gene transfer-mediated elevations in PAN1 protein also suppressed activation of IkappaB kinases induced by inflammatory cytokines. Conversely, reducing endogenous levels of PAN1 using small interfering RNA enhanced LPS-induced production of ICAM-1 (intercellular adhesion molecule 1), an NF-kappaB-dependent gene. We also show here that PAN1 binds via its PYRIN domain to ASC, an adapter protein involved in caspase-1 activation. This binding is disrupted by mutation of the alpha1 helix of ASC. In gene transfer experiments PAN1 enhances caspase-1 activation and IL-1beta secretion in collaboration with ASC. Conversely, reducing endogenous levels of PAN1 using small interfering RNA significantly reduced LPS-induced secretion of IL-1beta in monocytes. We propose that PAN1 functions as a modulator of the activation of NF-kappaB and pro-caspase-1 in macrophages.  相似文献   

9.
Cryopyrin, a member of the Nod protein family mutated in familial cold urticaria and Muckle-Wells syndrome, has been recently implicated in inflammation. However, the mechanism of activation and regulation of the cryopyrin signaling pathway remains poorly understood. We report here that co-expression of cryopyrin with its binding partner, ASC, induced both apoptosis and NF-kappaB activation. This signaling was mimicked by oligomerization of ASC, suggesting that cryopyrin activates downstream targets as reported for other Nod family members. Notably, pyrin, the product of the familial Mediterranean fever gene, inhibited cryopyrin-mediated apoptosis and NF-kappaB activation by disrupting the cryopyrin-ASC interaction. These results provide evidence for a cryopyrin signaling pathway activated through the induced proximity of ASC, which is negatively regulated by pyrin.  相似文献   

10.
PYPAF3 is a member of the PYRIN-containing apoptotic protease-activating factor-1-like proteins (PYPAFs, also called NALPs). Among the members of this family, PYPAF1, PYPAF5, PYPAF7, and NALP1 have been shown to induce caspase-1-dependent interleukin-1beta secretion and NF-kappaB activation in the presence of the adaptor molecule ASC. On the other hand, we recently discovered that PYNOD, another member of this family, is a suppressor of these responses. Here, we show that PYPAF3 is the second member that inhibits caspase-1-dependent interleukin-1beta secretion. In contrast, PYPAF2/NALP2 does not inhibit this response but rather inhibits the NF-kappaB activation that is induced by the combined expression of PYPAF1 and ASC. Both PYPAF2 and PYPAF3 mRNAs are broadly expressed in a variety of tissues; however, neither is expressed in skeletal muscle, and only PYPAF2 mRNA is expressed in heart and brain. They are also expressed in many cell lines of both hematopoietic and non-hematopoietic lineages. Stimulation of monocytic THP-1 cells with lipopolysaccharide or interleukin-1beta induced PYPAF3 mRNA expression. Furthermore, the stable expression of PYPAF3 in THP-1 cells abrogated the ability of the cells to produce interleukin-1beta in response to lipopolysaccharide. These results suggest that PYPAF3 is a feedback regulator of interleukin-1beta secretion. Thus, PYPAF2 and PYPAF3, together with PYNOD, constitute an anti-inflammatory subgroup of PYPAFs.  相似文献   

11.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

12.
13.
We previously reported that the role of reactive oxygen intermediates (ROIs) in NF-kappaB activation by proinflammatory cytokines was cell specific. However, the sources for ROIs in various cell types are yet to be determined and might include 5-lipoxygenase (5-LOX) and NADPH oxidase. 5-LOX and 5-LOX activating protein (FLAP) are coexpressed in lymphoid cells but not in monocytic or epithelial cells. Stimulation of lymphoid cells with interleukin-1beta (IL-1beta) led to ROI production and NF-kappaB activation, which could both be blocked by antioxidants or FLAP inhibitors, confirming that 5-LOX was the source of ROIs and was required for NF-kappaB activation in these cells. IL-1beta stimulation of epithelial cells did not generate any ROIs and NF-kappaB induction was not influenced by 5-LOX inhibitors. However, reintroduction of a functional 5-LOX system in these cells allowed ROI production and 5-LOX-dependent NF-kappaB activation. In monocytic cells, IL-1beta treatment led to a production of ROIs which is independent of the 5-LOX enzyme but requires the NADPH oxidase activity. This pathway involves the Rac1 and Cdc42 GTPases, two enzymes which are not required for NF-kappaB activation by IL-1beta in epithelial cells. In conclusion, three different cell-specific pathways lead to NF-kappaB activation by IL-1beta: a pathway dependent on ROI production by 5-LOX in lymphoid cells, an ROI- and 5-LOX-independent pathway in epithelial cells, and a pathway requiring ROI production by NADPH oxidase in monocytic cells.  相似文献   

14.
15.
16.

