首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer has been used as substitute to replace glycerol for cryopreservation of red blood cells (RBCs). But polymer can not penetrate cell membrane, it can not efficiently protect the inner membrane. In this study, RBCs were incubated with glucose, fructose, galactose or trehalose and frozen in liquid nitrogen for 24 h using dextran as the extracellular protectant. The postthaw quality was assessed by RBC hemolysis, RBC morphology, PS distribution, osmotic fragility, and the 4 °C stability. The results indicated the loading efficiency of monosaccharide was significantly higher than that of trehalose. Adding trehalose and 40% dextran caused more serious hemolysis before freezing. The percent hemolysis of RBCs loaded with high concentration of trehalose was approximately 16% and significantly more than that of RBCs loaded with glucose (approximately 5%, P < 0.05). Intracellular trehalose can not increase the postthaw recovery of RBCs compared with cells frozen without sugar. However, low concentration of intracellular glucose or galactose can reduce the percent hemolysis to less than 5% and significantly less than that of RBCs frozen without sugar (P < 0.05). Finally, the ability of galactose or fructose to maintain the 4 °C stability was significantly more than that of glucose. In conclusion, the injuries caused by trehalose loading may directly lead to postthaw hemolysis and poor quality of RBCs. However, monosaccharide can enhance the recovery of frozen RBCs. The cryoprotective effect of galactose may be better than that of glucose or fructose. In the future, we will continue to look for a safe and efficient trehalose loading process and try to decrease the osmotic fragility of RBCs frozen with polymers and sugars.  相似文献   

2.
Red blood cells (RBCs) can be cryopreserved using glycerol as a cryoprotective agent, but one of the main disadvantages is the time-consuming deglycerolization step. Novel cryopreservation strategies for RBCs using nontoxic cryoprotective agents are urgently needed. The effect of DMPC, DOPC, and DPPC liposomes on survival of RBCs cryopreserved with trehalose and HES has been evaluated. DMPC caused hemolysis before freezing and affected RBC deformability parameters. DMPC treated RBCs displayed a strong increase in trehalose uptake compared to control cells, whereas DOPC treated liposomes only displayed a slight increase in trehalose uptake. High intracellular trehalose contents were observed after cryopreservation. The recovery of cells incubated with trehalose and liposomes, frozen in HES ranged between 92.6 and 97.4% immediately after freezing. Recovery values of RBCs frozen in HES, however, decreased to 66.5% after 96 h at 4°C compared to 77.5% for DOPC treated RBCs. The recovery of RBCs incubated and frozen in trehalose medium was 77.8%. After 96 hours post-thaw storage recovery of these cells was 81.6%. DOPC and DPPC treated RBCs displayed higher recovery rates (up to 89.7%) after cryopreservation in trehalose compared to control RBCs. Highest survival rates were obtained using a combination of trehalose and HES: 97.8% directly after thawing and 81.8% 96-h post-thaw. DOPC liposomes, trehalose and HES protect RBCs during cryopreservation in a synergistic manner. The advantage is that the protective compounds do not need to be removed before transfusion.  相似文献   

3.
冷冻干燥保存是长期保存人体红细胞的理想方案之一。冻干保护剂海藻糖渗入细胞内后,对细胞膜和细胞内物质有保护作用,其中的一个作用是增加细胞质的浓度,使冻干过程容易形成稳定的玻璃态。应用高渗法处理红细胞,通过考察胞内海藻糖含量、红细胞冻干后的存活率、腺苷三磷酸酶(ATPase)、超氧化物歧化酶(SOD)活力以及细胞形态变化,研究胞内海藻糖含量对红细胞冻干后活性的影响。结果显示:海藻糖对红细胞冻干具有明显的保护作用,随胞内海藻糖浓度升高,其保护性能逐渐增强;43.8mmol/L的胞内海藻糖浓度对红细胞保护最好,细胞存活率达到53.6%,形态保持良好,ATP和SOD活力均在正常的范围内。  相似文献   

