首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Drought entails important effects on tree physiology, which may result in short‐ to long‐term radial growth decreases. While the majority of studies have focused on annual drought‐related variability of growth, relatively little is known about sustained growth decreases following drought years. We apply a statistical framework to identify climatic factors that induce abrupt growth decreases and may eventually result in tree mortality. We used tree‐ring data from almost 500 standing dead trees and 200 living trees in eight sites of the Swiss network of strict forest reserves, including four of the most important Central European tree species (Abies alba, Picea abies, Fagus sylvatica and Quercus spp.). First, to assess short‐term growth responses to drought under various climate and site conditions, we calculated correlations and linear mixed‐effects models between ring‐width indices (RWIs) and drought based on the Standardized Precipitation Evapotranspiration Index (SPEI). Second, to quantify drought effects on abrupt growth decreases, we applied distributed lag nonlinear models (DLNMs), which account for both delayed effects and the nonlinear relationship between the SPEI and the occurrence of abrupt growth decreases. Positive correlations between RWIs and the SPEI indicated short‐term growth responses of all species, particularly at arid sites. Results of the DLNMs revealed species‐specific growth responses to drought. For Quercus spp., abrupt growth decreases were more likely to occur several years following severe drought, whereas for P. abies, A. alba, and F. sylvatica abrupt growth decreases started frequently immediately in the drought year. We conclude that the statistical framework allows for quantifying the effects of drought intensity on the probability of abrupt growth decreases, which ultimately contributes to an improved understanding of climate impacts on forest community dynamics.  相似文献   

2.
3.
Studies on Fagus sylvatica show that growth in populations toward the southern limit of this species' distribution is limited strongly by drought. Warming temperatures in the Mediterranean region are expected to exacerbate drought where they are not accompanied by increases in precipitation. We studied levels of annual growth in mature F. sylvatica trees over the last half‐century in the Montseny Mountains in Catalonia (northeast Spain). Our results show significantly lower growth of mature trees at the lower limit of this species' distribution when compared with trees at higher altitudes. Growth at the lower Fagus limit is characterized by a rapid recent decline starting in approximately 1975. By 2003, growth of mature trees had fallen by 49% when compared with predecline levels. This is not an age‐related phenomenon, nor is it seen in comparable populations at higher altitudes. Analysis of climate‐growth relationships suggests that the observed decline in growth is a result of warming temperatures and that, as precipitation in the region has not increased, precipitation is now insufficient to ameliorate the negative effects of increased temperatures on tree growth. As the climate‐response of the studied forest is comparable with that of F. sylvatica forests in other southern European regions, it is possible that this growth decline is a more widespread phenomenon. Warming temperatures may lead to a rapid decline in the growth of range‐edge populations and a consequent retreat of the species distribution in southern Europe. Assessment of long‐term growth trends across the southern range edge of F. sylvatica therefore merits further attention.  相似文献   

4.
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv/Fm) of eight hyper-dominant Amazonian tree species at the world's longest-running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C–2°C increase in canopy air temperatures following long-term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme-heat damage (T50) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long-term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.  相似文献   

5.
Tree populations at the low‐altitudinal or ‐latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree‐ring widths and δ13C and δ18O chronologies to compare the growth rates and long‐term ecophysiological responses to climate in the temperate‐Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO2. Tree‐ring δ18O for both species were mostly correlated with δ18O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree‐ring δ18O but had a positive effect on Q. ilex tree‐ring δ18O. Furthermore, tree‐ring δ18O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO2 fertilization, in contrast to the water‐limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions.  相似文献   

6.
Over large areas of Europe, coniferous monocultures are being transformed into mixed forests by the re-introduction of broadleaf tree species belonging to the potential natural vegetation. One important species of interest in this changing forest policy is European beech (Fagus sylvatica). However, at present, this forest management directive has ignored potential adverse effects of global climate change on wide-spread re-introduction of beech to these areas. Average global surface temperatures have risen by approx. 0.8°C in the period between 1861 and 2005 and are expected to continue to increase until the end of this century by 1.5–5.8°C above the 1990 value. To estimate the climate change in the southern part of central Europe in future, we reviewed calculations from regional climate models. Temperature increase for the southern part of central Europe is projected to be up to 2°C within the next 40 years. In contrast, the annual precipitation will most likely remain constant over the same time period, but will experience significant changes in seasonal patterns. Rising intensities of individual precipitation events may result in increasing number and intensities of flooding events and reduced precipitation during the growing season in a higher frequency of summer droughts. Growth and competitive ability of European beech will not, necessarily, respond to increasing CO2 concentrations but may be strongly impacted by intensive drought that occurs during the growing season. Seedlings as well as adult trees may suffer from xylem embolism, restricted nutrient uptake capacity and reduced growth under limited water availability. However, it remains uncertain to what extent other environmental factors (e.g. soil properties, competitive interactions) may modify the drought response of beech, thus either enhancing susceptibility or increasing drought tolerance and resilience potential. Water-logged soils, predicted during the spring for several regions due to higher than average precipitation, could negatively impact nutrient uptake and growth of beech. Whereas other dominant species as, e.g. oak are well adapted to that environmental stress, beech is known to be sensitive to water-logging and flooding. Thus, the competitive capacity of beech might—depending on the other environmental conditions—be reduced under the expected future climate conditions. Silvicultural practices must be aware today of the potential risks which a changing climate may impose on sustainable forest development.  相似文献   

