首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探究进化模型对DNA条形码分类的影响, 本研究以雾灵山夜蛾科44个种的标本为材料, 获得COI基因序列。使用邻接法(neighbor-joining)、 最大简约法(maximum parsimony)、 最大似然法(maximum likelihood)以及贝叶斯法(Bayesian inference)构建系统发育树, 并且对邻接法的12种模型、 最大似然法的7种模型、 贝叶斯法的2种模型进行模型成功率的评估。结果表明, 邻接法的12种模型成功率相差不大, 较稳定; 最大似然法及贝叶斯法的不同模型成功率存在明显差异, 不稳定; 最大简约法不基于模型, 成功率比较稳定。邻接法及最大似然法共有6种相同的模型, 这6种模型在不同的方法中成功率存在差异。此外, 分子数据中存在单个物种仅有一条序列的情况, 显著降低了模型成功率, 表明在DNA条形码研究中, 每个物种需要有多个样本。  相似文献   

2.
Intraspecific variation is abundant in all types of systematic characters but is rarely addressed in simulation studies of phylogenetic method performance. We compared the accuracy of 15 phylogenetic methods using simulations to (1) determine the most accurate method(s) for analyzing polymorphic data (under simplified conditions) and (2) test if generalizations about the performance of phylogenetic methods based on previous simulations of fixed (nonpolymorphic) characters are robust to a very different evolutionary model that explicitly includes intraspecific variation. Simulated data sets consisted of allele frequencies that evolved by genetic drift. The phylogenetic methods included eight parsimony coding methods, continuous maximum likelihood, and three distance methods (UPGMA, neighbor joining, and Fitch-Margoliash) applied to two genetic distance measures (Nei's and the modified Cavalli-Sforza and Edwards chord distance). Two sets of simulations were performed. The first examined the effects of different branch lengths, sample sizes (individuals sampled per species), numbers of characters, and numbers of alleles per locus in the eight-taxon case. The second examined more extensively the effects of branch length in the four-taxon, two-allele case. Overall, the most accurate methods were likelihood, the additive distance methods (neighbor joining and Fitch-Margoliash), and the frequency parsimony method. Despite the use of a very different evolutionary model in the present article, many of the results are similar to those from simulations of fixed characters. Similarities include the presence of the "Felsenstein zone," where methods often fail, which suggests that long-branch attraction may occur among closely related species through genetic drift. Differences between the results of fixed and polymorphic data simulations include the following: (1) UPGMA is as accurate or more accurate than nonfrequency parsimony methods across nearly all combinations of branch lengths, and (2) likelihood and the additive distance methods are not positively misled under any combination of branch lengths tested (even when the assumptions of the methods are violated and few characters are sampled). We found that sample size is an important determinant of accuracy and affects the relative success of methods (i.e., distance and likelihood methods outperform parsimony at small sample sizes). Attempts to generalize about the behavior of phylogenetic methods should consider the extreme examples offered by fixed-mutation models of DNA sequence data and genetic-drift models of allele frequencies.  相似文献   

3.
Using simulated data, we compared five methods of phylogenetic tree estimation: parsimony, compatibility, maximum likelihood, Fitch- Margoliash, and neighbor joining. For each combination of substitution rates and sequence length, 100 data sets were generated for each of 50 trees, for a total of 5,000 replications per condition. Accuracy was measured by two measures of the distance between the true tree and the estimate of the tree, one measure sensitive to accuracy of branch lengths and the other not. The distance-matrix methods (Fitch- Margoliash and neighbor joining) performed best when they were constrained from estimating negative branch lengths; all comparisons with other methods used this constraint. Parsimony and compatibility had similar results, with compatibility generally inferior; Fitch- Margoliash and neighbor joining had similar results, with neighbor joining generally slightly inferior. Maximum likelihood was the most successful method overall, although for short sequences Fitch- Margoliash and neighbor joining were sometimes better. Bias of the estimates was inferred by measuring whether the independent estimates of a tree for different data sets were closer to the true tree than to each other. Parsimony and compatibility had particular difficulty with inaccuracy and bias when substitution rates varied among different branches. When rates of evolution varied among different sites, all methods showed signs of inaccuracy and bias.   相似文献   

