首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《MABS-AUSTIN》2013,5(2):181-189
Engineering the antibody Fc region to enhance the cytotoxic activity of therapeutic antibodies is currently an active area of investigation. The contribution of complement to the mechanism of action of some antibodies that target cancers and pathogens makes a compelling case for its optimization. Here we describe the generation of a series of Fc variants with enhanced ability to recruit complement. Variants enhanced the cytotoxic potency of an anti-CD20 antibody up to 23-fold against tumor cells in CDC assays, and demonstrated a correlated increase in C1q binding affinity. Complement-enhancing substitutions combined additively, and in one case synergistically, with substitutions previously engineered for improved binding to Fc gamma receptors. The engineered combinations provided a range of effector function activities, including simultaneously enhanced CDC, ADCC, and phagocytosis. Variants were also effective at boosting the effector function of antibodies targeting the antigens CD40 and CD19, in the former case enhancing CDC over 600-fold, and in the latter case imparting complement-mediated activity onto an IgG1 antibody that was otherwise incapable of it. This work expands the toolkit of modifications for generating monoclonal antibodies with improved therapeutic potential, and enables the exploration of optimized synergy between Fc gamma receptors and complement pathways for the destruction of tumors and infectious pathogens.  相似文献   

2.
《MABS-AUSTIN》2013,5(6):572-579
The Fc region of an antibody mediates effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), and plays a key role in the in vivo half-life of an antibody. In designing antibody therapeutics, it is sometimes desirable that the antibody has altered Fc-mediated properties. In the case of a "benign blocker" antibody, it is often desirable to diminish or abolish the ADCC and CDC functions while retaining its PK profile. Here, we report a novel engineered IgG isotype, IgG2m4, with reduced Fc functionality. IgG2m4 is based on the IgG2 isotype with four key amino acid residue changes derived from IgG4 (H268Q, V309L, A330S and P331S). An IgG2m4 antibody has an overall reduction in complement and Fcγ receptor binding in in vitro binding analyses while maintaining the normal in vivo serum half-life in rhesus.  相似文献   

3.
The human antibody immunoglobulin G1 (IgG1) b12 neutralizes a broad range of human immunodeficiency virus-type 1 (HIV-1) isolates in vitro and is able to protect against viral challenge in animal models. Neutralization of free virus, which is an antiviral activity of antibody that generally does not require the antibody Fc fragment, likely plays an important role in the protection observed. The role of Fc-mediated effector functions, which may reduce infection by inducing phagocytosis and lysis of virions and infected cells, however, is less clear. To investigate this role, we constructed a panel of IgG1 b12 mutants with point mutations in the second domain of the antibody heavy chain constant region (CH2). These mutations, as expected, did not affect gp120 binding or HIV-1 neutralization. IgG1 b12 mediated strong antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) of HIV-1-infected cells, but these activities were reduced or abrogated for the antibody mutants. Two mutants were of particular interest. K322A showed a twofold reduction in FcgammaR binding affinity and ADCC, while C1q binding and CDC were abolished. A double mutant (L234A, L235A) did not bind either FcgammaR or C1q, and both ADCC and CDC functions were abolished. In this study, we confirmed that K322 forms part of the C1q binding site in human IgG1 and plays an important role in the molecular interactions leading to complement activation. Less expectedly, we demonstrate that the lower hinge region in human IgG1 has a strong modulating effect on C1q binding and CDC. The b12 mutants K322A and L234A, L235A are useful tools for dissecting the in vivo roles of ADCC and CDC in the anti-HIV-1 activity of neutralizing antibodies.  相似文献   

4.
Immunostimulatory receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily are emerging as promising targets for cancer immunotherapies. To optimize the agonism of therapeutic antibodies to these receptors, Fc engineering of antibodies was applied to facilitate the clustering of cell surface TNFRs to activate downstream signaling pathways. One engineering strategy is to identify Fc mutations that facilitate antibody multimerization on the cell surface directly. From the analyses of the crystal packing of IgG1 structures, we identified a novel set of Fc mutations, T437R and K248E, that facilitated antibody multimerization upon binding to antigens on cell surface. In a NF-κB reporter assay, the engineered T437R/K248E mutations could facilitate enhanced agonism of an anti-OX40 antibody without the dependence on FcγRIIB crosslinking. Nonetheless, the presence of cells expressing FcγRIIB could facilitate a boost of the agonism of the engineered antibody with mutations on IgG1 Fc, but not on the silent IgG2σ Fc. The Fc engineered antibody also showed enhanced effector functions, including antibody-dependent cell-meditated cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity, depending on the IgG subtypes. Also, the engineered antibodies showed normal FcRn binding and pharmacokinetic profiles in mice. In summary, this study elucidated a novel Fc engineering approach to promote antibody multimerization on a cell surface, which could enhance agonism and improve effector function for anti-TNFR antibodies as well as other therapeutic antibodies.  相似文献   

