首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Among‐population variation in chill‐coma onset temperature (CTmin) is thought to reflect natural selection for local microclimatic conditions. However, few studies have investigated the evolutionary importance of cold tolerance limits in natural populations. Here, using a common‐environment approach, we show pronounced variation in CTmin (± 4 °C) across the geographic range of a nonoverwintering crop pest, Eldana saccharina. The outcomes of this study provide two notable results in the context of evolved chill‐coma variation: (1) CTmin differs significantly between geographic lines and is significantly positively correlated with local climates, and (2) there is a stable genetic architecture underlying CTmin trait variation, likely representing four key genes. Crosses between the most and least cold‐tolerant geographic lines confirmed a genetic component to CTmin trait variation. Slower developmental time in the most cold‐tolerant population suggests that local adaptation involves fitness costs; however, it confers fitness benefits in that environment. A significant reduction in phenotypic plasticity in the laboratory population suggests that plasticity of this trait is costly to maintain but also likely necessary for field survival. These results are significant for understanding field population adaption to novel environments, whereas further work is needed to dissect the underlying mechanism and gene(s) responsible.  相似文献   

2.
Insect cold tolerance is both phenotypically-plastic and evolutionarily labile, but the mechanisms underlying this variation are uncertain. Chill-susceptible insects lose ion and water homeostasis in the cold, which contributes to the development of injuries and eventually death. We thus hypothesized that more cold-tolerant insects will better maintain ion and water balance at low temperatures. We used rapid cold-hardening (RCH) and cold acclimation to improve cold tolerance of male Gryllus pennsylvanicus, and also compared this species to its cold-tolerant relative (Gryllus veletis). Cold acclimation and RCH decreased the critical thermal minimum (CTmin) and chill coma recovery time (CCR) in G. pennsylvanicus, but while cold acclimation improved survival of 0 °C, RCH did not; G. veletis was consistently more cold-tolerant (and had lower CCR and CTmin) than G. pennsylvanicus. During cold exposure, hemolymph water and Na+ migrated to the gut of warm-acclimated G. pennsylvanicus, which increased hemolymph [K+] and decreased muscle K+ equilibrium potentials. By contrast, cold-acclimated G. pennsylvanicus suffered a smaller loss of ion and water homeostasis during cold exposure, and this redistribution did not occur at all in cold-exposed G. veletis. The loss of ion and water balance was similar between RCH and warm-acclimated G. pennsylvanicus, suggesting that different mechanisms underlie decreased CCR and CTmin compared to increased survival at 0 °C. We conclude that increased tolerance of chilling is associated with improved maintenance of ion and water homeostasis in the cold, and that this is consistent for both phenotypic plasticity and evolved cold tolerance.  相似文献   

3.
South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a devastating invasive global insect pest of tomato, Solanum lycopersicum (Solanaceae). In nature, pests face multiple overlapping environmental stressors, which may significantly influence survival. To cope with rapidly changing environments, insects often employ a suite of mechanisms at both acute and chronic time-scales, thereby improving fitness at sub-optimal thermal environments. For T. absoluta, physiological responses to transient thermal variability remain under explored. Moreso, environmental effects and physiological responses may differ across insect life stages and this can have implications for population dynamics. Against this background, we investigated short and long term plastic responses to temperature of T. absoluta larvae (4th instar) and adults (24–48 h old) from field populations. We measured traits of temperature tolerance vis critical thermal limits [critical thermal minima (CTmin) and maxima (CTmax)], heat knockdown time (HKDT), chill coma recovery time (CCRT) and supercooling points (SCP). Our results showed that at the larval stage, Rapid Cold Hardening (RCH) significantly improved CTmin and HKDT but impaired SCP and CCRT. Heat hardening in larvae impaired CTmin, CCRT, SCP, CTmax but not HKDT. In adults, both heat and cold hardening generally impaired CTmin and CTmax, but had no effects on HKDT, SCP and CCRT. Low temperature acclimation significantly improved CTmin and HKDT while marginally compromising CCRT and CTmax, whereas high temperature acclimation had no significant effects on any traits except for HKDT in larvae. Similarly, low and high temperature acclimation had no effects on CTmin, SCPs and CTmax, while high temperature acclimation significantly compromised adult CCRT. Our results show that larvae are more thermally plastic than adults and can shift their thermal tolerance in short and long timescales. The larval plasticity reported here could be advantageous in new envirnments, suggesting an asymmetrical ecological role of larva relative to adults in facilitating T. absoluta invasion.  相似文献   