4.
Tamir Kanias 《Cryobiology》2009,58(2):232-239
One of the recent approaches to enhance desiccation tolerance in red blood cells (RBCs) is by loading trehalose. This process has been shown to increase the recovery of lyophilized RBCs; conversely, it results in cellular damage including hemoglobin oxidation and loss of membrane integrity. The purpose of this study was to further investigate the extent of oxidative injury during the loading of trehalose into RBCs.RBCs were incubated in the absence (control) or presence of trehalose (0.8 mol/l) at 4 °C or 37 °C for different time scales. Oxidative damage was monitored by flow cytometry using dichlorofluorescin for reactive oxygen species formation, Annexin V-FITC for phosphatidylserine translocation and fluorescein-DHPE for lipid peroxidation. Percent methemoglobin, percent hemolysis and thiobarbituric acid reactive substances were measured by spectrophotometry. The extent of oxidative damage during trehalose loading is affected by the incubation temperature, incubation time and the presence of trehalose. Incubation at 4 °C was relatively innocuous; however, oxidative injury was evident at 37 °C in both RBC groups. The addition of trehalose is correlated with high osmotic pressure, which had minor effects during incubation at 4 °C, but seemed to have exacerbated the severity of cellular injury at 37 °C, as measured by higher levels of hemolysis, methemoglobin and lipid peroxidation.The process of trehalose-loading is problematic due to its requirement for prolonged incubations at 37 °C. These conditions are correlated with oxidative injury, even in the absence of trehalose. While trehalose is believed to be crucial for stabilizing biomembranes, the consequences of its introduction into the cells require further investigation.  相似文献   

5.
Red blood cells (RBCs) can be used for vascular delivery of encapsulated or surface-bound drugs and carriers. Coupling to RBC prolongs circulation of nanoparticles (NP, 200 nm spheres, a conventional model of polymeric drug delivery carrier) enabling their transfer to the pulmonary vasculature without provoking overt RBC elimination. However, little is known about more subtle and potentially harmful effects of drugs and drug carriers on RBCs. Here we devised high-throughput in vitro assays to determine the sensitivity of loaded RBCs to osmotic stress and other damaging insults that they may encounter in vivo (e.g. mechanical, oxidative and complement insults). Sensitivity of these tests is inversely proportional to RBC concentration in suspension and our results suggest that mouse RBCs are more sensitive to damaging factors than human RBCs. Loading RBCs by NP at 1:50 ratio did not affect RBCs, while 10–50 fold higher NP load accentuated RBC damage by mechanical, osmotic and oxidative stress. This extensive loading of RBC by NP also leads to RBCs agglutination in buffer; however, addition of albumin diminished this effect. These results provide a template for analyses of the effects of diverse cargoes loaded on carrier RBCs and indicate that: i) RBCs can tolerate carriage of NP at doses providing loading of millions of nanoparticles per microliter of blood; ii) tests using protein-free buffers and mouse RBCs may overestimate adversity that may be encountered in humans.  相似文献   

