首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intermediate filaments (IFs) make up the cytoskeleton of most eukaryotic cells. In vertebrates, a number of IF proteins have been identified, showing distributions unique to tissue or cell type. Information on helminth IFs is limited to some nematode species. To observe immunofluorescent localization of IFs in helminth tissues, we selected a murine hybridoma clone producing IgM antibody to multiple types of mammalian IF proteins and examined cross-reactivity to helminth proteins. The selected monoclonal antibody (HUSM-9) cross-reacted well with IFs from nematode species such as Toxocara canis, Dirofilaria immitis, Anisakis simplex, and Trichinella britovi; strong immunofluorescence on cryostat sections was detected in the hypodermis, cords, body muscle, smooth muscle of the uterus, and other epithelial structures. In platyhelminths, i.e., adult Schistosoma mansoni, larval Taenia taeniaeformis, adult Taenia crassiceps, and Echinococcus multilocularis protoscolex, the reactivity was weaker than in nematodes, and localized in the body wall muscle and subtegumental tissue. Western blotting of 8 M urea extracts of parasites with the antibody detected a pair of clear bands in nematodes but not in S. mansoni or the cestodes. These results might be explained by sparse distribution of IFs in platyhelminths, or low affinity of the used antibody to platyhelminth IF proteins, or both.  相似文献   

2.
The urochordate Ciona intestinalis is a well established system for embryological studies, and large scale EST sequences begin to emerge. We cloned five cytoplasmic intennediate filament (IF) cDNAs and made specific antibodies to the recombinant proteins. Self-assembly studies and immunofluorescence microscopy were used to study these proteins and their distribution. Confirming and extending previous studies in Styela, we found that Ciona protein IF-A is expressed in muscle and forms homopolymeric filaments while proteins IF-C and IF-D, which form only obligatory heteropolymeric filaments, resemble a keratin pair exclusively found in the entire epidermis. Protein IF-B and the new protein IF-F potentially reflect tunicate-specific IF proteins. They are found in the entire internal epithelia including the neural gland. We also extended the analysis to earlier developmental stages of Ciona. Protein IF-A is expressed in muscle from larval stages, whereas proteins IF-C and IF-D are found only in the tail epidermis. Protein IF-F is detected abundantly in the test cells of eggs, embryos and premetamorphic larvae. Our studies show that IF proteins could prove very useful markers in the study of cell fate determination in Ciona. They also support previous findings on the evolutionary relationships of different IF proteins. Non-vertebrate chordates have IF proteins which represent orthologs of vertebrate type I to III proteins, but also IF proteins that do not seem to fit into these classes. However, the intron positions of all tunicate IF genes are conserved with vertebrate type I to III genes, pointing to a common evolutionary origin.  相似文献   

3.
K Weber  U Plessmann    W Ulrich 《The EMBO journal》1989,8(11):3221-3227
The giant body muscle cells of the nematode Ascaris lumbricoides show a complex three dimensional array of intermediate filaments (IFs). They contain two proteins, A (71 kd) and B (63 kd), which we now show are able to form homopolymeric filaments in vitro. The complete amino acid sequence of B and 80% of A have been determined. A and B are two homologous proteins with a 55% sequence identity over the rod and tail domains. Sequence comparisons with the only other invertebrate IF protein currently known (Helix pomatia) and with vertebrate IF proteins show that along the coiled-coil rod domain, sequence principles rather than actual sequences are conserved in evolution. Noticeable exceptions are the consensus sequences at the ends of the rod, which probably play a direct role in IF assembly. Like the Helix IF protein the nematode proteins have six extra heptads in the coil 1b segment. These are characteristic of nuclear lamins from vertebrates and invertebrates and are not found in vertebrate IF proteins. Unexpectedly the enhanced homology between lamins and invertebrate IF proteins continues in the tail domains, which in vertebrate IF proteins totally diverge. The sequence alignment necessitates the introduction of a 15 residue deletion in the tail domain of all three invertebrate IF proteins. Its location coincides with the position of the karyophilic signal sequence, which dictates nuclear entry of the lamins. The results provide the first molecular support for the speculation that nuclear lamins and cytoplasmic IF proteins arose in eukaryotic evolution from a common lamin-like predecessor.  相似文献   