5.
Bispecific antibodies targeting cancer cells   总被引:4,自引:0,他引:4  
In recent years, antibody therapy has become a new treatment modality for tumour patients, although the majority of responses are only partial and not long lasting. Based on evidence that effector-cell-mediated mechanisms significantly contribute to antibody efficacy in vivo, several approaches are currently pursued to improve the interaction between Fc receptor-expressing effector cells and tumour target antigens. These approaches include application of Fc receptor-directed bispecific antibodies, which contain one specificity for a tumour-related antigen and another for a cytotoxic Fc receptor on immune effector cells. Thereby, bispecific antibodies selectively engage cytotoxic trigger molecules on killer cells, avoiding, for example, interaction with inhibitory Fc receptors. In vitro, chemically linked bispecific antibodies directed against the Fc gamma receptors Fc gamma RIII (CD16) and Fc gamma RI (CD64), and the Fc alpha receptor Fc alpha RI (CD89), were significantly more effective than conventional IgG antibodies. Recent animal studies confirmed the therapeutic potential of these constructs. However, results from clinical trials have been less promising so far and have revealed clear limitations of these molecules, such as short plasma half-lives compared with conventional antibodies. In this review, we briefly summarize the scientific background for bispecific antibodies, and describe the rationale for the generation of novel recombinant molecules. These constructs may allow us to more specifically tailor pharmacokinetic properties to the demands of clinical applications.  相似文献   

6.
IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell–expressed antigen.  相似文献   

7.
The three types of IgG FcR (Fc gamma RI, Fc gamma RII, Fc gamma RIII) on human leukocytes play an important role in elimination of antibody-coated infectious agents. To further understand the role of the different Fc gamma R in mediating this killing, we examined the ability of human myeloid and lymphoid cells to kill the protozoan Toxoplasma gondii in the presence of antitoxoplasma IgG or bispecific antibodies. Although human myeloid cells (monocytes, macrophages, neutrophils, and eosinophils) all lysed unsensitized T. gondii, killing by these cells was significantly enhanced by opsonization with antitoxoplasma rabbit IgG. Human lymphocytes, however, did not lyse T. gondii unless the parasites were coated with antibody. The role of antibody and Fc gamma R in mediating ADCC of T. gondii was then examined using bispecific antibodies made by chemically cross-linking Fab fragments of antitoxoplasma antibodies to Fab fragments of antibodies specific for human leukocyte surface Ag, including Fc gamma R. Thus, simultaneous binding of these bispecifics to parasites and effector cells allowed an evaluation of killing when T. gondii were targeted to each Ag independently. Bispecifics which targeted T. gondii to Fc gamma RI, II or III enhanced lysis by monocytes. However, similar results were obtained with bispecifics targeting T. gondii to non-Fc gamma R Ag (CD11b or beta 2-microglobulin) on monocytes. Likewise, polymorphonuclear leukocytes mediated significantly more lysis in the presence of bispecifics linking T. gondii to Fc gamma RII, Fc gamma RIII, or the two non-Fc gamma R Ag CD11b and beta 2-microglobulin. Thus, although human myeloid cells did not require antibody-Fc gamma R triggering to kill T. gondii, antibody appeared to enhance lysis by capturing and directing the parasites to the effector cell surface. Human lymphocytes, in contrast, mediated significant lysis of T. gondii only in the presence of bispecifics targeting T. gondii to Fc gamma RIII, indicating a requirement for specific triggering of Fc gamma RIII for killing by large granular lymphocytes. Consequently, using bispecifics to compare targeting to specific Ag, both non-Fc gamma R and Fc gamma R, allowed determination of the role of antibody-Fc gamma R interactions in T. gondii killing. In addition, these studies demonstrate the potential of bispecifics in determining the role of specific Ag in killing of or infection by pathogens.  相似文献   