6.
Quan GB  Liu MX  Ren SP  Zhang JG  Han Y 《Cryobiology》2006,53(1):107-118
The plasma membrane of red blood cells permits sugars to be loaded into the cytoplasm simply by incubation in a suitable buffer solution containing the sugar. This may provide some hope for the freeze-drying of human red blood cells. However, the effect of the loading process on red blood cells has not been fully investigated. The exposure of phosphatidylserine (PS) on the surface of the cell can be recognized by macrophages and result in shortened circulation in vivo. This study evaluates the effects of the concentration, the incubation time, and the temperature of exposure of human red blood cells to extracellular trehalose or glucose. Exposure of PS was demonstrated by annexin V labeling. It was shown that the efficiency of loading of glucose was significantly greater than that of trehalose. The loading efficiency of both sugars increased with increase in extracellular sugar concentration, prolongation of incubation time, and increase of incubation temperature. The percentages of cells with exposed PS and of damaged cells were dependent on the extracellular sugar concentration, the incubation time, and the temperature. With an extracellular glucose concentration of 0.8M, the percentage of cells with exposed PS was more than 80% and significantly higher than that of red blood cells loaded with trehalose (approximate 20%, P<0.01). As the incubation time was prolonged, the percentage of PS exposure and of damaged cells also increased. After incubation for 5h, the percentage of red cells with exposed PS following loading with glucose was more than 80% and significantly higher than that of cells loaded with trehalose (40%, P<0.01). In addition, the incubation temperature had a major effect on PS exposure. The percentage of cells with PS exposure and the proportion of damaged cells increased with increase of incubation temperature. At 37 degrees C, the percentage of cells with exposed PS and of damaged cells after loading with glucose was more than 80% and significantly higher than that of cells loaded with trehalose (P<0.01). However, when the temperature was below 25 degrees C, the percentage of cells with exposed PS and of damaged cells after loading with glucose or trehalose were both less than 10%. In conclusion, the loading efficiency for glucose was higher than that for trehalose, but the lesser effect of trehalose on exposure of PS suggests that it can maintain the asymmetrical distribution of membrane phospholipids and the intracellular trehalose can increase the osmotic tolerance of cells.  相似文献   

7.
The purpose of this study was to determine if differences in antioxidant status between the red blood cells (RBCs) of sickle cell anemia (SCA) patients and controls are responsible for the differential responses to oxidative and osmotic stress-induced hemolysis. Susceptibility to hemolysis was examined by incubating oxygenated and deoxygenated RBCs at 37°C with 73 mM 2,2' azobis (2-amidinopropane) HC1 (AAPH), a peroxyl radical generator, for up to 3.5 hours. The ability of RBCs to maintain membrane integrity under osmotic stress was determined over a range of diluted saline-phosphate buffer. Sickled RBCs showed a lesser degree of AAPH-induced hemolysis than control groups and were more resistant to osmotic stress-induced hemolysis. SCA patients had higher levels of RBC vitamin E and RBC lipids, but lower RBC GSH, plasma lipids and plasma carotenes than those of the hospital controls. No significant differences were observed in the levels of retinol, vitamin C, vitamin E, MDA and conjugated dienes in plasma, or the levels of MDA and conjugated dienes in RBCs. The results obtained suggest that the differences in antioxidant status between sickled RBCs and controls do not appear to be responsible for their different susceptibility to oxidative or osmotic stress-induced hemolysis observed.  相似文献   

8.
Studies of red blood cells (RBCs) and RBC ghosts, using a quasi-elastic light scattering (QELS) microscope spectrometer, have identified the membrane as the primary source of the light scattering signal. This is the first report in which motion of the cell membrane has been demonstrated to be the primary source of the QELS signal from a cell. Cytoplasmic changes induced in the RBC by varying the osmotic strength of the medium were also detected using this technique. Comparison of the data from white blood cells (WBCs) with the RBC data demonstrated significant differences between different types of cells.  相似文献   

9.
Effect of hydration on the water content of human erythrocytes.   总被引:4,自引:0,他引:4       下载免费PDF全文
An ideal, hydrated, nondilute pseudobinary salt-protein-water solution model of the RBC intracellular solution has been developed to describe the osmotic behavior of human erythrocytes during freezing and thawing. Because of the hydration of intracellular solutes (mostly cell proteins), our analytical results predict that at least 16.65% of the isotonic cell water content will be retained within RBCs placed in hypertonic solutions. These findings are consistent not only with the experimental measurements of the amount of isotonic cell water retained within RBCs subjected to nonisotonic extracellular solutions (20-32%) but also with the experimental evidence that all of the water within RBCs is solvent water. By modeling the RBC intracellular solution as a hydrated salt-protein-water solution, no anomalous osmotic behavior is apparent.  相似文献   

