首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FcγRIIIa, which is predominantly expressed on the surface of natural killer cells, plays a key role in antibody-dependent cell-mediated cytotoxicity (ADCC), a major effector function of therapeutic IgG antibodies that results in the death of aberrant cells. Despite the potential uses of aglycosylated IgG antibodies, which can be easily produced in bacteria and do not have complicated glycan heterogeneity issues, they show negligible binding to FcγRIIIa and abolish the activation of immune leukocytes for tumor cell clearance, in sharp contrast to most glycosylated IgG antibodies used in the clinical setting. For directed evolution of aglycosylated Fc variants that bind to FcγRIIIa and, in turn, exert potent ADCC effector function, we randomized the aglycosylated Fc region of full-length IgG expressed on the inner membrane of Escherichia coli. Multiple rounds of high-throughput screening using flow cytometry facilitated the isolation of aglycosylated IgG Fc variants that exhibited higher binding affinity to FcγRIIIa-158V and FcγRIIIa-158F compared with clinical-grade trastuzumab (Herceptin®). The resulting aglycosylated trastuzumab IgG antibody Fc variants could elicit strong peripheral blood mononuclear cell-mediated ADCC without glycosylation in the Fc region.  相似文献   

2.
《MABS-AUSTIN》2013,5(3):326-340
The presence or absence of core fucose in the Fc region N-linked glycans of antibodies affects their binding affinity toward FcγRIIIa as well as their antibody-dependent cell-mediated cytotoxicity (ADCC) activity. However, the quantitative nature of this structure-function relationship remains unclear. In this study, the in vitro biological activity of an afucosylated anti-CD20 antibody was fully characterized. Further, the effect of fucose reduction on Fc effector functions was quantitatively evaluated using the afucosylated antibody, its “regular” fucosylated counterpart and a series of mixtures containing varying proportions of “regular” and afucosylated materials. Compared with the “regular” fucosylated antibody, the afucosylated antibody demonstrated similar binding interactions with the target antigen (CD20), C1q and FcγRIa, moderate increases in binding to FcγRIIa and IIb, and substantially increased binding to FcγRIIIa. The afucosylated antibodies also showed comparable complement-dependent cytotoxicity activity but markedly increased ADCC activity. Based on EC50 values derived from dose-response curves, our results indicate that the amount of afucosylated glycan in antibody samples correlate with both FcγRIIIa binding activity and ADCC activity in a linear fashion. Furthermore, the extent of ADCC enhancement due to fucose depletion was not affected by the FcγRIIIa genotype of the effector cells.  相似文献   

3.
《MABS-AUSTIN》2013,5(2):409-421
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.  相似文献   

4.
As biosimilars enter the market, comparisons of product quality are needed. Manufacturing differences may lead to differences in critical quality attributes, which affect efficacy. Therefore, critical quality attributes (structure and biological activity) of Remicade® and of 2 biosimilar products (Flixabi®/Renflexis® and Remsima®/Inflectra®) were determined. We assessed binding to tumor necrosis factor in a fluorescence competitive binding assay; potency in a luciferase reporter gene assay; percentages of galactosylated glycan, afucose plus high mannosylated glycans, and charged glycan; FcγRIIIa (CD16) binding (assessed by 3 methods); and antibody-dependent cell-mediated cytotoxicity (ADCC) in the NK92-CD16a cell line and in peripheral blood mononuclear cells (PBMC). The results of Fab-related activity were similar for all products. Compared with Remicade®, Flixabi® had a lower percentage of charged glycan, and Remsima® had a higher percentage of galactosylated glycan and a lower percentage of afucose plus high mannosylated glycans. Whereas Remsima® and Remicade® are expressed in a Sp2/0 cell line, Flixabi® is expressed in a CHO cell line. Despite this difference, galactosylated glycans from the 3 products were not correlated with the expression system. The results of all 3 methods used in this study indicated that FcγRIIIa binding was lower with Remsima® than with Remicade®. The percentage of ADCC in NK92-CD16a cells was lower with Remsima® and higher with Flixabi® compared with Remicade®, but was similar for all 3 products in PBMC. Surface expression of CD16 was 5.7-fold greater on NK92-CD16a cells than on PBMC. Combined percentages of afucosylated and high mannosylated glycans were positively correlated with FcγRIIIa binding and ADCC in NK92-CD16 cells, while no correlation was observed in PBMC.  相似文献   

