首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seasonal dynamics of leaf litterfall and leaf area index (LAI, all-sided basis), light penetration and the vertical distribution of surface area index, and the feasibility of estimating LAI from radiation transmittance were studied from April 1993 to March 1994 in the canopies of three cypress (Taxodium ascendens) wetlands and their surrounding slash pine (Pinus elliottii) uplands in Florida flatwoods. Annual leaf litterfall ranged from 324 to 359 g m–2 in the wetlands, which was very close to the average for 11 sites throughout Florida of 340±26 g m–2. The seasonal pattern of the normalized LAI obtained for the dominant tree species in the ecosystems could be used to construct the seasonal dynamics of LAI at the ecosystem scale. The vertical distribution of surface area index in the wetlands was significantly different from that in the surrounding pine uplands. The maximum LAI of cypress wetlands in this area was about 8 m2 m–2, which was higher than the maximum of slash pine plantations of 6 m2 m–2. Cypress leaves were strongly erectophile in space. Results showed that the LAI-2000 canopy analyzer could generally be used to estimate forest LAI, whether the forest canopy was closed or not, if an overall clumping index of 2.00 was applied. However, as LAI decreased, the relative error contained in the radiation-based LAI estimates increased. This indicated that foliage clumping at the stand scale was more important than that at the tree or branch scale.  相似文献   

2.
Spatial and temporal changes in canopy structure were studied in 1988 and 1989 in a Mediterranean Quercus ilex forest in north-eastern Spain. Due to differences in precipitation patterns the 1989 growing season was drier than the 1988 growing season. Sampling was conducted in parallel at two sites which represent endpoints along a slope gradient within a watershed (ridge top at 975 m, and valley bottom at 700 m). At both sites, similar inter-annual changes in canopy structure were observed in response to differences in water availability. Samples harvested in the upper 50 cm of the canopy during 1989 exhibited a decrease in both average leaf size and the ratio of young to old leaf and stem biomass relative to samples obtained in 1988. At the whole canopy level, a decrease in leaf production efficiency and an increase in the stem to leaf biomass ratio was observed in 1989. Temporal changes in canopy leaf area index (LAI) were not statistically significant. Average LAI values of Q. ilex at the two sites were not significantly different despite differences in tree stature and density (4.6 m2 m–2 at the ridge top, and 5.3 m2 m–2 at the valley bottom). Vertical distribution of leaves and stems within the canopy was very similar at the two locations, with more than 60% of the total LAI in the uppermost metre of the canopy. The possible significance of such an LAI distribution on the canopy carbon budget is discussed.  相似文献   

3.
P. Giorio  V. Nuzzo 《Plant biosystems》2013,147(2):322-335
Abstract

Canopy light interception (CPFDInt), spectral irradiance, leaf water potential, gas- exchange and optical properties were measured in an irrigated vineyard (Vitis vinifera L. cv Montepulciano) trained to the so-called tendone system in which leaf area index (LAI) was varied by means of 50% (T50) or 75% (T75) cluster removal. The 20.5 t ha?1 yield in the unthinned treatment (UT) decreased by only 36% in T50 and by 52% in T75. LAI and CPFDInt similarly increased until summer pruning when LAI was 1.75 m2 m?2 in UT, and 25.6% or 62.2% higher in T50 and T75, respectively. The two thinned treatments had only 12.4% higher CPFDInt than in UT (1167.1 μmol m?2 s?1) due to the increased leaf self-shading. The red-to-far red ratio (R: FR) was as low as 0.10 below the canopy. Light-saturated CO2 assimilation (A max) in June averaged 14.4 μmol m?2 s?1 in sun-exposed leaves, and 7.6 μmol m?2 s?1 in shade leaves. By contrast, the apparent quantum yield of CO2 assimilation (φe) was not significantly affected by leaf position, averaging 0.029 and 0.070 mol mol?1 in June and October, respectively. Middle and low canopy leaves had only 27 or 6%, respectively, of the top canopy leaves actual CO2 assimilation rate.  相似文献   

4.
This study assessed the variation of leaf anatomy, chlorophyll content index (CCI), maximal stomatal conductance (g s max ) and leaf wettability within the canopy of an adult European beech tree (Fagus sylvatica L.) and for beech saplings placed along the vertical gradient in the canopy. At the top canopy level (CL28m) of the adult beech, CCI and leaf anatomy reflected higher light stress, while g s max increased with height, reflecting the importance of gas exchange in the upper canopy layer. Leaf wettability, measured as drop contact angle, decreased from 85.5°?±?1.6° (summer) to 57.5°?±?2.8° (autumn) at CL28m of the adult tree. At CL22m, adult beech leaves seemed to be better optimized for photosynthesis than the CL28m leaves because of a large leaf thickness with less protective and impregnated substances, and a higher CCI. The beech saplings, in contrast, did not adapt their stomatal characteristics and leaf anatomy according to the same strategy as the adult beech leaves. Consequently, care is needed when scaling up experimental results from seedlings to adult trees.  相似文献   