4.
The type VI intermediate filament (IF) protein synemin is a unique member of the IF protein superfamily. Synemin associates with the major type III IF protein desmin forming heteropolymeric intermediate filaments (IFs) within developed mammalian striated muscle cells. These IFs encircle and link all adjacent myofibrils together at their Z-lines, as well as link the Z-lines of the peripheral layer of cellular myofibrils to the costameres located periodically along and subjacent to the sarcolemma. Costameres are multi-protein assemblies enriched in the cytoskeletal proteins vinculin, alpha-actinin, and talin. We report herein a direct interaction of human alpha-synemin with the cytoskeletal protein talin by protein-protein interaction assays. The 312 amino acid insert (SNTIII) present only within alpha-synemin binds to the rod domain of talin in vitro and co-localizes with talin at focal adhesion sites within mammalian muscle cells. Confocal microscopy studies showed that synemin co-localizes with talin within the costameres of human skeletal muscle cells. Analysis of the primary sequences of human alpha- and beta-synemins revealed that SNTIII is composed of seven tandem repeats, each containing a specific Ser/Thr-X-Arg-His/Gln (S/T-X-R-H/Q) motif. Our results suggest human alpha-synemin plays an essential role in linking the heteropolymeric IFs to adherens-type junctions, such as the costameres within mammalian striated muscle cells, via its interaction with talin, thereby helping provide mechanical integration for the muscle cell cytoskeleton.  相似文献   

5.
The body muscle cells of the nematode Ascaris lumbricoides are characterized by massive amounts of intermediate filaments (IF). These occur in all three regions of this giant cell type. They traverse the cytoplasm of the balloon-like belly, which houses the nucleus, and occur as bundles in the arm-like extensions to the nerve. The organization of IF in the third region, the contractile fiber, was analyzed further by serial sections and three-dimensional reconstruction. IF bundles traverse the glycogen-rich lumina of the fiber and reach as baskets around the sarcomeres. Together with numerous dense bodies they form the Z-band-like arrangements. IF bundles reach the plasma membrane at hemidesmosome-like specializations often situated at deep membrane invaginations filled with a fibrillar component of the extracellular matrix. The ultrastructural appearance of IF bundles is connected to the contractional state of the sarcomeres. They appear straight in extended muscle but coil up upon contraction. In the pharynx massive IF bundles are oriented longitudinally. A second type of IF bundles follows the radially oriented sarcomeres. These reveal pronounced Z-band type structures with massive disks. IF surround the sarcomeres and seem to terminate at these disks. We discuss possible functions of the complex IF organization in body muscle and pharynx.  相似文献   

6.
Synemin is a cytoskeletal protein originally identified as an intermediate filament (IF)-associated protein because of its colocalization and copurification with the IF proteins desmin and vimentin in muscle cells. Our sequencing studies have shown that synemin is an unusually large member (1,604 residues, 182,187 Da) of the IF protein superfamily, with the majority of the molecule consisting of a long C-terminal tail domain. Molecular interaction studies demonstrate that purified synemin interacts with desmin, the major IF protein in mature muscle cells, and with alpha-actinin, an integral myofibrillar Z-line protein. Furthermore, expressed synemin rod and tail domains interact, respectively, with desmin and alpha-actinin. Analysis of endogenous protein expression in SW13 clonal lines reveals that synemin is coexpressed and colocalized with vimentin IFs in SW13.C1 vim+ cells but is absent in SW13.C2 vim- cells. Transfection studies indicate that synemin requires the presence of another IF protein, such as vimentin, in order to assemble into IFs. Taken in toto, our results suggest synemin functions as a component of heteropolymeric IFs and plays an important cytoskeletal cross-linking role by linking these IFs to other components of the cytoskeleton. Synemin in striated muscle cells may enable these heterofilaments to help link Z-lines of adjacent myofibrils and, thereby, play an important role in cytoskeletal integrity.  相似文献   