5.
For some antibodies intended for use as human therapeutics, reduced effector function is desired to avoid toxicities that might be associated with depletion of target cells. Since effector function(s), including antibody-dependent cell-mediated cytotoxicity (ADCC), require the Fc portion to be glycosylated, reduced ADCC activity antibodies can be obtained through aglycosylation of the human IgG1 isotype. An alternative is to switch to an IgG4 isotype in which the glycosylated antibody is known to have reduced effector function relative to glycosylated IgG1 antibody. ADCC activity of glycosylated IgG1 antibodies is sensitive to the fucosylation status of the Fc glycan, with both in vitro and in vivo ADCC activity increased upon fucose removal (“afucosylation”). The effect of afucosylation on activity of IgG4 antibodies is less well characterized, but it has been shown to increase the in vitro ADCC activity of an anti-CD20 antibody. Here, we show that both in vitro and in vivo activity of anti-CD20 IgG4 isotype antibodies is increased via afucosylation. Using blends of material made in Chinese hamster ovary (CHO) and Fut8KO-CHO cells, we show that ADCC activity of an IgG4 version of an anti-human CD20 antibody is directly proportional to the fucose content. In mice transgenic for human FcγRIIIa, afucosylation of an IgG4 anti-mouse CD20 antibody increases the B cell depletion activity to a level approaching that of the mIgG2a antibody.  相似文献   

6.
Therapeutic monoclonal antibodies are the fastest growing class of biological therapeutics for the treatment of various cancers and inflammatory disorders. In cancer immunotherapy, some IgG1 antibodies rely on the Fc-mediated immune effector function, antibody-dependent cellular cytotoxicity (ADCC), as the major mode of action to deplete tumor cells. It is well-known that this effector function is modulated by the N-linked glycosylation in the Fc region of the antibody. In particular, absence of core fucose on the Fc N-glycan has been shown to increase IgG1 Fc binding affinity to the FcγRIIIa present on immune effector cells such as natural killer cells and lead to enhanced ADCC activity. As such, various strategies have focused on producing afucosylated antibodies to improve therapeutic efficacy. This review discusses the relevance of antibody core fucosylation to ADCC, different strategies to produce afucosylated antibodies, and an update of afucosylated antibody drugs currently undergoing clinical trials as well as those that have been approved.  相似文献   

7.
Human leukocyte receptor IIIa (Fc gamma RIIIa) plays an important role in mediating therapeutic antibodies' antibody-dependent cellular cytotoxicity (ADCC), which is closely related to the clinical efficacy of anticancer processes in humans in vivo. The removal of the core fucose from oligosaccharides attached to the Fc region of antibodies improves Fc gamma RIIIa binding, allowing the antibodies to enhance dramatically the antibody effector functions of ADCC. In this study, the contribution of Fc gamma RIIIa oligosaccharides to the strength of the Fc gamma RIIIa/antibody complex was analyzed using a serial set of soluble human recombinant Fc gamma RIIIa lacking the oligosaccharides. A nonfucosylated antibody IgG1 appeared to have a significantly higher affinity to the wild-type Fc gamma RIIIa fully glycosylated at its five N-linked oligosaccharide sites than did the fucosylated IgG1, and this increased binding was almost abolished once all of the Fc gamma RIIIa glycosylation was removed. Our gain-of-function analysis in the Fc gamma RIIIa oligosaccharide at Asn-162 (N-162) confirmed that N-162 is the element required for the high binding affinity to nonfucosylated antibodies, as previously revealed by loss-of-function analyses. Interestingly, beyond our expectation, the Fc gamma RIIIa modified by N-162 alone showed a significantly higher binding affinity to nonfucosylated IgG1 than did the wild-type Fc gamma RIIIa. Attachment of the other four oligosaccharides, especially the Fc gamma RIIIa oligosaccharide at Asn-45 (N-45), hindered the high binding affinity of Fc gamma RIIIa to nonfucosylated IgG1. Our data clearly demonstrated that N-45 is an inhibitory element for the high Fc gamma RIIIa binding affinity mediated by N-162 to nonfucosylated antibodies. This information can be exploited for the structural-based functional study of Fc gamma RIIIa.  相似文献   