8.
The structure of asparagine-linked oligosaccharides attached to the antibody constant region (Fc) of human immunoglobulin G1 (IgG1) has been shown to affect the pharmacokinetics and antibody effector functions of antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, it is still unclear how differences in the N-linked oligosaccharide structures impact the biological activities of antibodies, especially those lacking core fucose. Here, we succeeded in generating core fucose-lacking human IgG1 antibodies with three different N-linked Fc oligosaccharides, namely, a high-mannose, hybrid, and complex type, using the same producing clone, and compared their activities. Cultivation of an alpha-1,6-fucosyltransferase (FUT8) knockout Chinese hamster ovary cell line in the presence or absence of a glycosidase inhibitor (either swainsonine or kifunensine) yielded antibody production of each of the three types without contamination by the others. Two of three types of nonnaturally occurring atypical oligosaccharide IgG1, except the complex type, reduced the affinity for both human lymphocyte receptor IIIa (FcgammaRIIIa) and the C1q component of the complement, resulting in reduction of ADCC and CDC. The bulky structure of the nonreducing end of N-linked Fc oligosaccharides is considered to contribute the CDC change, whereas the structural change in the reducing end, i.e. the removal of core fucose, causes ADCC enhancement through improved FcgammaRIIIa binding. In the pharmacokinetic profile, although no significant difference of human neonatal Fc receptor (FcRn)-binding affinity was observed among the three types, the complex type showed longer serum half-lives than the other types irrespective of core fucosylation in mice, which also suggests the contribution of the nonreducing end structure. The present study provides basic information on the effects of core fucose-lacking N-linked Fc oligosaccharides on antibody biological activities.  相似文献   

9.
Passive transfer of neutralizing antibodies is effective in protecting rhesus macaques against simian/human immunodeficiency virus (SHIV) challenge. In addition to neutralization, effector functions of the crystallizable fragment (Fc) of antibodies are involved in antibody-mediated protection against a number of viruses. We recently showed that interaction between the Fc fragment of the broadly neutralizing antibody IgG1 b12 and cellular Fcγ receptors (FcγRs) plays an important role in protection against SHIV infection in rhesus macaques. The specific nature of this Fc-dependent protection is largely unknown. To investigate, we generated a panel of 11 IgG1 b12 antibody variants with selectively diminished or enhanced affinity for the two main activating FcγRs, FcγRIIa and FcγRIIIa. All 11 antibody variants bind gp120 and neutralize virus as effectively as does wild-type b12. Binding studies using monomeric (enzyme-linked immunosorbent assay [ELISA] and surface plasmon resonance [SPR]) and cellularly expressed Fcγ receptors show decreased (up to 5-fold) and increased (up to 90-fold) binding to FcγRIIa and FcγRIIIa with this newly generated panel of antibodies. In addition, there was generally a good correlation between b12 variant affinity for Fcγ receptor and variant function in antibody-dependent cell-mediated virus inhibition (ADCVI), phagocytosis, NK cell activation assays, and antibody-dependent cellular cytotoxicity (ADCC) assays. In future studies, these b12 variants will enable the investigation of the protective role of individual FcγRs in HIV infection.  相似文献   

10.
Human IgG2 antibodies may exist in at least three distinct structural isomers due to disulfide shuffling within the upper hinge region. Antibody interactions with Fc gamma receptors and the complement component C1q contribute to immune effector functions. These interactions could be impacted by the accessibility and structure of the hinge region. To examine the role structural isomers may have on effector functions, a series of cysteine to serine mutations were made on a human IgG2 backbone. We observed structural homogeneity with these mutants and mapped the locations of their disulfide bonds. Importantly, there was no observed difference in binding to any of the Fc gamma receptors or C1q between the mutants and the wild‐type IgG2. However, differences were seen in the apparent binding affinity of these antibodies that were dependent on the selection of the secondary detection antibody used.  相似文献   