7.
Using monoclonal antibodies, we have identified two novel intermediate filament (IF) proteins, Gliarin and Macrolin, which are specifically expressed in the central nervous system of an invertebrate. The two proteins both contain the coiled-coil rod domain typical of the superfamily of IF proteins flanked by unique N- and C-terminal domains. Gliarin was found in all glial cells including macro- and microglial cells, whereas Macrolin was expressed in only a single pair of giant connective glial cells. The identification of Macrolin and Gliarin together with the characterization of the strictly neuronal IF protein Filarin in leech central nervous system demonstrate that multiple neuron- and glial-specific IFs are not unique to the vertebrate nervous system but are also found in invertebrates. Interestingly, phylogenetic analysis based on maximum parsimony indicated that the presence of neuron- and glial cell-specific IFs in coelomate protostomes as well as in vertebrates is not of monophyletic origin, but rather represents convergent evolution and appears to have arisen independently.  相似文献   

8.
Intermediate filament (IF) proteins are critical regulators in health and disease. The discovery of hundreds of mutations in IF genes and posttranslational modifications has been linked to a plethora of human diseases, including, among others, cardiomyopathies, muscular dystrophies, progeria, blistering diseases of the epidermis, and neurodegenerative diseases. The major IF proteins that have been linked to cardiomyopathies and heart failure are the muscle-specific cytoskeletal IF protein desmin and the nuclear IF protein lamin, as a subgroup of the known desminopathies and laminopathies, respectively. The studies so far, both with healthy and diseased heart, have demonstrated the importance of these IF protein networks in intracellular and intercellular integration of structure and function, mechanotransduction and gene activation, cardiomyocyte differentiation and survival, mitochondrial homeostasis, and regulation of metabolism. The high coordination of all these processes is obviously of great importance for the maintenance of proper, life-lasting, and continuous contraction of this highly organized cardiac striated muscle and consequently a healthy heart. In this review, we will cover most known information on the role of IFs in the above processes and how their deficiency or disruption leads to cardiomyopathy and heart failure.  相似文献   

9.
To screen invertebrate tissues for the possible expression of intermediate filaments (IFs), immunofluorescence microscopy with the monoclonal antibody anti-IFA known to detect all mammalian IF proteins was used (Pruss, R. M., R. Mirsky, M. C. Raff, R. Thorpe, A. J. Dowding, and B. H. Anderton. 1981. Cell, 27:419-428). In a limited survey, the lower chordate Branchiostoma as well as the invertebrates Arenicola, Lumbricus, Ascaris, and Helix pomatia revealed a positive reaction primarily on epithelia and on nerves, whereas certain other invertebrates appeared negative. To assess the nature of the positive reaction, Helix pomatia was used since a variety of epithelia was strongly stained by anti-IFA. Fixation-extraction procedures were developed that preserve in electron micrographs of esophagus impressive arrays of IFs as tonofilament bundles. Fractionation procedures performed on single cell preparations document large meshworks of long and curvilinear IF by negative stain. These structures can be purified. One- and two-dimensional gels show three components, all of which are recognized by anti-IFA in immunoblotting: 66 kD/pl 6.35, 53 kD/pl 6.05, and 52 kD/pl 5.95. The molar ratio between the larger and more basic polypeptide and the sum of the two more acidic forms is close to 1. After solubilization in 8.5 M urea, in vitro filament reconstitution is induced when urea is removed by dialysis against 2-50 mM Tris buffer at pH 7.8. The reconstituted filaments contain all three polypeptides. The results establish firmly the existence of invertebrate IFs outside neurones and demonstrate that the esophagus of Helix pomatia displays IFs which in line with the epithelial morphology of the tissue could be related to keratin IF of vertebrates.  相似文献   