8.
《MABS-AUSTIN》2013,5(3):230-236
ADCC, antibody-dependent cellular cytotoxicity; CDC, complement-dependent cytotoxicity; Fc, antibody constant region; FcγRIIIa, human Fcγ-receptor IIIa; IgG, immunoglobulin G; NK cell, natural killer cell; CHO, Chinese hamster ovary; EPO, erythropoietin; Glc, glucose; Man, mannose; GlcNAc, N-acetylglucosamine; Gal, galactose; NANA; N-acetylneuraminic acid; FUT8, α-1,6 fucosyltransferase; GMD, GDP-mannose 4,6-dehydratase; FX, GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase; GFT, GDP-fucose transporter; siRNA, short interfering RNA; GnTIII, β-1,4-N-acetylglucosaminyltransferase; ManII, α-mannosidase II  相似文献   

9.
Fc engineering is a promising approach to enhance the antitumor efficacy of monoclonal antibodies (mAbs) through antibody-dependent cell-mediated cytotoxicity (ADCC). Glyco- and protein-Fc engineering have been employed to enhance FcγR binding and ADCC activity of mAbs; the drawbacks of previous approaches lie in their binding affinity to both FcγRIIIa allotypes, the ratio of activating FcγR binding to inhibitory FcγR binding (A/I ratio) or the melting temperature (TM) of the CH2 domain. To date, no engineered Fc variant has been reported that satisfies all these points. Herein, we present a novel Fc engineering approach that introduces different substitutions in each Fc domain asymmetrically, conferring optimal binding affinity to FcγR and specificity to the activating FcγR without impairing the stability. We successfully designed an asymmetric Fc variant with the highest binding affinity for both FcγRIIIa allotypes and the highest A/I ratio compared with previously reported symmetrically engineered Fc variants, and superior or at least comparable in vitro ADCC activity compared with afucosylated Fc variants. In addition, the asymmetric Fc engineering approach offered higher stability by minimizing the use of substitutions that reduce the TM of the CH2 domain compared with the symmetric approach. These results demonstrate that the asymmetric Fc engineering platform provides best-in-class effector function for therapeutic antibodies against tumor antigens.  相似文献   

10.
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been identified as one of the potentially critical effector functions underlying the clinical efficacy of some therapeutic immunoglobin G1 (IgG1) antibodies. It has been well established that higher levels of afucosylated N-linked glycan structures on the Fc region enhance the IgG binding affinity to the FcγIIIa receptor and lead to increased ADCC activity. However, whether terminal galactosylation of an IgG1 impacts its ADCC activity is less understood. Here, we used a new strategy for glycan enrichment and remodeling to study the impact of terminal galactose on ADCC activity for therapeutic IgG1s. Our results indicate that the degree of influence of terminal galactose on in vitro ADCC activity depends on the presence or absence of the core fucose, which is typically linked to the first N-acetyl glucosamine residue of an N-linked glycosylation core structure. Specifically, terminal galactose on afucosylated IgG1 mAbs enhanced ADCC activity with impact coefficients (ADCC%/Gal%) more than 20, but had minimal influence on ADCC activity on fucosylated structures with impact coefficient in the range of 0.1–0.2. Knowledge gained here can be used to guide product and process development activities for biotherapeutic antibodies that require effector function for efficacy, and also highlight the complexity in modulating the immune response through N-linked glycosylation of antibodies.  相似文献   