4.
Cold resistance in insects has traditionally been measured in terms of survival following a stress, but alternative methods are increasingly being used because of their relevance to the ecology of organisms and their utility in characterizing variation among species, populations and individuals. One such method capable of discriminating among Drosophila species and conspecific Drosophila populations from different environments is adult chill coma recovery time, the time taken for adults to become active again after being knocked down by a cold stress. Here we characterized the chill coma response of D.melanogaster in detail. Adults were exposed to a range of temperatures and stressful periods prior to measuring recovery. Recovery from chill coma in D.melanogaster was biphasic; as flies were stressed under cooler temperatures, recovery times leveled off and then decreased before sharply increasing again as mortality starts to occur. This biphasic response has previously been observed in D.subobscura where it has a somewhat different shape. A second mechanism therefore acts at relatively lower temperatures to ameliorate the effects of the cold stress. When D.melanogaster were reared at 19 and 25 °C for two generations, the shape of the curve relating temperature to recovery time was similar, but flies from the warmer temperature had longer recovery times and showed responses that leveled off and then decreased at relatively higher temperatures. As exposure time to cold stress was increased, recovery times also increased except at mild stress levels. Chill coma recovery in D.melanogaster is a complex trait and likely to reflect multiple underlying components.  相似文献   

5.
The study of thermal tolerance and acclimation capacity in Jack Beardsley mealybug, Pseudococcus jackbeardsleyi Gimpel and Miller is the crucial step in determining their abilities to cope with climate change. Thus, the aim of this research was to determine the effects of acclimation temperatures on the changes in thermal tolerance of P. jackbeardsleyi. The influences of acclimation temperature at moderate (25?°C) and high (35?°C) temperatures on their lower and upper thermal limits were measured composed of critical thermal minimum (CTmin), maximum (CTmax), chill coma temperature (CCT) and heat coma temperature (HCT) for first instar nymphs and adults. The important information derived from this study revealed that the upper thermal limits of adults are constrained to a relative narrow range that will make them sensitive to relative small changes in temperatures, whilst all mean upper thermal indices at 35?°C were significantly higher than at 25?°C for nymphs. For this highlight notice, nymphs have more potential to change their upper thermal limits which will allow them to withstand high temperatures in the field. These results are a sign to warn us that P. jackbeardsleyi could become highly noxious which cause severe outbreaks damage to the crops in the tropics under global warming.  相似文献   

6.
The ability of an organism to tolerate seasonal temperature changes, such as extremely cold temperatures during the winter, can be influenced by their pathogens. We tested how exposure to a virulent fungal pathogen, Batrachochytrium dendrobatidis (Bd), affected the critical thermal minimum (CTmin) of two frog species, Hyla versicolor (gray treefrog) and Lithobates palustris (pickerel frog). The CTmin is the minimum thermal performance point of an organism, which we estimated via righting response trials. For both frog species, we compared the righting response of Bd‐exposed and Bd‐unexposed individuals in either a constant (15ºC) environment or with decreasing temperatures (−1°C/2.5 min) starting from 15°C. The CTmin for both species was higher for Bd‐exposed frogs than unexposed frogs, and the CTmin of H. versicolor was higher than L. palustris. We also found that Bd‐exposed frogs of both species righted themselves significantly fewer times in both decreasing and constant temperature trials. Our findings show that pathogen exposure can reduce cold tolerance and limit the thermal performance range of hosts, which may lead to increased overwintering mortality.  相似文献   

7.
Chill susceptible insects like Drosophila lose the ability to regulate water and ion homeostasis at low temperatures. This loss of hemolymph ion and water balance drives a hyperkalemic state that depolarizes cells, causing cellular injury and death. The ability to maintain ion homeostasis at low temperatures and/or recover ion homeostasis upon rewarming is closely related to insect cold tolerance. We thus hypothesized that changes to organismal ion balance, which can be achieved in Drosophila through dietary salt loading, could alter whole animal cold tolerance phenotypes. We put Drosophila melanogaster in the presence of diets highly enriched in NaCl, KCl, xylitol (an osmotic control) or sucrose (a dietary supplement known to impact cold tolerance) for 24 h and confirmed that they consumed the novel food. Independently of their osmotic effects, NaCl, KCl, and sucrose supplementation all improved the ability of flies to maintain K+ balance in the cold, which allowed for faster recovery from chill coma after 6 h at 0 °C. These supplements, however, also slightly increased the CTmin and had little impact on survival rates following chronic cold stress (24 h at 0 °C), suggesting that the effect of diet on cold tolerance depends on the measure of cold tolerance assessed. In contrast to prolonged salt stress, brief feeding (1.5 h) on diets high in salt slowed coma recovery, suggesting that the long-term effects of NaCl and KCl on chilling tolerance result from phenotypic plasticity, induced in response to a salty diet, rather than simply the presence of the diet in the gut lumen.  相似文献   