10.
The disaccharide trehalose is increasingly being used as a very efficient stabilizer of cells, membranes and macromolecules during cryo- and lyoconservation. Although extracellular trehalose can reduce cryo- and lyodamage to mammalian cells, the sugar is required on both sides of the plasma membrane for maximum protection efficiency. In the present study, mouse myeloma cells were loaded with the disaccharide by means of reversible electropermeabilization in isotonic trehalose-substituted medium, which contained 290 mM trehalose as the major solute. By using the membrane-impermeable fluorescent dye propidium iodide as the reporter molecule, optimum electropulsing conditions were found, at which most permeabilized cells survived and recovered (i.e., resealed) their original membrane integrity within a few minutes after electric treatment. Microscopic examination during the resealing phase revealed that electropulsed cells shrank gradually to about 60% of their original volume. The kinetics of the dye uptake and the volumetric response of cells to electropulsing were analyzed using a theoretical model that relates the observed cell volume changes to the solute transport across the transiently permeabilized cell membrane. From the best fit of the model to the experimental data, the intracellular trehalose concentration in electropulsed cells was estimated to be about 100 mM. This loading efficiency compares favorably to other methods currently used for intracellular trehalose delivery. The results presented here point toward application of the electropermeabilization technique for loading cells with membrane-impermeable bioprotectants, with far-reaching implications for cryo- and lyopreservation of rare and valuable mammalian cells and tissues.  相似文献   

11.
We are investigating the use of liposomes, which are synthetic, microscopic vesicles, for the intracellular delivery of trehalose into mammalian cells. This study focuses on the effects trehalose-containing liposomes improve the recovery and membrane quality of human RBCs following cryopreservation. Unilamellar liposomes consisting of a lipid bilayer composed of DPPC, PS and cholesterol (60:30:10 mol%) were synthesized using an extrusion method. Liposome-treated RBCs (l-RBCs) were resuspended in either physiological saline, 0.3 M trehalose or liposome solution, then cooled with slow (0.95 ± 0.02 °C/min), medium (73 ± 3 °C/min) and fast (265 ± 12 °C/min) cooling rates and storage in liquid nitrogen, followed by a 37 °C thawing step. RBC post-thaw quality was assessed using percent recovery, RBC morphology, PS and CD47 expression. Liposome treatment did not adversely affect the RBC membrane. Post-thaw recovery of l-RBCs was significantly higher (66% ± 5% vs 29% ± 4%) compared to control RBCs (c-RBC, p = 0.003). Medium and high cooling rates resulted in significantly higher cell recovery compared to a slow cooling rate (p = 0.039 and p = 0.041, respectively). The recovery of l-RBCs frozen in liposome solution and trehalose solution was significantly higher than that of l-RBCs frozen in NaCl solution for all three cooling rates (p = 0.021). Flow cytometry and morphology assessment showed that liposome treatment resulted in improved post-thaw membrane quality. There was no statistically significant difference in the post-thaw recovery between RBCs treated with liposomes containing trehalose in their aqueous core and RBCs treated with liposomes containing saline in their aqueous core (p = 0.114). Liposome treatment significantly improves the recovery and membrane integrity of RBCs following low temperature exposure.  相似文献   

12.
Chick embryos rendered calcium (Ca) deficient by shell-less (SL) culture develop hypertension and tachycardia. Since hypocalcemia is accompanied by hypernatremia systemically but not by lower cellular Ca (Koide and Tuan, 1989), we speculate that cellular Ca handling may be altered in the SL embryo, perhaps involving Na transport. Using erythrocytes (RBC) from day-14 SL and normal (NL) embryos as the experimental cell, cellular Ca handling was studied under varying extracellular osmotic and ionic conditions by analyzing 45Ca uptake and cell volume regulation. Two agents, p-chloromercuriphenylsulfonate (PCM), and inosine/iodoacetamide (INI) were used to treat the RBCs to modify plasma membrane ion permeability and to deplete cellular ATP, respectively. Other cellular functions and activities related to Ca homeostasis, including ATP content and Ca(2+)-ATPase activity, were also analyzed. These analyses showed: (1) in NaCl, Ca uptake was similar in NL and SL cells, except after INI treatment, which resulted in slower Ca uptake by the SL cells, (2) in choline and sucrose, Ca uptake by SL RBCs was higher, (3) Ca uptake by RBCs of both embryos changed depending on the osmotic agent (Na < K < or = choline < sucrose), (4) Ca(2+)-ATPase activity was higher in SL RBC, although there was no change in the size or charge of the enzyme, and (5) in any osmotic agent, cellular Na was significantly lower, whereas cellular K was higher, in SL RBC. Based on these results, three features of RBC Ca handling were apparent: (1) Na-Ca exchange was functional and was more active in SL RBCs, (2) Ca uptake was dependent on the total ionic electrochemical gradient but not on bulk H2O movement, and (3) Ca pumping out capacity was directly correlated with Ca(2+)-ATPase activity. Elevated Ca uptake in sucrose-treated SL RBC is therefore indicative of its greater ion permeability. Taken together, these findings indicate that cellular Ca handling of the RBCs of SL chick embryos is characterized by a more active Na-Ca exchange system, greater ion permeability, and higher Ca pumping out capacity, thereby suggesting an up-regulated Ca handling function in the SL RBCs. The abnormal cellular Ca handling may be a direct result of the systemic Ca deficiency of the SL chick embryo and may be functionally related to its hypertension and tachycardia.  相似文献   