11.
The presence or absence of core fucose in the Fc region N-linked glycans of antibodies affects their binding affinity toward FcγRIIIa as well as their antibody-dependent cell-mediated cytotoxicity (ADCC) activity. However, the quantitative nature of this structure-function relationship remains unclear. In this study, the in vitro biological activity of an afucosylated anti-CD20 antibody was fully characterized. Further, the effect of fucose reduction on Fc effector functions was quantitatively evaluated using the afucosylated antibody, its “regular” fucosylated counterpart and a series of mixtures containing varying proportions of “regular” and afucosylated materials. Compared with the “regular” fucosylated antibody, the afucosylated antibody demonstrated similar binding interactions with the target antigen (CD20), C1q and FcγRIa, moderate increases in binding to FcγRIIa and IIb, and substantially increased binding to FcγRIIIa. The afucosylated antibodies also showed comparable complement-dependent cytotoxicity activity but markedly increased ADCC activity. Based on EC50 values derived from dose-response curves, our results indicate that the amount of afucosylated glycan in antibody samples correlate with both FcγRIIIa binding activity and ADCC activity in a linear fashion. Furthermore, the extent of ADCC enhancement due to fucose depletion was not affected by the FcγRIIIa genotype of the effector cells.  相似文献   

12.
The importance and effect of Fc glycosylation of monoclonal antibodies with regard to biological activity is widely discussed and has been investigated in numerous studies. Fc glycosylation of monoclonal antibodies from current production systems is subject to batch-to-batch variability. If there are glycosylation changes between different batches, these changes are observed not only for one but multiple glycan species. Therefore, studying the effect of distinct Fc glycan species such as galactosylated and sialylated structures is challenging due to the lack of well-defined differences in glycan patterns of samples used. In this study, the influence of IgG1 Fc galactosylation and sialylation on its effector functions has been investigated using five different samples which were produced from one single drug substance batch by in vitro glycoengineering. This sample set comprises preparations with minimal and maximal galactosylation and different levels of sialylation of fully galactosylated Fc glycans. Among others, Roche developed the glycosyltransferase enzyme sialyltransferase which was used for the in vitro glycoengineering activities at medium scale. A variety of analytical assays, including Surface Plasmon Resonance and recently developed FcγR affinity chromatography, as well as an optimized cell-based ADCC assay were applied to investigate the effect of Fc galactosylation and sialylation on the in vitro FcγRI, IIa, and IIIa receptor binding and ADCC activity of IgG1. The results of our studies do not show an impact, neither positive nor negative, of sialic acid- containing Fc glycans of IgG1 on ADCC activity, FcγRI, and RIIIa receptors, but a slightly improved binding to FcγRIIa. Furthermore, we demonstrate a galactosylation-induced positive impact on the binding activity of the IgG1 to FcγRIIa and FcγRIIIa receptors and ADCC activity.  相似文献   

13.
The binding sites on human IgG1 for human Fc gamma receptor (Fc gamma R) I, Fc gamma RIIa, Fc gamma RIIb, Fc gamma RIIIa and neonatal FcR have been mapped. A common set of IgG1 residues is involved in binding to all Fc gamma Rs, while Fc gamma RII and Fc gamma RIII utilize distinct sites outside this common set. In addition to residues which abrogated binding to the Fc gamma R, several positions were found which improved binding only to specific Fc gamma Rs or simultaneously improved binding to one type of Fc gamma R and reduced binding to another type. Selected IgG1 variants with improved binding to Fc gamma RIIIa were then tested in an in vitro antibody-dependent cellular cytotoxicity (ADCC) assay and showed an enhancement in ADCC when either peripheral blood mononuclear cells or natural killer cells were used.  相似文献   

14.
Passive transfer of neutralizing antibodies is effective in protecting rhesus macaques against simian/human immunodeficiency virus (SHIV) challenge. In addition to neutralization, effector functions of the crystallizable fragment (Fc) of antibodies are involved in antibody-mediated protection against a number of viruses. We recently showed that interaction between the Fc fragment of the broadly neutralizing antibody IgG1 b12 and cellular Fcγ receptors (FcγRs) plays an important role in protection against SHIV infection in rhesus macaques. The specific nature of this Fc-dependent protection is largely unknown. To investigate, we generated a panel of 11 IgG1 b12 antibody variants with selectively diminished or enhanced affinity for the two main activating FcγRs, FcγRIIa and FcγRIIIa. All 11 antibody variants bind gp120 and neutralize virus as effectively as does wild-type b12. Binding studies using monomeric (enzyme-linked immunosorbent assay [ELISA] and surface plasmon resonance [SPR]) and cellularly expressed Fcγ receptors show decreased (up to 5-fold) and increased (up to 90-fold) binding to FcγRIIa and FcγRIIIa with this newly generated panel of antibodies. In addition, there was generally a good correlation between b12 variant affinity for Fcγ receptor and variant function in antibody-dependent cell-mediated virus inhibition (ADCVI), phagocytosis, NK cell activation assays, and antibody-dependent cellular cytotoxicity (ADCC) assays. In future studies, these b12 variants will enable the investigation of the protective role of individual FcγRs in HIV infection.  相似文献   