4.
We conducted a simulation study of the phylogenetic methods UPGMA, neighbor joining, maximum parsimony, and maximum likelihood for a five-taxon tree under a molecular clock. The parameter space included a small region where maximum parsimony is inconsistent, so we tested inconsistency correction for parsimony and distance correction for neighbor joining. As expected, corrected parsimony was consistent. For these data, maximum likelihood with the clock assumption outperformed each of the other methods tested. The distance-based methods performed marginally better than did maximum parsimony and maximum likelihood without the clock assumption. Data correction was generally detrimental to accuracy, especially for short sequence lengths. We identified another region of the parameter space where, although consistent for a given method, some incorrect trees were each selected with up to twice the frequency of the correct (generating) tree for sequences of bounded length. These incorrect trees are those where the outgroup has been incorrectly placed. In addition to this problem, the placement of the outgroup sequence can have a confounding effect on the ingroup tree, whereby the ingroup is correct when using the ingroup sequences alone, but with the inclusion of the outgroup the ingroup tree becomes incorrect.  相似文献   

5.
Maximum likelihood and maximum parsimony are two key methods for phylogenetic tree reconstruction. Under certain conditions, each of these two methods can perform more or less efficiently, resulting in unresolved or disputed phylogenies. We show that a neural network can distinguish between four-taxon alignments that were evolved under conditions susceptible to either long-branch attraction or long-branch repulsion. When likelihood and parsimony methods are discordant, the neural network can provide insight as to which tree reconstruction method is best suited to the alignment. When applied to the contentious case of Strepsiptera evolution, our method shows robust support for the current scientific view, that is, it places Strepsiptera with beetles, distant from flies.  相似文献   

6.
Phylogenetic analyses of 110 serpin protein sequences revealed clades consistent with independent phylogenetic analyses based on exon-intron structure and diagnostic amino acid sites. Trees were estimated by maximum likelihood, neighbor joining, and partial split decomposition using both the BLOSUM 62 and Jones-Taylor-Thornton substitution matrices. Neighbor-joining trees gave results closest to those based on independent analyses using genomic and chromosomal data. The maximum-likelihood trees derived using the quartet puzzling algorithm were very conservative, producing many small clades that separated groups of proteins that other results suggest were related. Independent analyses based on exon-intron structure suggested that a neighbor-joining tree was more accurate than maximum-likelihood trees obtained using the quartet puzzling algorithm.  相似文献   

7.
Quartet-based phylogeny reconstruction methods, such as Quartet Puzzling, were introduced in the hope that they might be competitive with maximum likelihood methods, without being as computationally intensive. However, despite the numerous quartet-based methods that have been developed, their performance in simulation has been disappointing. In particular, Ranwez and Gascuel, the developers of one of the best quartet methods, conjecture that quartet-based methods have inherent limitations that make them unable to produce trees as accurate as neighbor joining or maximum parsimony. In this paper, we present Short Quartet Puzzling, a new quartet-based phylogeny reconstruction algorithm, and we demonstrate the improved topological accuracy of the new method over maximum parsimony and neighbor joining, disproving the conjecture of Ranwez and Gascuel. We also show a dramatic improvement over Quartet Puzzling. Thus, while our new method is not compared to any ML method (as it is not expected to be as accurate as the best of these), this study shows that quartet methods are not as limited in performance as was previously conjectured, and opens the possibility to further improvements through new algorithmic designs.  相似文献   

8.
On the basis of 1,290 bp sequences of the chloroplast generbcL, a molecular phylogeny of seven of nine genera of the Celtidaceae and four of six genera of the Ulmaceae was produced. These data were analyzed together with some other urticalean genera using three methods (i.e., maximum parsimony, maximum likelihood, and neighbor joining methods). Maximum likelihood topology among 18 trees obtained indicated that the Urticales are monophyletic with its common clade splitting basally into two: one leading to a line comprisingAmpelocera (traditionally placed in Celtidaceae) and Ulmaceae, and the other leading to a line comprising the remaining genera of Celtidaceae, Moraceae, and other Urticales. Ulmaceae, to whichAmpelocera is a sister group, are monophyletic, as supported by many lines of morphological evidence. In contrast to Ulmaceae, the monophyly of Celtidaceae (excludingAmpelocera) was not supported, and resolution of relationships of Celtidaceae with other Urticales, as well as of those within the family, is left for future study.  相似文献   