11.
Ha S  Ou Y  Vlasak J  Li Y  Wang S  Vo K  Du Y  Mach A  Fang Y  Zhang N 《Glycobiology》2011,21(8):1087-1096
N-glycosylation of immunoglobulin G (IgG) at asparigine residue 297 plays a critical role in antibody stability and immune cell-mediated Fc effector function. Current understanding pertaining to Fc glycosylation is based on studies with IgGs that are either fully glycosylated [both heavy chain (HC) glycosylated] or aglycosylated (neither HC glycosylated). No study has been reported on the properties of hemi-glycosylated IgGs, antibodies with asymmetrical glycosylation in the Fc region such that one HC is glycosylated and the other is aglycosylated. We report here for the first time a detailed study of how hemi-glycosylation affects the stability and functional activities of an IgG1 antibody, mAb-X, in comparison to its fully glycosylated counterpart. Our results show that hemi-glycosylation does not impact Fab-mediated antigen binding, nor does it impact neonatal Fc receptor binding. Hemi-glycosylated mAb-X has slightly decreased thermal stability in the CH2 domain and a moderate decrease (~20%) in C1q binding. More importantly, the hemi-glycosylated form shows significantly decreased binding affinities toward all Fc gamma receptors (FcγRs) including the high-affinity FcγRI, and the low-affinity FcγRIIA, FcγRIIB, FcγRIIIA and FcγRIIIB. The decreased binding affinities to FcγRs result in a 3.5-fold decrease in antibody-dependent cell cytotoxicity (ADCC). As ADCC often plays an important role in therapeutic antibody efficacy, glycosylation status will not only affect the antibody quality but also may impact the biological function of the product.  相似文献   

12.
Different classes of receptors for the Fc moiety of IgG (Fc gamma R) have been defined on human monocytes and macrophages: Fc gamma RI, Fc gamma RII, and Fc gamma RIII. All three classes are capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC). Fc gamma RI, which binds monomeric human IgG (hIgG) with high affinity, was shown an effective cytotoxic trigger molecule on different types of cells. In vitro, the inhibition of Fc gamma RI-mediated ADCC by hIgG is well documented. The low affinity receptor classes, Fc gamma RII and Fc gamma RIII, are not blocked by monomeric hIgG. Because monomeric hIgG is present at high concentrations in plasma and interstitial fluids it has been postulated inhibitory in vivo. We investigated the effect of rIFN-gamma on macrophage Fc gamma RI-mediated ADCC in the presence of low doses hIgG. With human E sensitized with hIgG as target cells, Fc gamma RI was studied selectively. We found that rIFN-gamma enhances both expression and cell surface density of Fc gamma RI on cultured peripheral blood monocytes. Furthermore, this cytokine partially reversed the inhibitory effect of monomeric hIgG on ADCC. More interestingly, we found that the cytolytic mechanism of monocyte-derived macrophages changed completely after prolonged culture with rIFN-gamma. Monocytes cultured for 9 days in control medium mediate predominantly phagocytosis. After long term rIFN-gamma stimulation (9 days), monocyte-derived macrophages almost completely lost the capacity to perform phagocytosis. Interestingly, they became highly efficient in mediating extracellular lysis of human E sensitized with hIgG. Short term rIFN-gamma stimulated monocyte-derived macrophages (for the last 40 h of culture) were found to mediate both phagocytosis and extracellular lysis. Our findings suggest that in vivo rIFN-gamma-stimulated macrophages may be most efficient in Fc gamma RI-mediated cytolysis as a consequence of a changed cytolytic mechanism in combination with enhanced Fc gamma RI density.  相似文献   

13.
《MABS-AUSTIN》2013,5(4):743-751
Fc effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP) are crucial to the efficacy of many antibody therapeutics. In addition to IgG, antibodies of the IgA isotype can also promote cell killing through engagement of myeloid lineage cells via interactions between the IgA-Fc and FcαRI (CD89). Herein, we describe a unique, tandem IgG1/IgA2 antibody format in the context of a trastuzumab variable domain that exhibits enhanced ADCC and ADCP capabilities. The IgG1/IgA2 tandem Fc format retains IgG1 FcγR binding as well as FcRn-mediated serum persistence, yet is augmented with myeloid cell-mediated effector functions via FcαRI/IgA Fc interactions. In this work, we demonstrate anti-human epidermal growth factor receptor-2 antibodies with the unique tandem IgG1/IgA2 Fc can better recruit and engage cytotoxic polymorphonuclear (PMN) cells than either the parental IgG1 or IgA2. Pharmacokinetics of IgG1/IgA2 in BALB/c mice are similar to the parental IgG, and far surpass the poor serum persistence of IgA2. The IgG1/IgA2 format is expressed at similar levels and with similar thermal stability to IgG1, and can be purified via standard protein A chromatography. The tandem IgG1/IgA2 format could potentially augment IgG-based immunotherapeutics with enhanced PMN-mediated cytotoxicity while avoiding many of the problems associated with developing IgAs.  相似文献   