13.
A new assay has been developed to study the osmotic fragility of red blood cells (RBCs) and the involvement of oxygen-derived free radicals and other oxidant species in causing human red blood cell hemolysis. The amount of hemoglobin released into the supernatant, which is a measure of human red blood cell hemolysis, is monitored using an ELISA reader. This ELISA-based osmotic fragility test compared well with the established osmotic fragility test, with the added advantage of significantly reduced time and the requirement of only 60 mul of blood. This small amount of blood was collected fresh by finger puncture and was immediately diluted 50 times with PBS, thus eliminating the use of anticoagulants and the subsequent washings. Since exposure of RBCs to 400 Gy gamma radiation caused less than 5% hemolysis 24 h after irradiation, the RBC hemolysis induced by gamma radiation was amplified by irradiating the cell in hypotonic saline. The method was validated by examining the protective effect of Trolox, an analog of vitamin E and reduced glutathione (GSH), a well-known radioprotector, against human RBC hemolysis caused by the combined action of radiation and osmotic stress. Trolox, a known membrane stabilizer and an antioxidant, and GSH offered significant protection. This new method, which is simple and requires significantly less time and fewer RBCs, may offer the ability to study the effects of antioxidants and membrane stabilizers on human red blood cell hemolysis induced by radiation and oxidative stress and assess the osmotic fragility of erythrocytes.  相似文献   

14.

Red blood cells (RBCs) make up 40–45% of blood and play an important role in oxygen transport. That transport depends on the RBC distribution throughout the body, which is highly heterogeneous. That distribution, in turn, depends on how RBCs are distributed or partitioned at diverging vessel bifurcations where blood flows from one vessel into two. Several studies have used mathematical modeling to consider RBC partitioning at such bifurcations in order to produce useful insights. These studies, however, assume that the vessel wall is a flat impenetrable homogeneous surface. While this is a good first approximation, especially for larger vessels, the vessel wall is typically coated by a flexible, porous endothelial glycocalyx or endothelial surface layer (ESL) that is on the order of 0.5–1 µm thick. To better understand the possible effects of this layer on RBC partitioning, a diverging capillary bifurcation is analyzed using a flexible, two-dimensional model. In addition, the model is also used to investigate RBC deformation and RBC penetration of the ESL region when ESL properties are varied. The RBC is represented using interconnected viscoelastic elements. Stokes flow equations (viscous flow) model the surrounding fluid. The flow in the ESL is modeled using the Brinkman approximation for porous media with a corresponding hydraulic resistivity. The ESL’s resistance to compression is modeled using an osmotic pressure difference. One cell passes through the bifurcation at a time, so there are no cell–cell interactions. A range of physiologically relevant hydraulic resistivities and osmotic pressure differences are explored. Decreasing hydraulic resistivity and/or decreasing osmotic pressure differences (ESL resistance to compression) produced four behaviors: (1) RBC partitioning nonuniformity increased slightly; (2) RBC deformation decreased; (3) RBC velocity decreased relative to blood flow velocity; and (4) RBCs penetrated more deeply into the ESL. Decreasing the ESL’s resistance to flow and/or compression to pathological levels could lead to more frequent cell adhesion and clotting as well as impaired vascular regulation due to weaker ATP and nitric oxide release. Potential mechanisms that can contribute to these behaviors are also discussed.