7.
Climate change is expected to result in more extreme weather conditions over large parts of Europe, such as the prolonged drought of 2003. As water supply is critical for tree growth on many sites in North-Western Europe, such droughts will affect growth, species competition, and forest dynamics. To be able to assess the susceptibility of tree species to climate change, it is necessary to understand growth responses to climate, at a high temporal resolution. We therefore studied the intra-annual growth dynamics of three beech trees (Fagus sylvatica L.) and five oak trees (Quercus robur L.) growing on a sandy site in the east of the Netherlands for 2 years: 2003 (oak and beech) and 2004 (oak). Microcores were taken at 2-week intervals from the end of April until the end of October. Intra-annual tree-ring formation was compared with prior and contemporary records of precipitation and temperature from a nearby weather station.The results indicate that oak and beech reacted differently to the summer drought in 2003. During the drought, wood formation in both species ceased, but in beech, it recovered after the drought. The causes of species-specific differences in intra-annual wood formation are discussed in the context of susceptibility to drought.  相似文献   

8.
While previous studies focused on tree growth in pure stands, we reveal that tree resistance and resilience to drought stress can be modified distinctly through species mixing. Our study is based on tree ring measurement on cores from increment boring of 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in South Germany, with half sampled in pure, respectively, mixed stands. Indices for resistance, recovery and resilience were applied for quantifying the tree growth reaction on the episodic drought stress in 1976 and 2003. The following general reaction patterns were found. (i) In pure stands, spruce has the lowest resistance, but the quickest recovery; oak and beech were more resistant, but recover was much slower and they are less resilient. (ii) In mixture, spruce and oak perform as in pure stands, but beech was significantly more resistant and resilient than in monoculture. (iii) Especially when mixed with oak, beech is facilitated. We hypothesise that the revealed water stress release of beech emerges in mixture because of the asynchronous stress reaction pattern of beech and oak and a facilitation of beech by hydraulic lift of water by oak. This facilitation of beech in mixture with oak means a contribution to the frequently reported overyield of beech in mixed versus pure stands. We discuss the far‐reaching implications that these differences in stress response under intra‐ and inter‐specific environments have for forest ecosystem dynamics and management under climate change.  相似文献   

9.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

10.
Increasing exposure to climate warming-related drought and heat threatens forest vitality in many regions on earth, with the trees' vulnerability likely depending on local climatic aridity, recent climate trends, edaphic conditions, and the drought acclimatization and adaptation of populations. Studies exploring tree species' vulnerability to climate change often have a local focus or model the species' entire distribution range, which hampers the separation of climatic and edaphic drivers of drought and heat vulnerability. We compared recent radial growth trends and the sensitivity of growth to drought and heat in central populations of a widespread and naturally dominant tree species in Europe, European beech (Fagus sylvatica), at 30 forest sites across a steep precipitation gradient (500–850 mm year−1) of short length to assess the species' adaptive potential. Size-standardized basal area increment remained more constant during the period of accelerated warming since the early 1980s in populations with >360 mm growing season precipitation (April–September), while growth trends were negative at sites with <360 mm. Climatic drought in June appeared as the most influential climatic factor affecting radial growth, with a stronger effect at drier sites. A decadal decrease in the climatic water balance of the summer was identified as the most important factor leading to growth decline, which is amplified by higher stem densities. Inter-annual growth variability has increased since the early 1980s, and variability is generally higher at drier and sandier sites. Similarly, within-population growth synchrony is higher at sandier sites and has increased with a decrease in the June climatic water balance. Our results caution against predicting the drought vulnerability of trees solely from climate projections, as soil properties emerged as an important modulating factor. We conclude that beech is facing recent growth decline at drier sites in the centre of its distribution range, driven by climate change-related climate aridification.  相似文献   