14.
N‐linked Fc glycosylation of IgG1 monoclonal antibody therapeutics can directly influence their mechanism of action by impacting IgG effector functions such as antibody‐dependent cell‐mediated cytotoxicity (ADCC) and complement‐dependent cytotoxicity (CDC). Therefore, identification and detailed characterization of Fc glycan critical quality attributes (CQAs) provides important information for process design and control. A two‐step approach was used to identify and characterize the Fc glycan CQAs for an IgG1 Mab with effector function. First, single factor experiments were performed to identify glycan critical quality attributes that influence ADCC and CDC activities. Next, a full‐factorial design of experiment (DOE) to characterize the possible interactions and relative effect of these three glycan species on ADCC, CDC, and FcγRIIIa binding was employed. Additionally, the DOE data were used to develop models to predict ADCC, CDC, and FcγRIIIa binding of a given configuration of the three glycan species for this IgG1 molecule. The results demonstrate that for ADCC, afuco mono/bi has the largest effect, followed by HM and β‐gal, while FcγRIIIa binding is affected by afuco mono/bi and β‐gal. CDC, in contrast, is affected by β‐gal only. This type of glycan characterization and modeling can provide valuable information for development, manufacturing support and process improvements for IgG products that require effector function for efficacy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1181–1192, 2016  相似文献   

15.
《MABS-AUSTIN》2013,5(3):326-340
The presence or absence of core fucose in the Fc region N-linked glycans of antibodies affects their binding affinity toward FcγRIIIa as well as their antibody-dependent cell-mediated cytotoxicity (ADCC) activity. However, the quantitative nature of this structure-function relationship remains unclear. In this study, the in vitro biological activity of an afucosylated anti-CD20 antibody was fully characterized. Further, the effect of fucose reduction on Fc effector functions was quantitatively evaluated using the afucosylated antibody, its “regular” fucosylated counterpart and a series of mixtures containing varying proportions of “regular” and afucosylated materials. Compared with the “regular” fucosylated antibody, the afucosylated antibody demonstrated similar binding interactions with the target antigen (CD20), C1q and FcγRIa, moderate increases in binding to FcγRIIa and IIb, and substantially increased binding to FcγRIIIa. The afucosylated antibodies also showed comparable complement-dependent cytotoxicity activity but markedly increased ADCC activity. Based on EC50 values derived from dose-response curves, our results indicate that the amount of afucosylated glycan in antibody samples correlate with both FcγRIIIa binding activity and ADCC activity in a linear fashion. Furthermore, the extent of ADCC enhancement due to fucose depletion was not affected by the FcγRIIIa genotype of the effector cells.  相似文献   

16.
The extracellular domain of tumour necrosis factor (TNF) receptor II fused with the human IgG1 Fc region (TNFRII-Fc), as well as antibodies against TNF, has been used to treat rheumatoid arthritis. However, TNFRII-Fc is less effective than these antibodies in terms of antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against cells bearing TNF on the cell surface. We hypothesized that these activities could be increased by fusing TNFRII with tandemly repeated Fc (TNFRII-Fc-Fc). The affinities of TNFRII-Fc-Fc for soluble TNF-α and transmembrane TNF-α and the TNF-α cytotoxicity-inhibitory activity were as potent as those of TNFRII-Fc. TNFRII-Fc-Fc showed much higher binding avidity for Fcγ receptors than TNFRII-Fc and was more potent in terms of both ADCC and CDC against cells expressing transmembrane TNF-α. TNFRII-Fc-Fc of 80 kDa, as well as TNFRII-Fc-Fc of 200 kDa, was detected. TNFRII-Fc-Fc (80 kDa) was as potent as TNFRII-Fc in terms of both ADCC and CDC. These results suggest that Fc multimerization of receptor-Fc fusion proteins can augment effector functions such as ADCC and CDC, and thereby have the potential to provide a superior therapeutic effect. This may be the case not only for TNFRII-Fc but also for other receptor-Fc fusion proteins.  相似文献   