15.
Engineering of antibodies for improved pharmacokinetics through enhanced binding to the neonatal Fc receptor (FcRn) has been demonstrated in transgenic mice, non-human primates and humans. Traditionally, such approaches have largely relied on random mutagenesis and display formats, which fail to address related critical attributes of the antibody, such as effector functions or biophysical stability. We have developed a structure- and network-based framework to interrogate the engagement of IgG with multiple Fc receptors (FcRn, C1q, TRIM21, FcγRI, FcγRIIa/b, FcγRIIIa) simultaneously. Using this framework, we identified features that govern Fc-FcRn interactions and identified multiple distinct pathways for enhancing FcRn binding in a pH-specific manner. Network analysis provided a novel lens to study the allosteric impact of half-life-enhancing Fc mutations on FcγR engagement, which occurs distal to the FcRn binding site. Applying these principles, we engineered a panel of unique Fc variants that enhance FcRn binding while maintaining robust biophysical properties and wild type-like binding to activating receptors. An antibody harboring representative Fc designs demonstrates a half-life improvement of > 9 fold in transgenic mice and > 3.5 fold in cynomolgus monkeys, and maintains robust effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity.  相似文献   

16.
There are currently two Food and Drug Administration-approved classes of biologic agents that target tumor necrosis factor-α (TNF-α): anti-TNF monoclonal antibodies (mAbs) (adalimumab and infliximab), and soluble TNF receptors (etanercept). This study examined the ability of the TNF antagonists to: (1) bind various polymorphic variants of cell surface-expressed Fc receptors (FcγRs) and the complement component C1q, and (2) mediate Ab-dependent cellular cytotoxicity (ADCC) and complement-mediated cytotoxicity (CDC) killing of cells expressing membrane-bound TNF (mTNF) in vitro. Both mAbs and the soluble TNF receptor demonstrated low-level binding to the activating receptors FcγRI, FcγRIIa, and FcγRIIIa, and the inhibitory receptor FcγRIIb, in the absence of exogenous TNF. However, upon addition of TNF, the mAbs, but not etanercept, showed significantly increased binding, in particular to the FcγRII and FcγRIII receptors. Infliximab and adalimumab induced ADCC much more potently than etanercept. In the presence of TNF, both mAbs bound C1q in in vitro assays, but etanercept did not bind C1q under any conditions. Infliximab and adalimumab also induced CDC in cells expressing mTNF more potently than etanercept. Differences in the ability to bind ligand and mediate cell death may account for the differences in efficacy and safety of TNF antagonists.  相似文献   

17.
《MABS-AUSTIN》2013,5(6):572-579
The Fc region of an antibody mediates effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), and plays a key role in the in vivo half-life of an antibody. In designing antibody therapeutics, it is sometimes desirable that the antibody has altered Fc-mediated properties. In the case of a "benign blocker" antibody, it is often desirable to diminish or abolish the ADCC and CDC functions while retaining its PK profile. Here, we report a novel engineered IgG isotype, IgG2m4, with reduced Fc functionality. IgG2m4 is based on the IgG2 isotype with four key amino acid residue changes derived from IgG4 (H268Q, V309L, A330S and P331S). An IgG2m4 antibody has an overall reduction in complement and Fcγ receptor binding in in vitro binding analyses while maintaining the normal in vivo serum half-life in rhesus.  相似文献   