9.
通过对类人猿亚目中部分种类的孕激素受体基因进行分析,重建类人猿亚目的 系统发育关系.扩增并测定了来源于14个属的类人猿亚目物种的孕激素受体编码区序列,并基于这一序列数据,分别采用邻接法、最大简约法和最大似然法重建了系统发育关系.除了阔鼻下目,3种方法构建的系统发生树的拓扑结构类似且各节点支持率高.重建的人猿超科和猴超科内部亲缘关系支持多数人所认可的分类系统.本研究为黑猩猩和人的姐妹群关系提供了证据,提示黑猩猩比大猩猩或其他猿猴更接近人类.阔鼻下目中蜘蛛猴科、卷尾猴科和僧面猴科三者之间的系统发育关系在本研究中未得到很好辨析.  相似文献   

10.
The Testaceafilosia includes amoebae with filopodia and with a proteinaceous, agglutinated or siliceous test. To explore the deeper phylogeny of this group, we sequenced the small subunit ribosomal RNA coding region of 13 species, including the first sequence of an amoeba with an agglutinated test, Pseudodifflugia sp. Phylogenetic analyses using maximum parsimony and maximum likelihood methods as well as neighbor joining method yielded the following results: the order Euglyphida forms a monophyletic lineage with the sarcomonads as sister group. The next related taxa are the Chlorarachnea and the unidentified filose strain N-Por. In agreement with the previous studies the Phytomyxea branch off at the base of this lineage. The Monadofilosa (Testaceafilosia and Sarcomonadea) appear monophyletic. The Testaceafilosia are polyphyletic, because Pseudodifflugia sp. is positioned as the sister taxon to the sarcomonads. Within the order Euglyphida Paulinella branches off first, together with Cyphoderia followed by Tracheleuglypha. In maximum likelihood and neighbor joining analyses, the genus Euglypha is monophyletic. The branching pattern within the order Euglyphida reflects the evolution of shell morphology from simple to complex built test.  相似文献   

11.
The accuracy of phylogenetic methods is reinvestigated for the four-taxon case with a two-edge rate and a three-edge rate. Unlike previous studies involving computer simulations, the two-edge rate relates to branches that are sister taxa in the model tree. As with previous studies, certain methods are found to behave inaccurately in a portion of the parameter space where the two-edge rate is proportionally large. This phenomenon, to which parsimony is immune, is termed “long-branch repulsion” and the region of poor performance is called the Farris Zone. Maximum likelihood methods are shown to be particularly prone to failure when closely related taxa have long branches. Long-branch repulsion is demonstrated with an empirical case involving Strepsiptera and Diptera.  相似文献   

12.
文中分析现生介形类 (Ostracoda) 4目 2 1科 2 9属的 18SrDNA部分序列 ,采用最大似然法 (ML)、邻接法 (NJ)和最大简约法 (MP) ,尝试构建介形类的分子系统树 ;结合介形类的形态特征和化石记录 ,主要对速足目(Podocopida)、丽足目 (Myodocopida)及其超科级分类阶元的系统发生关系进行探讨。 3种分析方法均支持形态学上Podocopida ,Myodocopida和海萤超科 (Cypridinacea)的界定 ;但对Podocopida目土菱介超科 (Bairdiacea)的系统地位提出质疑 ,该类群可能不是单系发生的自然类群。上述分析显示 ,Podocopida,Myodocopida,Platycopida和Halo cypridina组成一个单系群 ;介形类在目、超科、科和属的水平上可能发生过多次辐射分化  相似文献   