17.
Antibodies are principal immune components elicited by vaccines to induce protection from microbial pathogens. In the Thai RV144 HIV-1 vaccine trial, vaccine efficacy was 31% and the sole primary correlate of reduced risk was shown to be vigorous antibody response targeting the V1V2 region of HIV-1 envelope. Antibodies against V3 also were inversely correlated with infection risk in subsets of vaccinees. Antibodies recognizing these regions, however, do not exhibit potent neutralizing activity. Therefore, we examined the antiviral potential of poorly neutralizing monoclonal antibodies (mAbs) against immunodominant V1V2 and V3 sites by passive administration of human mAbs to humanized mice engrafted with CD34+ hematopoietic stem cells, followed by mucosal challenge with an HIV-1 infectious molecular clone expressing the envelope of a tier 2 resistant HIV-1 strain. Treatment with anti-V1V2 mAb 2158 or anti-V3 mAb 2219 did not prevent infection, but V3 mAb 2219 displayed a superior potency compared to V1V2 mAb 2158 in reducing virus burden. While these mAbs had no or weak neutralizing activity and elicited undetectable levels of antibody-dependent cellular cytotoxicity (ADCC), V3 mAb 2219 displayed a greater capacity to bind virus- and cell-associated HIV-1 envelope and to mediate antibody-dependent cellular phagocytosis (ADCP) and C1q complement binding as compared to V1V2 mAb 2158. Mutations in the Fc region of 2219 diminished these effector activities in vitro and lessened virus control in humanized mice. These results demonstrate the importance of Fc functions other than ADCC for antibodies without potent neutralizing activity.  相似文献   

18.
A human anti-CD19 antibody was expressed in fucosyltransferase-deficient CHO cells to generate nonfucosylated MDX-1342. Binding of MDX-1342 to human CD19-expressing cells was similar to its fucosylated parental antibody. However, MDX-1342 exhibited increased affinity for FcγRIIIa-Phe158 and FcγRIIIa-Val158 receptors as well as enhanced effector cell function, as demonstrated by increased potency and efficacy in antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis assays. MDX-1342 showed dose-dependent improvement in survival using a murine B-cell lymphoma model in which Ramos cells were administered systemically. In addition, low nanomolar binding to cynomolgus monkey CD19 and increased affinity for cynomolgus monkey FcγRIIIa was observed. In vivo administration of MDX-1342 in cynomolgus monkeys revealed potent B-cell depletion, suggesting its potential utility as a B-lymphocyte depletive therapy for malignancies and autoimmune indications.  相似文献   

19.
There are currently two Food and Drug Administration-approved classes of biologic agents that target tumor necrosis factor-α (TNF-α): anti-TNF monoclonal antibodies (mAbs) (adalimumab and infliximab), and soluble TNF receptors (etanercept). This study examined the ability of the TNF antagonists to: (1) bind various polymorphic variants of cell surface-expressed Fc receptors (FcγRs) and the complement component C1q, and (2) mediate Ab-dependent cellular cytotoxicity (ADCC) and complement-mediated cytotoxicity (CDC) killing of cells expressing membrane-bound TNF (mTNF) in vitro. Both mAbs and the soluble TNF receptor demonstrated low-level binding to the activating receptors FcγRI, FcγRIIa, and FcγRIIIa, and the inhibitory receptor FcγRIIb, in the absence of exogenous TNF. However, upon addition of TNF, the mAbs, but not etanercept, showed significantly increased binding, in particular to the FcγRII and FcγRIII receptors. Infliximab and adalimumab induced ADCC much more potently than etanercept. In the presence of TNF, both mAbs bound C1q in in vitro assays, but etanercept did not bind C1q under any conditions. Infliximab and adalimumab also induced CDC in cells expressing mTNF more potently than etanercept. Differences in the ability to bind ligand and mediate cell death may account for the differences in efficacy and safety of TNF antagonists.  相似文献   

20.
Engineering the Fc region of monoclonal antibodies (mAb) in order to enhance effector functions such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC) is likely to a be promising approach for next-generation mAb therapy. Here, we report on such an antibody, 113F, a novel CDC-enhancing variant of rituximab, and determine the tumor-associated factors influencing susceptibility to 113F-induced CDC. The latter included the quantity of complement inhibitors present, such as CD55 and CD59. We report that compared to rituximab, 113F mediated highly enhanced CDC against primary CD20-expressing lymphoma cells in vitro. Currently, a major problem in the field of immunotherapy research is the lack of suitable small animal models to evaluate human CDC in vivo. Therefore, we established a novel human tumor-bearing NOD/Shi-scid, IL-2Rγnull mouse model, in which human complement functions as the CDC mediator. We demonstrated that rituximab exerted significant antitumor effects via human CDC in this humanized mouse. The finding of specific localization of human C1q on CD20-expressing tumor cell membranes was consistent with the observation that human CDC indeed contributed to the antitumor effect in this model. Moreover, 113F exerted significantly more potent antitumor effects than rituximab in this in vivo model. The detection of more abundant dense signals from C1q using 113F compared to rituximab was consistent with the concept that this reagent represented a CDC-enhancing mAb. In the near future, the efficacy of this type of CDC-enhancing antibody will be determined in clinical trials in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号