8.
The incidence and severity of environmental stressors associated with global climate change are increasing and insects frequently face variability in temperature and moisture regimes at variable spatio-temporal scales. Coincidental with this, is increased thermal and hydric stress on insects as warming increases vapour pressure deficit (VPD), the drying power of the air. While the effects of mean temperatures on fitness are widely documented, fluctuations in both temperature and relative humidity (RH) are largely unexplored. Here, we investigated the effects of dynamic temperature and RH fluctuations (around the mean [28°C; 65% RH]) on low and high thermal tolerance of laboratory-reared adult invasive Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), measured as critical thermal minima (CTmin), critical thermal maxima (CTmax), chill coma recovery time (CCRT) and heat knockdown time (HKDT). Our results show that increased environmental amplitude significantly influenced low and high temperature responses and varied across traits tested. The highest amplitude (δ12°C; 28% RH) compromised CTmin, CCRT and HKDT traits while enhancing CTmax. Similarly, acclimation to δ3°C; 7% RH compromised both low (CTmin and CCRT) and high (CTmax and HKDT) fitness traits. Variations in fitness reported here indicate significant roles of combined thermal and moisture fluctuations on B. dorsalis fitness suggesting caveats that are worthy considering when predicting species responses to climate change. These results are significant for B. dorsalis population phenology, management, quantifying vulnerability to climate variability and may help modelling future biogeographical patterns.  相似文献   

9.
The effects of sub-lethal low temperatures on insect physiology and behaviour are important determinants of insect activity including foraging, mating, and predation avoidance. A substantial body of research seeks to relate the temperatures at which these activities are compromised to both, climatic conditions at species range limits and underlying physiological processes. The interpretation of this research is complicated by confusion in the names and definition of the responses measured and their associated temperature thresholds. The development of the nomenclature and explanations of the underlying physiological causes are reviewed in order to elucidate the correct sequence of responses/thresholds and associated terminologies. The results of this analysis indicate that: (1) chill coma is a clearly defined, reversible physiological state characterised by the absence of electrophysiological activity. (2) The onset of chill coma begins when low temperatures begin to impair insect behaviour and physiology, and is punctuated by a series of behavioural and/or physiological thresholds or responses. These include the temperatures at which (i) spontaneous movements cease, (ii) coordination is lost to the degree that locomotion becomes impossible, and (iii) chill coma is entered. (3) Confusion has arisen because (a) the term ‘onset of chill coma’ has been used to describe all three of these responses/thresholds and (b) the term CTmin has entered the insect literature from the vertebrate literature. These issues are discussed and a potential solution is proposed to provide clarity and consistency in the future literature.  相似文献   

10.
Global climate change is projected to increase the incidence of heat waves, their magnitude and duration resulting in insects experiencing increasing environmental stress in both natural and managed ecosystems. While studies on insect thermal tolerance are rapidly increasing, variation across developmental or juvenile stress cross-stage effects within and across generations remain largely unexplored. Yet in holometabolous insects, heat stress at an early developmental stage may influence performance and survival during later stages. Here, we investigated the effects of pupal mild heat stress on the performance of laboratory-reared adult Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) measured as longevity, critical thermal maximum (CTmax), critical thermal minima (CTmin), heat knockdown time (HKDT) and chill coma recovery time (CCRT). Pupal heat stress significantly influenced performance of B. dorsalis adults resulting in impaired longevity and heat tolerance (CTmax and HKDT) in both sexes with improved and compromised cold tolerance (CTmin and CCRT) in females and males, respectively. These findings highlight the role of juvenile stages in mediating stress responses at adult stages. For B. dorsalis, pupal heat stress largely compromised thermal tolerance implying that the species has limited potential to shift its geographic range in heat prone areas. Significant benefits in cold tolerance in females following heat stress may help in improving survival in the cold in the short-term despite restricted activity to the same traits in males. This study suggests that basal heat tolerance and not short-term compensatory thermal plasticity following heat stress may have aided the recent invasion of B. dorsalis in African landscapes.  相似文献   