11.
Tree populations at the equatorward edge of their distribution are predicted to respond to increased temperature and drought with declining performance. Empirical studies of Fagus sylvatica L., one of the most studied tree species in Europe, have broadly supported these predictions. Using a network of tree ring chronologies from northern Greece, we showed that growth in populations of this species at their southeast distribution limit was limited by summer temperature and precipitation, particularly at low elevations. Furthermore, decadal periods of lower precipitation and higher temperature in the twentieth century were associated with multi-year growth depressions. However, since 1990, growth trends were positive across the network, despite continued dry and hot summer conditions. Growth trends were not correlated with either elevation or tree age. Additionally, correlations between growth and temperature and precipitation were weaker in recent decades. These results are consistent with another recent report from the Balkan Peninsula, and indicate that forests in this region may be more resistant to regional climate change than previously considered.  相似文献   

12.
Hydraulic lift (HL) by tree roots in a young, broad-leaved, mixed temperate European forest was investigated during the 2008 growing season by injecting 18O-enriched soil water at a depth of 75–90 cm under drought conditions experimentally imposed in a rain-exclusion system. Based on sap flow, leaf water potential, 2-D root distribution measurements, soil isotope profiles, and xylem water isotope composition, water acquisition and use by two tree species, beech (Fagus sylvatica) and oak (Quercus petraea) was compared. We showed that, unlike oak, beech experienced a marked decrease in sap flow and predawn leaf water potential with increasing soil drought. This behaviour was logical considering the shallower root system in beech than in oak. Six days after 18O-labelling, we observed isotopic enrichment in the shallower soil layers. Since the intermediate soil layers did not display any enrichment, our results clearly pointed to hydraulic lift by tree roots. The superficial enrichment that was observed in the vicinity of oak trunks and the increase in the isotopic signature of xylem sap in the oak trees but not in the beech trees confirmed the predominant role of oak in the hydraulic lift at our site. Even though facilitation for water acquisition among species was not observed here, our results suggest a potential positive contribution of species like oak toward maintaining species diversity in mixed forest ecosystems submitted to severe drought events.  相似文献   

13.
Although numerous species distribution models have been developed, most were based on insufficient distribution data or used older climate change scenarios. We aimed to quantify changes in projected ranges and threat level by the years 2061–2080, for 12 European forest tree species under three climate change scenarios. We combined tree distribution data from the Global Biodiversity Information Facility, EUFORGEN, and forest inventories, and we developed species distribution models using MaxEnt and 19 bioclimatic variables. Models were developed for three climate change scenarios—optimistic (RCP2.6), moderate (RCP4.5), and pessimistic (RPC8.5)—using three General Circulation Models, for the period 2061–2080. Our study revealed different responses of tree species to projected climate change. The species may be divided into three groups: “winners”—mostly late‐successional species: Abies alba, Fagus sylvatica, Fraxinus excelsior, Quercus robur, and Quercus petraea; “losers”—mostly pioneer species: Betula pendula, Larix decidua, Picea abies, and Pinus sylvestris; and alien species—Pseudotsuga menziesii, Quercus rubra, and Robinia pseudoacacia, which may be also considered as “winners.” Assuming limited migration, most of the species studied would face a significant decrease in suitable habitat area. The threat level was highest for species that currently have the northernmost distribution centers. Ecological consequences of the projected range contractions would be serious for both forest management and nature conservation.  相似文献   

14.
Temporal instability of forest climate-growth relationships has been evidenced at high elevations and latitudes, and in Mediterranean contexts. Investigations under temperate conditions, where growth is under the control of both winter frost and summer water stress, are scarce and could provide valuable information about the ability of forest to cope with climate change. To highlight the main climatic factors driving the radial growth of Quercus petraea forests and to detect their possible evolutions over the last century, dendroecological analyses were performed along a longitudinal gradient of both decreasing summer water stress and increasing winter frost in northern France (from oceanic to semi-continental conditions). The climate-growth relationships were evaluated from 31 tree-ring chronologies (720 trees) through the calculation of moving correlation functions. Q. petraea displayed a rather low sensitivity to climate. High temperature in March and water stress from May to July appeared to be the main growth limiting factors. The sensitivity to winter precipitation and summer water stress decreased from oceanic to semi-continental conditions, whilst the correlation to winter frost tended to increase. Moving correlations revealed a general instability of climate-growth relationships, with a moderate synchronicity with climatic fluctuations. The main changes occurred during previous autumn for both temperature and precipitation whilst climatic trends were rather low or non-significant. The most coherent trends were pointed out (i) in April with a cooling (−0.9°C) leading to positive correlation to temperature at the end of the century, and (ii) in July with a decreasing inter-annual variability of precipitation resulting in a loss of correlation. On the contrary, the decreasing temperature and increasing precipitation in May and June led to few significant changes climate-growth relationships.  相似文献   