10.
Using monoclonal antibodies, we have identified two novel intermediate filament (IF) proteins, Gliarin and Macrolin, which are specifically expressed in the central nervous system of an invertebrate. The two proteins both contain the coiled‐coil rod domain typical of the superfamily of IF proteins flanked by unique N‐ and C‐terminal domains. Gliarin was found in all glial cells including macro‐ and microglial cells, whereas Macrolin was expressed in only a single pair of giant connective glial cells. The identification of Macrolin and Gliarin together with the characterization of the strictly neuronal IF protein Filarin in leech central nervous system demonstrate that multiple neuron‐ and glial‐specific IFs are not unique to the vertebrate nervous system but are also found in invertebrates. Interestingly, phylogenetic analysis based on maximum parsimony indicated that the presence of neuron‐ and glial cell–specific IFs in coelomate protostomes as well as in vertebrates is not of monophyletic origin, but rather represents convergent evolution and appears to have arisen independently. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 244–253, 1999  相似文献   

11.
The crucial role of structural support fulfilled by keratin intermediate filaments (IFs) in surface epithelia likely requires that they be organized into cross-linked networks. For IFs comprised of keratins 5 and 14 (K5 and K14), which occur in basal keratinocytes of the epidermis, formation of cross-linked bundles is, in part, self-driven through cis-acting determinants. Here, we targeted the expression of a bundling-competent KRT5/KRT8 chimeric cDNA (KRT8bc) or bundling-deficient wild type KRT8 as a control to the epidermal basal layer of Krt5-null mice to assess the functional importance of keratin IF self-organization in vivo. Such targeted expression of K8bc rescued Krt5-null mice with a 47% frequency, whereas K8 completely failed to do so. This outcome correlated with lower than expected levels of K8bc and especially K8 mRNA and protein in the epidermis of E18.5 replacement embryos. Ex vivo culture of embryonic skin keratinocytes confirmed the ability of K8bc to form IFs in the absence of K5. Additionally, electron microscopy analysis of E18.5 embryonic skin revealed that the striking defects observed in keratin IF bundling, cytoarchitecture, and mitochondria are partially restored by K8bc expression. As young adults, viable KRT8bc replacement mice develop alopecia and chronic skin lesions, indicating that the skin epithelia are not completely normal. These findings are consistent with a contribution of self-mediated organization of keratin IFs to structural support and cytoarchitecture in basal layer keratinocytes of the epidermis and underscore the importance of context-dependent regulation for keratin genes and proteins in vivo.  相似文献   

12.
In vertebrates, striated muscle development depends on both the expression of members of the myogenic regulatory factor family (MRFs) and on extrinsic cellular cues, including Wnt signaling. The 81 embryonically born body wall muscle cells in C. elegans are comparable to the striated muscle of vertebrates. These muscle cells all express the gene hlh-1, encoding HLH-1 (CeMyoD) which is the only MRF-related factor in the nematode. However, genetic studies have shown that body wall muscle development occurs in the absence of HLH-1 activity, making the role of this factor in nematode myogenesis unclear. By ectopically expressing hlh-1 in early blastomeres of the C. elegans embryo, we show that CeMyoD is a bona fide MRF that can convert almost all cells to a muscle-like fate, regardless of their lineage of origin. The window during which ectopic HLH-1 can function is surprisingly broad, spanning the first 3 hours of development when cell lineages are normally established and non-muscle cell fate markers begin to be expressed. We have begun to explore the maternal factors controlling zygotic hlh-1 expression. We find that the Caudal-related homeobox factor PAL-1 can activate hlh-1 in blastomeres that either lack POP-1/TCF or that have down-regulated POP-1/TCF in response to Wnt/MAP kinase signaling. The potent myogenic activity of HLH-1 highlights the remarkable developmental plasticity of early C. elegans blastomeres and reveals the evolutionary conservation of MyoD function.  相似文献   