13.
A new microsporidium, Liebermannia patagonica n. gen., n. sp., is described from midgut and gastric caecum epithelial cells of Tristira magellanica, an apterous grasshopper species of southern Patagonia, Argentina. L.patagonica is diplokaryotic, apansporoblastic, homosporous, and polysporoblastic. Transitional (from merogony to sporogony) stages and sporonts of L. patagonica were surrounded by host rough endoplasmic reticulum. The ovocylindrical spores measured 2.9 +/- 0.09 x 1.2 +/- 0.04 microm (fresh, n = 50), and they had an isofilar polar filament of only three coils and a cluster of tubules instead of a classical posterior vacuole. Prevalence was high (up to 80.6%) at the type locality for the four years sampled . Maximum likelihood , neighbor joining, maximum parismony analyses of the small submit rDNA all placed L.patagonica(Accession No. DQ 239917) in one with Orthosomella operophterae.  相似文献   

14.
We examine whether phylogenetic methods provide biased estimates of tree shape with respect to the random branching model. We investigate the performance of five commonly used phylogenetic methods using computer simulation: (1) maximum parsimony; (2) neighbor joining; (3) UPGMA with an outgroup taxon; (4) UPGMA without an outgroup taxon; and (5) maximum likelihood. All methods provide estimates of tree shape that are, on average, more asymmetrical than the true tree, especially when rates of evolution are high. We suggest a simple explanation for the bias and propose a modified test of tree shape that corrects for it.  相似文献   

15.
Classification methods used in machine learning (e.g., artificial neural networks, decision trees, and k-nearest neighbor clustering) are rarely used with population genetic data. We compare different nonparametric machine learning techniques with parametric likelihood estimations commonly employed in population genetics for purposes of assigning individuals to their population of origin ("assignment tests"). Classifier accuracy was compared across simulated data sets representing different levels of population differentiation (low and high F(ST)), number of loci surveyed (5 and 10), and allelic diversity (average of three or eight alleles per locus). Empirical data for the lake trout (Salvelinus namaycush) exhibiting levels of population differentiation comparable to those used in simulations were examined to further evaluate and compare classification methods. Classification error rates associated with artificial neural networks and likelihood estimators were lower for simulated data sets compared to k-nearest neighbor and decision tree classifiers over the entire range of parameters considered. Artificial neural networks only marginally outperformed the likelihood method for simulated data (0-2.8% lower error rates). The relative performance of each machine learning classifier improved relative likelihood estimators for empirical data sets, suggesting an ability to "learn" and utilize properties of empirical genotypic arrays intrinsic to each population. Likelihood-based estimation methods provide a more accessible option for reliable assignment of individuals to the population of origin due to the intricacies in development and evaluation of artificial neural networks.  相似文献   

16.
Phylogenies are often thought to be more dependent upon the specifics of the sequence alignment rather than on the method of reconstruction. Simulation of sequences containing insertion and deletion events was performed in order to determine the role that alignment accuracy plays during phylogenetic inference. Data sets were simulated for pectinate, balanced, and random tree shapes under different conditions (ultrametric equal branch length, ultrametric random branch length, nonultrametric random branch length). Comparisons between hypothesized alignments and true alignments enabled determination of two measures of alignment accuracy, that of the total data set and that of individual branches. In general, our results indicate that as alignment error increases, topological accuracy decreases. This trend was much more pronounced for data sets derived from more pectinate topologies. In contrast, for balanced, ultrametric, equal branch length tree shapes, alignment inaccuracy had little average effect on tree reconstruction. These conclusions are based on average trends of many analyses under different conditions, and any one specific analysis, independent of the alignment accuracy, may recover very accurate or inaccurate topologies. Maximum likelihood and Bayesian, in general, outperformed neighbor joining and maximum parsimony in terms of tree reconstruction accuracy. Results also indicated that as the length of the branch and of the neighboring branches increase, alignment accuracy decreases, and the length of the neighboring branches is the major factor in topological accuracy. Thus, multiple-sequence alignment can be an important factor in downstream effects on topological reconstruction.  相似文献   