11.
The lower and upper thermal activity thresholds of the predatory mite Phytoseiulus macropilis Banks (Acari: Phytoseiidae) were compared with those of its prey Tetranychus urticae Koch (Acari: Tetranychidae) and one of the alternative commercially available control agents for T. urticae, Phytoseiulus persimilis Athias-Henriot. Adult female P. macropilis retained ambulatory function (CTmin) and movement of appendages (chill coma) at significantly lower temperatures (8.2 and 0.4 °C, respectively) than that of P. persimilis (11.1 and 3.3 °C) and T. urticae (10.6 and 10.3 °C). As the temperature was raised, P. macropilis ceased walking (CTmax) and entered heat coma (42.7 and 43.6 °C), beyond the upper locomotory limits of P. persimilis (40.0 and 41.1 °C), but before T. urticae (47.3 and 48.7 °C). Walking speeds were investigated and P. persimilis was found to have significantly faster ambulation than P. macropilis and T. urticae across a range of temperatures. The lower thermal activity threshold data indicate that P. macropilis will make an effective biological control agent in temperate climates.  相似文献   

12.
13.
As a result of acclimation populations of long-lived ectotherms should display lowered ability to counter cold stress in warmer periods of active season, and increased resistance in colder ones. We tested this proposition by investigating dynamics of cold resistance in Myrmica ants during most of the active season in two types of habitats. Resistance of ants to knock-down by cold and their rate of recovery after chill coma were expected to be lower in summer.Cooled at a rate of 0.17 °C min−1, the ants showed lower capability to resist knock-down in summer, and a significant lowering in knock-down temperature in response to colder weather both in spring and autumn as confirmed by linear regression against air temperatures. In a more eurytopic species M. rubra the responses were significantly faster in meadow than in forest habitats. However, times of recovery of the ants after 10 min at −3 °C did not change in parallel to air temperatures. Whereas M. rubra from forest habitats took less time to recover in early summer and early autumn, in their conspecifics from meadow habitats the contrary was the case. Regardless of habitat, recoveries tended to be faster in other investigated species, of which M. ruginodis (a forest stenotopic) recovered faster in early summer than later.According to the knock-down data, in warmer months the ants are indeed less resistant to cold stress, whilst the recovery data do not always support the proposition. The contrasting seasonal dynamics of the two measures of low-temperature resistance in field-fresh Myrmica suggest that knock-down (chill coma onset) is a better index of thermal acclimation, whilst the rate of recovery from chill coma is more indicative of interspecific differences and, possibly, behavioural thermoregulation.  相似文献   

14.
Physiological thermotolerance and behavioral thermoregulation are central to seasonal cold adaptation in ectothermic organisms. For species with enhanced mobility, behavioral responses may be of greater importance in the cold stress response. Employing the carabid beetles as a study organism, the current study compared physiological thermotolerance and behavioral thermoregulation in carabid species inhabiting cereal fields in different landscape contexts, from fine grain heterogeneous “complex” landscapes to homogenous “simple” landscapes. Physiological thermotolerance was determined via measurement of the CTmin and chill coma temperature. Behavioral responses to cold temperature exposure were determined employing a purpose built arena, and thoracic temperature measured to estimate the efficacy of the behavior as a form of behavioral thermoregulation. Results revealed an influence of landscape composition on the cold tolerance of carabid beetles, although species differed in their sensitivity to landscape intensification. A reduced effect of landscape on the thermotolerance of larger carabid beetles was observed, thought to be the consequence of greater mobility preventing local acclimation to microclimatic variation along the landscape intensification gradient. Investigation into behavioral thermoregulation of the 3 largest species revealed burrowing behavior to be the main behavioral response to cold stress, acting to significantly raise carabid body temperature. This finding highlights the importance of behavioral thermoregulation as a strategy to evade cold stress. The use of behavioral thermoregulation may negate the need to invest in physiological thermotolerance, further offering explanation for the lack of landscape effect on the physiological thermotolerance of larger carabids.  相似文献   