13.
Keratin intermediate filaments (IFs) fulfill an important function of structural support in epithelial cells. The necessary mechanical attributes require that IFs be organized into a crosslinked network and accordingly, keratin IFs are typically organized into large bundles in surface epithelia. For IFs comprised of keratins 5 and 14 (K5, K14), found in basal keratinocytes of epidermis, bundling can be self-driven through interactions between K14's carboxy-terminal tail domain and two regions in the central α-helical rod domain of K5. Here, we exploit theoretical principles and computational modeling to investigate how such cis-acting determinants best promote IF crosslinking. We develop a simple model where keratin IFs are treated as rigid rods to apply Brownian dynamics simulation. Our findings suggest that long-range interactions between IFs are required to initiate the formation of bundlelike configurations, while tail domain-mediated binding events act to stabilize them. Our model explains the differences observed in the mechanical properties of wild-type versus disease-causing, defective IF networks. This effort extends the notion that the structural support function of keratin IFs necessitates a combination of intrinsic and extrinsic determinants, and makes specific predictions about the mechanisms involved in the formation of crosslinked keratin networks in vivo.  相似文献   

14.
Keratin intermediate filaments (IFs) form cross-linked arrays to fulfill their structural support function in epithelial cells and tissues subjected to external stress. How the cross-linking of keratin IFs impacts the morphology and differentiation of keratinocytes in the epidermis and related surface epithelia remains an open question. Experimental measurements have established that keratinocyte spreading area is inversely correlated to the extent of keratin IF bundling in two-dimensional culture. In an effort to quantitatively explain this relationship, we developed a mathematical model in which isotropic cell spreading is considered as a first approximation. Relevant physical properties such as actin protrusion, adhesion events, and the corresponding response of lamellum formation at the cell periphery are included in this model. Through optimization with experimental data that relate time-dependent changes in keratinocyte surface area during spreading, our simulation results confirm the notion that the organization and mechanical properties of cross-linked keratin filaments affect cell spreading; in addition, our results provide details of the kinetics of this effect. These in silico findings provide further support for the notion that differentiation-related changes in the density and intracellular organization of keratin IFs affect tissue architecture in epidermis and related stratified epithelia.  相似文献   

15.
Synemin is a very large, unique member of the IF (intermediate filament) protein superfamily. Association of synemin with the major IF proteins, desmin and/or vimentin, within muscle cells forms heteropolymeric IFs. We have previously identified interactions of avian synemin with alpha-actinin and vinculin. Avian synemin, however, is expressed as only one form, whereas human synemin is expressed as two major splice variants, namely alpha- and beta-synemins. The larger alpha-synemin contains an additional 312-amino-acid insert (termed SNTIII) located near the end of the long C-terminal tail domain. Whether alpha- and beta-synemins have different cellular functions is unclear. In the present study we show, by in vitro protein-protein interaction assays, that SNTIII interacts directly with both vinculin and metavinculin. Furthermore, SNTIII interacts with vinculin in vivo, and this association is promoted by PtdIns(4,5)P(2). SNTIII also specifically co-localizes with vinculin within focal adhesions when transiently expressed in mammalian cells. In contrast, other regions of synemin show distinct localization patterns in comparison with those of SNTIII, without labelling focal adhesions. Our results indicate that alpha-synemin, but not beta-synemin, interacts with both vinculin and metavinculin, thereby linking the heteropolymeric IFs to adhesion-type junctions, such as the costameres located within human striated muscle cells.  相似文献   

16.
With the exception of keratinocytes and some types of cultured cells, ciliated cells appear to be the major cell type which contains the most developed cytokeratin meshwork. We report, here, on the intermediate filament (IF) organization in ciliated cells of the quail oviduct using ultrastructural and immunocytochemical techniques. Special attention was focused on the relationships between IF and other cell organelles. The meshwork of IFs appears as a subapical disk constituted of separate bundles mainly composed of interwoven 10-nm filaments. From this subapical region, a descending bundle connects the array of IFs occupying the basal part of the cell. The nucleus is maintained in a loose network of IFs. In ciliated cells there are no free centrioles, but IFs are related to centriolar appendages (striated rootlets).  相似文献   