Rationale

Activation state-dependent secretion of alpha-1 proteinase inhibitor (A1PI) by monocytes and macrophages was first reported in 1985. Since then, monocytes and tissue macrophages have emerged as key sentinels of infection and tissue damage via activation of self-assembling pattern recognition receptors (inflammasomes), which trigger inflammation and cell death in a caspase-1 dependent process. These studies examine the relationship between A1PI expression in primary monocytes and monocytic cell lines, and inflammatory cytokine expression in response to inflammasome directed stimuli.

Methods

IL-1 β expression was examined in lung macrophages expressing wild type A1PI (A1PI-M) or disease-associated Z isoform A1PI (A1PI-Z). Inflammatory cytokine release was evaluated in THP-1 monocytic cells or THP-1 cells lacking the inflammasome adaptor ASC, transfected with expression vectors encoding A1PI-M or A1PI-Z. A1PI-M was localized within monocytes by immunoprecipitation in hypotonic cell fractions. Cell-free titration of A1PI-M was performed against recombinant active caspase-1 in vitro.

Results

IL-1 β expression was elevated in lung macrophages expressing A1PI-Z. Overexpression of A1PI-M in THP-1 monocytes reduced secretion of IL-1β and TNF-α. In contrast, overexpression of A1PI-Z enhanced IL-1β and TNF- α secretion in an ASC dependent manner. A1PI-Z-enhanced cytokine release was inhibited by a small molecule caspase-1 inhibitor but not by high levels of exogenous wtA1PI. Cytosolic localization of A1PI-M in monocytes was not diminished with microtubule-inhibiting agents. A1PI-M co-localized with caspase-1 in gel-filtered cytoplasmic THP-1 preparations, and was co-immunoprecipitated with caspase 1 from nigericin-stimulated THP-1 cell lysate. Plasma-derived A1PI inhibited recombinant caspase-1 mediated conversion of a peptide substrate in a dose dependent manner.

Conclusions

Our results suggest that monocyte/macrophage-expressed A1PI-M antagonizes IL-1β secretion possibly via caspase-1 inhibition, a function which disease-associated A1PI-Z may lack. Therapeutic approaches which limit inflammasome responses in patients with A1PI deficiency, in combination with A1PI augmentation, may provide additional respiratory tissue-sparing benefits.  相似文献   

17.
The PYRIN-CARD protein ASC is an activating adaptor for caspase-1   总被引:19,自引:0,他引:19  
The PYRIN and CARD domains are members of the six-helix bundle death domain-fold superfamily that mediates assembly of large signaling complexes in the apoptotic and inflammatory signaling pathways. Here we show that the PYRIN-CARD protein ASC functions as a caspase-1-activating adaptor. ASC interacted specifically with procaspase-1 via CARD-CARD interactions and induced its oligomerization. Consistent with these results ectopic expression of full-length ASC, but not its isolated CARD or PYRIN domain, with procaspase-1 induced activation of procaspase-1 and processing of pro-interleukin-1beta in transfected cells. Substitution of the PYRIN domain of ASC with an inducible FKBP12 oligomerization domain produced a molecule that can induce caspase-1 activation in response to stimulation with the oligomerization drug AP20187, suggesting that the PYRIN domain functions as an oligomerization domain, whereas the CARD domain functions as the effector domain in the caspase-1 activation pathway. Furthermore stable expression of an isolated CARD of ASC in THP-1 cells diminished interleukin-1beta generation in response to pro-inflammatory cytokines. These results indicate that ASC is involved in the caspase-1 signaling pathway by mediating the assembly of a caspase-1-inflammasome signaling complex in response to pro-inflammatory cytokine stimulation.  相似文献   

18.
为了解生殖支原体(Mg)潜在的致病性及其脂质相关膜蛋白(LAMPs)诱导人单核细胞(THP-1)凋亡及表达前炎症细胞因子(CKs)的分子机制,用Mg提取的LAMPs刺激THP-1细胞,以ELISA法和RT-PCR方法分析CKs产生和其mRNA的表达。不同试实验组的细胞经AnnexinV联合PI染色后通过流式细胞仪检测细胞凋亡。采用EMSA方法检测LAMPs处理的THP-1细胞中核转录因子kappaB(NF-κB)的激活,并分析NF-κB抑制剂二硫代氨基甲酸吡咯烷(pyrrolidine dithiocoarbamate,PDTC)对LAMPs处理的THP-1细胞产生CKs的量和其mRNA表达及细胞凋亡的影响。LAMPs能以时间和剂量依赖方式刺激THP-1细胞产生TNF-α、IL-1β和IL-6,且能激活NF-κB诱导THP-1细胞表达CKs的mRNA及发生凋亡,PDTC能显著抑制CKs的mRNA表达水平和细胞凋亡。由于LAMPs能激活NF-κB诱导THP-1细胞表达CKs及产生细胞凋亡,因而可能是一个重要的致病因素。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号