15.
Dieback in temperate forests is understudied, despite this biome is predicted to be increasingly affected by more extreme climate events in a warmer world. To evaluate the potential drivers of dieback we reconstructed changes in radial growth and intrinsic water-use efficiency (iWUE) from stable isotopes in tree rings. Particularly, we compared tree size, radial-growth trends, growth responses to climate (temperature, precipitation, cloudiness, number of foggy days) and drought, and changes in iWUE of declining and non-declining trees showing contrasting canopy dieback and defoliation. This comparison was done in six temperate forests located in northern Spain and based on three broadleaved tree species (Quercus robur, Quercus humilis, Fagus sylvatica). Declining trees presented lower radial-growth rates than their non-declining counterparts and tended to show lower growth variability, but not in all sites. The growth divergence between declining and non-declining trees was significant and lasted more in Q. robur (15–30 years) than in F. sylvatica (5–10 years) sites. Dieback was linked to summer drought and associated atmospheric patterns, but in the wettest Q. robur sites cold spells contributed to the growth decline. In contrast, F. sylvatica was the species most responsive to summer drought in terms of growth reduction followed by Q. humilis which showed coupled changes in growth and iWUE as a function of tree vigour. Low growth rates and higher iWUE characterized declining Q. robur and F. sylvatica trees. However, declining F. sylvatica trees became less water-use efficient close to the dieback onset, which could indicate impending tree death. In temperate forests, dieback and growth decline can be triggered by climate extremes such as dry and cold spells, and amplified by climate warming and rising drought stress.  相似文献   

16.
Numerous proxy climate reconstructions have been developed for Europe, but there are still regions with limited data of this kind. One region is the Balkan Peninsula, which is characterized by complex interactions between mountains and climate. We present and discuss two tree-ring chronologies—a 758-year-long one of Pinus heldreichii Christ and 340-year-long one of Pinus peuce Griseb. from treeline locations in the Pirin Mountains in Bulgaria. Climate–growth relationships were computed with bootstrap correlation functions and their consistency over time assessed by calculating the correlations over shortened periods. In addition, we reviewed and analyzed climate situations in years with unusually narrow or wide tree rings. Both species were negatively influenced by previous summer drought conditions and cold winters. Early summer temperatures were positively correlated with P. peuce radial growth, whereas P. heldreichii displayed dependence on summer precipitation. In the second half of the twentieth century, the P. heldreichii trees displayed higher sensitivity to summer drought, which was probably a result of increased summer temperatures and decreased winter precipitation. Our findings contribute to more reliable proxy climate records for the region.  相似文献   

17.
The growth of high-latitude temperature-limited boreal forest ecosystems is projected to become more constrained by soil water availability with continued warming. The purpose of this study was to document ongoing shifts in tree growth sensitivity to the evolving local climate in unmanaged black spruce (Picea mariana (Miller) B.S.P.) forests of eastern boreal North America (49°N–52°N, 58°W–82°W) using a comparative study of field and modeled data. We investigated growth relationships to climate (gridded monthly data) from observed (50 site tree-ring width chronologies) and simulated growth data (stand-level forest growth model) over 1908–2013. No clear strengthening of moisture control over tree growth in recent decades was detected. Despite climate warming, photosynthesis (main driver of the forest growth model) and xylem production (main driver of radial growth) have remained temperature-limited. Analyses revealed, however, a weakening of the influence of growing season temperature on growth during the mid- to late twentieth century in the observed data, particularly in high-latitude (> 51.5°N) mountainous sites. This shift was absent from simulated data, which resulted in clear model-data desynchronization. Thorough investigations revealed that desynchronization was mostly linked to the quality of climate data, with precipitation data being of particular concern. The scarce network of weather stations over eastern boreal North America (> 51.5°N) affects the accuracy of estimated local climate variability and critically limits our ability to detect climate change effects on high-latitude ecosystems, especially at high altitudinal sites. Climate estimates from remote sensing could help address some of these issues in the future.  相似文献   