17.
Expression of cytoplasmic intermediate filament (IF) proteins starts in the gastrula with three keratins (k1, Y1, D1) and protein X1. The number of IF proteins expressed increases at the neurula and early larval stages to seven and 11, respectively, and reaches 13 in the adult. Using antibodies specific for a single IF protein the expression patterns of nine of the 13 IF proteins were analyzed at different developmental stages. Keratin k1 of the larval epidermis is replaced in the juvenile by keratin E1. Protein C1 of the larval epidermis persists only weakly and only in the most ventral part of the adult. While down-regulated in the adult epidermis k1 and C1 are major proteins in the atrial epithelium which forms in the later larva. B1 is currently the only IF protein expressed in mesodermally derived tissues such as the muscle tails and some coelomic epithelia. Two-dimensional gels confirm that keratins are the major IF proteins in the nerve cord. Immunogold electronmicroscopy shows that proteins X1 and C2 are present in epidermis and nerve cord in keratin IF.  相似文献   

18.
The expression of erythroblast antigen (Ag-Eb) in cell membranes during pre- and postnatal mouse development was studied by immunofluorescence using the monoclonal antibody MAE-15. Ag-Eb was detected in embryonic liver, spleen, epithelia of intestine, various glands and skin, as well as in extraembryonic tissues (yolk sac and trophoblast). In pregnant mice positive immunofluorescence was observed in placenta and on the surface of decidual cells in uterus. In adult non-pregnant mice Ag-Eb expression was detected not only in membranes of erythroid cells, but also in non-hemopoietic tissues, such as epithelia of various glands, intestine, kidney and testis, brain endothelium, basal layer of epidermis, and intercalated discs of the heart muscle. A possible role of Ag-Eb in processes of cell transport is discussed.  相似文献   

19.
An expression vector was prepared containing a cDNA coding for a truncated version of the intermediate filament (IF) protein desmin. The encoded truncated desmin protein lacks a portion of the highly conserved alpha-helical rod region as well as the entire nonhelical carboxy-terminal domain. When transiently expressed in primary fibroblasts, or in differentiating postmitotic myoblasts and multinucleated myotubes, the truncated protein induces the complete dismantling of the preexisting vimentin or desmin/vimentin IF networks, respectively. Instead, in both cell types vimentin and desmin are packaged into hybrid spheroid bodies scattered throughout the cytoplasm. Despite the complete lack of intact IFs, myoblasts and myotubes expressing truncated desmin assemble and laterally align normal striated myofibrils and contract spontaneously in a manner indistinguishable from that of control myogenic cells. In older cultures the spheroid bodies shift from a longitudinal to a predominantly transverse orientation and loosely align along the I-Z-I-regions of striated myofibrils (Bennett, G.S., S. Fellini, Y. Toyama, and H. Holtzer. 1979. J. Cell Biol. 82:577-584), analogous to the translocation of intact desmin/vimentin IFs in control muscle. These results suggest the need for a critical reexamination of currently held concepts regarding the functions of desmin IFs during myogenesis.  相似文献   

20.
Intermediate filaments (IFs) represent one of the prominent cytoskeletal elements of metazoan cells. Their constituent proteins are coded by a multigene family, whose members are expressed in complex patterns that are controlled by developmental programs of differentiation. Hence, IF proteins found in epidermis differ significantly from those in muscle or neuronal tissues. Due to their fibrous nature, which stems from a fairly conserved central alpha-helical coiled-coil rod domain, IF proteins have long resisted crystallization and thus determination of their atomic structure. Since they represent the primary structural elements that determine the shape of the nucleus and the cell more generally, a major challenge is to arrive at a more rational understanding of how their nanomechanical properties effect the stability and plasticity of cells and tissues. Here, we review recent structural results of the coiled-coil dimer, assembly intermediates and growing filaments that have been obtained by a hybrid methods approach involving a rigorous combination of X-ray crystallography, small angle X-ray scattering, cryo-electron tomography, computational analysis and molecular modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号