18.
《MABS-AUSTIN》2013,5(5):1201-1210
The IgG1 Fc is a dimeric protein that mediates important antibody effector functions by interacting with Fcγ receptors (FcγRs) and the neonatal Fc receptor (FcRn). Here, we report the discovery of a monomeric IgG1 Fc (mFc) that bound to FcγRI with very high affinity, but not to FcγRIIIa, in contrast to wild-type (dimeric) Fc. The binding of mFc to FcRn was the same as that of dimeric Fc. To test whether the high-affinity binding to FcγRI can be used for targeting of toxins, a fusion protein of mFc with a 38 kDa Pseudomonas exotoxin A fragment (PE38), was generated. This fusion protein killed FcγRI-positive macrophage-like U937 cells but not FcγRI-negative cells, and mFc or PE38 alone had no killing activity. The lack of binding to FcγRIIIa resulted in the absence of Fc-mediated cytotoxicity of a scFv-mFc fusion protein targeting mesothelin. The pharmacokinetics of mFc in mice was very similar to that of dimeric Fc. The mFc's unique FcγRs binding pattern and related functionality, combined with its small size, monovalency and the preservation of FcRn binding which results in relatively long half-life in vivo, suggests that mFc has great potential as a component of therapeutics targeting inflammation mediated by activated macrophages overexpressing FcγRI and related diseases, including cancer.  相似文献   

19.
The N-glycan pattern of an IgG antibody, attached at a conserved site within the fragment crystallizable (Fc) region, is a critical antibody quality attribute whose structural variability can also impact antibody function. For tailoring the Fc glycoprofile, glycoengineering in cell lines as well as Fc amino acid mutations have been applied. Multiple glycoengineered Chinese hamster ovary cell lines were generated, including defucosylated (FUT8KO), α-2,6-sialylated (ST6KI), and defucosylated α-2,6-sialylated (FUT8KOST6KI), expressing either a wild-type anti-CD20 IgG (WT) or phenylalanine to alanine (F241A) mutant. Matrix-assisted laser desorption ionization-time of flight mass spectrometry characterization of antibody N-glycans revealed that the F241A mutation significantly increased galactosylation and sialylation content and glycan branching. Furthermore, overexpression of recombinant human α-2,6-sialyltransferase resulted in a predominance of α-2,6-sialylation rather than α-2,3-sialylation for both WT and heavily sialylated F241A antibody N-glycans. Interestingly, knocking out α-1,6-fucosyltransferase (FUT8KO), which removed core fucose, lowered the content of N-glycans with terminal Gal and increased levels of terminal GlcNAc and Man5 groups on WT antibody. Further complement-dependent cytotoxicity (CDC) analysis revealed that, regardless of the production cells, WT antibody samples have higher cytotoxic CDC activity with more exposed Gal residues compared to their individual F241A mutants. However, the FUT8KO WT antibody, with a large fraction of bi-GlcNAc structures (G0), displayed the lowest CDC activity of all WT antibody samples. Furthermore, for the F241A mutants, a higher CDC activity was observed for α-2,6- compared to α-2,3-sialylation. Antibody-dependent cellular cytotoxicity (ADCC) analysis revealed that the defucosylated WT and F241A mutants showed enhanced in vitro ADCC performance compared to their fucosylated counterparts, with the defucosylated WT antibodies displaying the highest overall ADCC activity, regardless of sialic acid substitution. Moreover, the FcγRIIIA receptor binding by antibodies did not always correspond directly with ADCC result. This study demonstrates that glycoengineering and protein engineering can both promote and inhibit antibody effector functions and represent practical approaches for varying glycan composition and functionalities during antibody development.  相似文献   

20.
A human anti-CD19 antibody was expressed in fucosyltransferase-deficient CHO cells to generate nonfucosylated MDX-1342. Binding of MDX-1342 to human CD19-expressing cells was similar to its fucosylated parental antibody. However, MDX-1342 exhibited increased affinity for FcγRIIIa-Phe158 and FcγRIIIa-Val158 receptors as well as enhanced effector cell function, as demonstrated by increased potency and efficacy in antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis assays. MDX-1342 showed dose-dependent improvement in survival using a murine B-cell lymphoma model in which Ramos cells were administered systemically. In addition, low nanomolar binding to cynomolgus monkey CD19 and increased affinity for cynomolgus monkey FcγRIIIa was observed. In vivo administration of MDX-1342 in cynomolgus monkeys revealed potent B-cell depletion, suggesting its potential utility as a B-lymphocyte depletive therapy for malignancies and autoimmune indications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号