17.
基于16S rRNA序列的角蟾科部分属间系统关系   总被引:4,自引:2,他引:2  
采用最大似然法(ML法)、最大简约法(MP法)、邻接法(NJ法)对来自角蟾科Megophryidae(Anura)8属17种及外群2种共25条400bp左右的线粒体16S rRNA序列进行系统发育关系分析。结果表明,用于分析的所有角蟾科物种形成两大支,第一支包括Megophrys,Brachytarsophrys和Atympanophrys,第二支包括Leptobrachium,Leptolalax,Scutiger,Oreolalax和Vibrissaphora。支持将角蟾科划分为两大类群,即第一支属于Megophryini族.第二支属于Leptobrachiini族。根据分子钟模型初步推测两类群问的分歧时间大致为14.2~18.7百万年前。在Megophryini族中,基因树的拓扑结构不支持Atympanophrys建立后的Megophrys为单系;而在Leptobrachiini族中,Leptolalax为一有效属,其系统发生较早。  相似文献   

18.
DNA sequences coding for 81% of the ompA gene from 24 chlamydial strains, representing all chlamydial species, were determined from DNA amplified by polymerase chain reactions. Chlamydial strains of serovars and strains with similar chromosomal restriction fragment length polymorphism had identical ompA DNA sequences. The ompA sequences were segregated into 23 different ompA alleles and aligned with each other, and phylogenetic relationships among them were inferred by neighbor-joining and maximum parsimony analyses. The neighbor-joining method produced a single phylogram which was rooted at the branch between two major clusters. One cluster included all Chlamydia trachomatis ompA alleles (trachoma group). The second cluster was composed of three major groups of ompA alleles: psittacosis group (alleles MN, 6BC, A22/M, B577, LW508, FEPN, and GPIC), pneumonia group (Chlamydia pneumoniae AR388 with the allele KOALA), and polyarthritis group (ruminant and porcine chlamydial alleles LW613, 66P130, L71, and 1710S with propensity for polyarthritis). These groups were distinguished through specific DNA sequence signatures. Maximum parsimony analysis yielded two equally most parsimonious phylograms with topologies similar to the ompA tree of neighbor joining. Two phylograms constructed from chlamydial genomic DNA distances had topologies identical to that of the ompA phylogram with respect to branching of the chlamydial species. Human serovars of C. trachomatis with essentially identical genomes represented a single taxonomic unit, while they were divergent in the ompA tree. Consistent with the ompA phylogeny, the porcine isolate S45, previously considered to be Chlamydia psittaci, was identified as C. trachomatis through biochemical characteristics. These data demonstrate that chlamydial ompA allelic relationships, except for human serovars of C. trachomatis, are cognate with chromosomal phylogenies.  相似文献   

19.
Partial nucleotide sequences of the large subunit of ribulose-1,5-bisphosphate carboxylase (rubisco) gene (1333 base pairs: about 90% of the gene) from several seed plants were determined. Phylogenetic trees based on amino acid sequences were inferred by using the neighbor joining and maximum likelihood methods. The results indicate (1) monophyly of gnetum group (Ephedra, Gnetum, Welwitschia), (2) monophyly of extant gymnosperms containing gnetum group, which contradicts the results of morphological data.  相似文献   

20.
The complete mitochondrial genome was obtained from a microchiropteran bat, Artibeus jamaicensis. The presumptive amino acid sequence for the protein-coding genes was compared with predicted amino acid sequences from several representatives of other mammalian orders. Data were analyzed using maximum parsimony, maximum likelihood, and neighbor joining. All analyses placed bats as the sister group of carnivores, perissodactyls, artiodactyls, and cetaceans (e.g., 100% bootstrap value with both maximum parsimony and neighbor joining). The data strongly support a new hypothesis about the origin of bats, specifically a bat/ferungulate grouping. None of the analyses supported the superorder Archonta (bats, flying lemurs, primates, and tree shrews). Our hypothesis regarding the relationship of bats to other eutherian mammals is concordant with previous molecular studies and contrasts with hypotheses based solely on morphological criteria and an incomplete fossil record. The A. jamaicensis mitochondrial DNA control region has a complex pattern of tandem repeats that differs from previously reported chiropteran control regions. Received: 22 January 1998 / Accepted: 3 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号