  相似文献   

15.
Phenazine-methosulphate (PMS) is a strong oxidant that induces reactive oxygen species (ROS) formation in cells. Though it has been shown that PMS increases the red blood cell (RBC) membrane permeability to K+, the hypotheses on the mechanism of PMS-induced effects are contradictory and there are no data on volume changes induced by this oxidant. Therefore, the influence of the PMS + ascorbate oxidative system on the volume of normal human RBCs was studied. In a Ca2 + -containing medium, PMS + ascorbate caused dehydration (shrinking) of RBCs judged by: (1) changes in the density and osmotic resistance distributions of RBCs, and (2) a decrease in their low-angle scattering assessed by FACS analysis. The dehydration resulted from activation of the Gardos channels, was PMS and ascorbate concentration-dependent, was associated with broadening of the density and osmotic resistance distributions of the RBCs, and decreased in the presence of the taxifolin and rutin antioxidants. These findings contribute to a better understanding of the physiology and pathology of oxidatively-modified RBCs and may be of practical significance in estimating the antioxidant activity of various substances.  相似文献   

16.
Phenazine-methosulphate (PMS) is a strong oxidant that induces reactive oxygen species (ROS) formation in cells. Though it has been shown that PMS increases the red blood cell (RBC) membrane permeability to K+, the hypotheses on the mechanism of PMS-induced effects are contradictory and there are no data on volume changes induced by this oxidant. Therefore, the influence of the PMS + ascorbate oxidative system on the volume of normal human RBCs was studied. In a Ca2 + -containing medium, PMS + ascorbate caused dehydration (shrinking) of RBCs judged by: (1) changes in the density and osmotic resistance distributions of RBCs, and (2) a decrease in their low-angle scattering assessed by FACS analysis. The dehydration resulted from activation of the Gardos channels, was PMS and ascorbate concentration-dependent, was associated with broadening of the density and osmotic resistance distributions of the RBCs, and decreased in the presence of the taxifolin and rutin antioxidants. These findings contribute to a better understanding of the physiology and pathology of oxidatively-modified RBCs and may be of practical significance in estimating the antioxidant activity of various substances.  相似文献   

17.
When grown at high osmotic pressure, some strains of Escherichia coli K-12 synthesized substantial levels of free sugar and accumulated proline if it was present in the growth medium. The sugar was identified as trehalose by chemical reactivity, gas-liquid chromatography, and nuclear magnetic resonance spectroscopy. Strains of E. coli K-12 could be divided into two major classes with respect to osmoregulation. Those of class A showed a large increase in trehalose levels with increasing medium osmolarity and also accumulated proline from the medium, whereas those in class B showed no accumulation of trehalose or proline. Most class A strains carried suppressor mutations which arose during their derivation from the wild type, whereas the osmodefective strains of class B were suppressor free. When amber suppressor mutations at the supD, supE, or supF loci were introduced into such sup0 osmodefective strains, they became osmotolerant and gained the ability to accumulate trehalose in response to elevated medium osmolarity. It appears that the original K-12 strain of E. coli carries an amber mutation in a gene affecting osmoregulation. Mutants lacking ADP-glucose synthetase (glgC) accumulated trehalose normally, whereas mutants lacking UDP-glucose synthetase (galU) did not make trehalose and grew poorly in medium of high osmolarity. Trehalose synthesis was repressed by exogenous glycine betaine but not by proline.  相似文献   