18.
According to the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC), global climate change is now unequivocal. Tunisia, like many other countries, has been affected by climate changes, including rising temperatures, intense heatwaves, and altered precipitation regimes. Tunisia's mean annual temperatures has risen about +1.4 °C in the twentieth century, with the most rapid warming taking place since the 1970s. Drought represents a primary contributing factor to tree decline and dieback. Long-term drought can result in reduced growth and health of trees, thereby increasing their susceptibility to insect pests and pathogens. Reported increases in tree mortality point toward accelerating global forest vulnerability under hotter temperatures and longer, more intense droughts. In order to assess the effect of these climate changes on the current state of forest ecosystems in Tunisia and their evolution, an investigative study was required. Here, we review the current state of knowledge on the effects of climate change on sclerophyllous and semi-deciduous forest ecosystems in Tunisia. Natural disturbance during recent years, as well as the adaptability and resilience of some forest species to climate change, were surveyed. The Standardized Precipitation Evapotranspiration Index (SPEI) is a multi-scalar drought index based on climate data that has been used to analyse drought variability. The SPEI time scale analysis showed a negative trend over the 1955–2021 period in Tunisian forest regions. In 2021, Tunisia lost 280 km2 of tree cover to fires, which is equivalent to 26% of the total lost area between 2008 and 2021. Changing climate conditions have also affected phenological parameters, with an advance in the start of the green season (SOS) of 9.4 days, a delay at the end of the green season (EOS) of 5 days, with a consequent extended duration of the green season (LOS) by an average of 14.2 days. All of these alarming findings invite us to seek adaptation strategies for forest ecosystems. Adapting forests to climate change is therefore a challenge for scientists as well as policymakers and managers.  相似文献   

19.
Atmospheric CO2 (ca) rise changes the physiology and possibly growth of tropical trees, but these effects are likely modified by climate. Such ca × climate interactions importantly drive CO2 fertilization effects of tropical forests predicted by global vegetation models, but have not been tested empirically. Here we use tree‐ring analyses to quantify how ca rise has shifted the sensitivity of tree stem growth to annual fluctuations in rainfall and temperature. We hypothesized that ca rise reduces drought sensitivity and increases temperature sensitivity of growth, by reducing transpiration and increasing leaf temperature. These responses were expected for cooler sites. At warmer sites, ca rise may cause leaf temperatures to frequently exceed the optimum for photosynthesis, and thus induce increased drought sensitivity and stronger negative effects of temperature. We tested these hypotheses using measurements of 5,318 annual rings from 129 trees of the widely distributed (sub‐)tropical tree species, Toona ciliata. We studied growth responses during 1950–2014, a period during which ca rose by 28%. Tree‐ring data were obtained from two cooler (mean annual temperature: 20.5–20.7°C) and two warmer (23.5–24.8°C) sites. We tested ca × climate interactions, using mixed‐effect models of ring‐width measurements. Our statistical models revealed several significant and robust ca × climate interactions. At cooler sites (and seasons), ca × climate interactions showed good agreement with hypothesized growth responses of reduced drought sensitivity and increased temperature sensitivity. At warmer sites, drought sensitivity increased with increasing ca, as predicted, and hot years caused stronger growth reduction at high ca. Overall, ca rise has significantly modified sensitivity of Toona stem growth to climatic variation, but these changes depended on mean climate. Our study suggests that effects of ca rise on tropical tree growth may be more complex and less stimulatory than commonly assumed and require a better representation in global vegetation models.  相似文献   

20.
Linares JC  Tíscar PA 《Oecologia》2011,167(3):847-859
Within-range effects of climatic change on tree growth at the sub-regional scale remain poorly understood. The aim of this research was to use climate and radial-growth data to explain how long-term climatic trends affect tree growth patterns along the southern limit of the range of Pinus nigra ssp. salzmannii (Eastern Baetic Range, southern Spain). We used regional temperature and precipitation data and measured sub-regional radial growth variation in P. nigra forests over the past two centuries. A dynamic factor analysis was applied to test the hypothesis that trees subjected to different climates have experienced contrasting long-term growth variability. We defined four representative stand types based on average temperature and precipitation to evaluate climate–growth relationships using linear mixed-effect models and multi-model selection criteria. All four stand types experienced warming and declining precipitation throughout the twentieth century. From the onset of the twentieth century, synchronised basal-area increment decline was accounted for by dynamic factor analysis and was related to drought by climate–growth models; declining basal-area increment trends proved stronger at lower elevations, whereas temperature was positively related to growth in areas with high rainfall inputs. Given the contrasting sub-regional tree-growth responses to climate change, the role of drought becomes even more complex in shaping communities and affecting selection pressure in the Mediterranean mountain forests. Potential vegetation shifts will likely occur over the dry edge of species distributions, with major impacts on ecosystem structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号