15.
Insect thermal tolerance shows a range of responses to thermal history depending on the duration and severity of exposure. However, few studies have investigated these effects under relatively modest temperature variation or the interactions between short‐ and longer‐term exposures. In the present study, using a full‐factorial design, 1 week‐long acclimation responses of critical thermal minimum (CTmin) and critical thermal maximum (CTmax) to temperatures of 20, 25 and 30 °C are investigated, as well as their interactions with short‐term (2 h) sub‐lethal temperature exposures to these same conditions (20, 25 and 30 °C), in two fruit fly species Ceratitis capitata (Wiedemann) and Ceratitis rosa Karsch from South Africa. Flies generally improve heat tolerance with high temperature acclimation and resist low temperatures better after acclimation to cooler conditions. However, in several cases, significant interaction effects are evident for CTmax and CTmin between short‐ and long‐term temperature treatments. Furthermore, to better comprehend the flies' responses to natural microclimate conditions, the effects of variation in heating and cooling rates on CTmax and CTmin are explored. Slower heating rates result in higher CTmax, whereas slower cooling rates elicit lower CTmin, although more variation is detected in CTmin than in CTmax (approximately 1.2 versus 0.5 °C). Critical thermal limits estimated under conditions that most closely approximate natural diurnal temperature fluctuations (rate: 0.06 °C min?1) indicate a CTmax of approximately 42 °C and a CTmin of approximately 6 °C for these species in the wild, although some variation between these species has been found previously in CTmax. In conclusion, the results suggest critical thermal limits of adult fruit flies are moderated by temperature variation at both short and long time scales and may comprise both reversible and irreversible components.  相似文献   

16.
The lower and upper thermal activity thresholds of adult and larval Balaustium hernandezi von Heyden (Acari: Erythraeidae) are compared with those of its prey Tetranychus urticae Koch (Acari: Tetranychidae). Adult female B. hernandezi retain ambulatory function (CTmin) and movement of appendages (chill coma) at significantly lower temperatures (5.9 and ?2.1 °C, respectively) than those of larval B. hernandezi (8.1 and ?1.7 °C) and T. urticae (10.6 and 10.3 °C). There is no significant difference between the temperature at which adult and larval B. hernandezi and T. urticae cease walking as the temperature is raised (CTmax) (46.7, 46.3 and 47.3 °C, respectively). However, both life stages of B. hernandezi cease movement (heat coma) below the upper locomotory limits of T. urticae (46.8, 46.7 and 48.7 °C, respectively). Adult B. hernandezi have significantly faster walking speeds than larvae and T. urticae across a range of temperatures. The lower thermal activity threshold data indicate that B. hernandezi would make an effective biological control agent in temperate climates; however, the extent of the low temperature tolerances of the species suggests the potential to establish in a northern European climate.  相似文献   

17.
Under stressful thermal environments, insects adjust their behavior and physiology to maintain key life‐history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. When exposed for 2 h to a static temperature, lower lethal temperatures ranged from ?9 to 6 °C, ?14 to ?2 °C, and ?1 to 4 °C while upper lethal temperatures ranged from 37 to 48 °C, 41 to 49 °C, and 36 to 39 °C for C. partellus eggs, larvae, and C. sesamiae adults, respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean supercooling points (SCPs) for C. partellus larvae, pupae, and adults were ?11.82 ± 1.78, ?10.43 ± 1.73 and ?15.75 ± 2.47, respectively. Heat knock‐down time (HKDT) and chill‐coma recovery time (CCRT) varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the latter recovered significantly faster following chill‐coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host–parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect–natural enemy interactions under rapidly changing thermal environments.  相似文献   

18.
Exposure of various Drosophila species to mild increase or decrease in temperature has consistently been shown to result in increased resistance to subsequent temperature extremes. We investigated cold tolerance in 45 Indian natural populations of Drosophila ananassae collected from all over India by monitoring the time taken by adults to recover from chill-coma after a treatment for 16 h at 4 °C. Significant latitudinal and altitudinal differentiation was observed for chill coma recovery in D. ananassae. Chill-coma recovery was closely associated with local climatic factors like average annual temperature and relative humidity of origin of populations.  相似文献   

19.
Although the impact of warming on winter limitation of aphid populations is reasonably well understood, the impacts of hot summers and heat wave events are less clear. In this study, we address this question through a detailed analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a widespread, polyphagous temperate zone pest, Myzus polaris, an arctic aphid potentially threatened by climate warming, and, Myzus ornatus, a glasshouse pest that may benefit from warming. The upper lethal limits (ULT50) and heat coma temperatures of the aphid species reared at both 15 and 20 °C did not differ significantly, suggesting that heat coma is a reliable indicator of fatal heat stress. Heat coma and CTmax were also measured after aphids were reared at 10 and 25 °C for one and three generations. The extent of the acclimation response was not influenced by the number of generations. Acclimation increased CTmax with rearing temperature for all species. The acclimation temperature also influenced heat coma; this relationship was linear for M. ornatus and M. polaris but non-linear for M. persicae (increased tolerance at 10 and 25 °C). Bacteria known generically as secondary symbionts can promote thermal tolerance of aphids, but they were not detected in the aphids studied here. Assays of optimum development temperature were also performed for each species. All data indicate that M. persicae has the greatest tolerance of high temperatures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号