18.
Fibroblasts take up trehalose during freezing and thawing, which facilitates cryosurvival of the cells. The aim of this study was to investigate if trehalose uptake via fluid‐phase endocytosis prefreeze increases cryosurvival. To determine endocytic trehalose uptake in attached as well as suspended fibroblasts, intracellular trehalose concentrations were determined during incubation at 37°C using an enzymatically based trehalose assay. In addition, freezing‐induced trehalose uptake of extracellularly added trehalose was determined. Cryosurvival rates were determined via trypan blue staining. Intracellular trehalose contents of attached as well as suspended cells were found to increase linearly with time, consistent with fluid‐phase endocytosis. Furthermore, the intracellular trehalose concentration increased with increasing extracellular trehalose concentration (0–100 mM) in a linear fashion. Prefreeze loading of cells with trehalose via fluid‐phase endocytosis only showed increased cryosurvival rates at extracellular trehalose concentrations lower than 50 mM in the cryopreservation medium. To obtain satisfactory cryosurvival rates after endocytic preloading, extracellular trehalose is needed to prevent efflux of trehalose during freezing and thawing and for freezing‐induced trehalose uptake. At trehalose concentrations greater than 100 mM, cryosurvival rates were similar or slightly higher if cells were not loaded with trehalose prefreeze. Cells that were grown in the presence of trehalose showed a tendency to aggregate after harvesting. It is concluded that it is particularly freezing‐induced trehalose uptake that facilitates cryosurvival when trehalose is used as the sole cryoprotectant for cryopreservation of fibroblasts. Preloading with trehalose does not increase cryosurvival rates if trehalose is also added as extracellular protectant. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:229–230, 2017  相似文献   

19.
In a previous report [Z. T?r?k, G. Satpathy, M. Banerjee, R. Bali, E. Little, R. Novaes, H. Van Ly, D. Dwyre, A. Kheirolomoom, F. Tablin, J.H. Crowe, N.M. Tsvetkova, Preservation of trehalose loaded red blood cells by lyophilization, Cell Preservation Technol. 3 (2005) 96-111.], we presented a method for preserving human red blood cells (RBCs) by loading them with trehalose and then freeze-drying. We have now improved that method, based on the discovery that addition of phospholipid vesicles to the lyophilization buffer substantially reduces hemolysis of freeze-dried RBCs after rehydration. The surviving cells synthesize 2,3-DPG, have low levels of methemoglobin, and have preserved morphology. Among the lipid species we studied, unsaturated PCs were found to be most effective in suppressing hemoglobin leakage. RBC-vesicle interactions depend on vesicle size and structure; unilamellar liposomes with average diameter of less than 300 nm were more effective in reducing the hemolysis than multilamellar vesicles. Trehalose loaded RBCs demonstrated high survival and low levels of methemoglobin during 10 weeks of storage at 4 degrees C in the dry state when lyophilized in the presence of liposomes.  相似文献   

20.
Cryopreservation of tissue cells is an important method to maintain cell viability and cellular function. However, cell viability and function are less than ideal by conventional cell cryopreservation methods, which may result in apoptosis and necrosis of cells in cryopreservation. Trehalose plays a role in maintaining cell structure and protecting cells from stress. However, owing to the difficulty in transport of trehalose across the cell membrane, its antifreeze effect is limited. A large amount of trehalose (up to 237 ± 8.5 mM) can be delivered to smooth muscle cells incubated in a medium containing trehalose and apatite nanomaterials at 37 °C for 6 h. Our data showed that trehalose was efficiently delivered intracellularly with the aid of nanoparticles (NP), with a loading efficiency up to 137.3 ± 34.5%, thus allowing for cryopreservation of LMC with nontoxic sugar as the sole cryoprotectant. Colloidal bioelastic apatite NP were used as bioactive promoters for the cryopreservation of tissue cells with trehalose. The addition of apatite NP in the medium substantially increased aortic smooth muscle cell cryosurvival, up to 83.6% (30% improvement over control without NP), a level comparable to that associated with the traditional Me2SO cryoprotective regimen. Furthermore, the cytotoxicity of nanocapsules in the intracellular delivery of trehalose was negligible. This method provides a new option to enhance the activity of valvular cells for cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号