5.
We tested whether variation in growth of native koa (Acacia koa) forest along a rainfall gradient was attributable to differences in leaf area index (LAI) or to differences in physiological performance per unit of leaf area. Koa stands were studied on western Kauai prior to Hurricane Iniki, and ranged from 500 to 1130 m elevation and from 850 to 1800 mm annual precipitation. Koa stands along the gradient had basal area ranging from 8 to 42 m2/ha, LAI ranging from 1.4 to 5.4, and wood increment ranging from 0.7 to 7.1 tonnes/ha/year. N, P, and K contents by weight of sun leaves (phyllodes) were negatively correlated with specific leaf mass (SLM, g m-2) across sites; on a leaf area basis, N increased whereas P and K decreased with SLM. LAI, aboveground woody biomass increment, and production per unit leaf area (E) increased as phyllode 13C became more negative. The 13C data suggested that intrinsic water-use efficiency (ratio of assimilation to conductance) increased as water availability decreased. In five of the six sites, phyllode P contents increased as LAI increased, but biomass increment and E were not correlated with phyllode nutrient contents, suggesting that productivity was limited more by water than by nutrient availability. Because vapor pressure deficits increased with decreasing elevation, actual water-use efficiency (ratio of assimilation to transpiration) was lower at drier, low-elevation sites. There was a trade-off between intrinsic water-use efficiency and production per unit of canopy N or P across the gradient. In summary, koa responds to water limitation both by reducing stand LAI and by adjusting gas exchange, which results in increased intrinsic water-use efficiency but decreased E.  相似文献   

6.
Reliable and objective estimations of specific leaf area (SLA) and leaf area index (LAI) are essential for accurate estimates of the canopy carbon gain of trees. The variation in SLA with needle age and position in the crown was investigated for a 73-year-old Scots pine (Pinus sylvestris L.) stand in the Belgian Campine region. Allometric equations describing the projected needle area of the entire crown were developed, and used to estimate stand needle area. SLA (cm2 g−1) as significantly influenced by the position in the crown and by needle age (current-year versus 1-year-old needles). SLA increased significantly from the top to the bottom of the crown, and was significantly higher near the interior of the crown as compared to the crown edge. SLA of current-year needles was significantly higher than that of 1-year-old needles. Allometric relationships of projected needle area with different tree characteristics showed that stem diameter at breast height (DBH), tree height and crown depth were reliable predictors of projected needle area at the tree level. The allometric relationships between DBH and projected needle area at the tree level were used to predict stand-level needle area and estimate LAI. The LAI was 1.06 (m2 m−2) for current-year needles and 0.47 for 1-year-old needles, yielding a total stand LAI of 1.53.  相似文献   

7.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

8.
Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs), water‐ and light‐use efficiency and surface–atmosphere coupling of European boreal coniferous forests was explored using eddy‐covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil–vegetation–atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within‐canopy microclimate, sink/source distributions of CO2, H2O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem‐scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry‐canopy evapotranspiration (ET) was reasonably ‘conservative’ over the studied LAI range 0.5–7.0 m2 m?2. Both ET and Gs experienced a minimum in the LAI range 1–2 m2 m?2 caused by opposing nonproportional response of stomatally controlled transpiration and ‘free’ forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m2 m?2) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m2 m?2). This finding emphasizes the significance of stand‐replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light‐saturated water‐use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests.  相似文献   

9.
Leaf area index (LAI, the one-sided foliage area per unit ground surface area) is a key determinant of plant productivity which has a large influence on water and energy exchange between vegetation and the atmosphere. The variation in forest LAI across landscapes and environmental gradients and its causes are not sufficiently understood. We measured the LAI of European beech (Fagus sylvatica) by litter trapping in 23 closed, mature stands across gradients of rainfall and soil acidity or fertility. With a mean LAI of 7.4 m2 m−2 (minimum: 5.6, maximum: 9.5 m2 m−2), beech stands maintained a comparably high leaf area index with relatively small variation along steep environmental gradients. Contrary to expectation, decreasing water availability (rainfall gradient from 1030 to 520 mm yr−1) or increasing soil acidity (pH 3–7) had no significant effect on LAI. Stand leaf mass (M l) increased slightly with soil fertility (C/N ratio, base saturation). We regressed parameters of site water availability (rainfall), soil fertility or acidity (pH, base saturation, C/N ratio, exchangeable Mg and Al content), and stand structure (stand age and stem density) against LAI and M l in order to detect environmental controls of stand leaf area. Stand age was the most influential factor for both LAI and M l (negative relationship). Stem density and the base saturation of the soil affected M l significantly, but had a weak influence on LAI. We conclude that the leaf area index of beech is mainly under control of age-related physiological factors, whereas the influence of soil chemistry and rainfall is comparably low.  相似文献   

10.
Canopy transpiration in a chronosequence of Central Siberian pine forests   总被引:4,自引:0,他引:4  
Tree transpiration was measured in 28, 67, 204 and 383‐y‐old uniform stands and in a multicohort stand (140–430 y) of Pinus sylvestris ssp. sibirica Lebed. in Central Siberia during August 1995. In addition transpiration of three codominant trees was monitored for two years in a 130‐y‐old stand. All stands established after fire. Leaf area index (LAI) ranged between 0.6 (28‐y‐old stand) and 1.6 for stands older than 67‐y. Stand xylem area at 1.3 m height increased from 4 cm2 m?2 (28‐y) to 11.5 cm2 m?2 (67‐y) and decreased again to 7 cm2 m?2 in old stands. Above‐ground living biomass increased from 1.5 kg dry weight m?2 (28‐y) to 14 kg dry weight m?2 (383‐y). Day‐to‐day variation of tree transpiration in summer was dependent on net radiation, vapour pressure deficit, and soil water stress. Tree‐to‐tree variation of xylem flux was small and increased with heterogeneity in canopy structure. Maximum rates of xylem flux density followed the course of net radiation from mid April when a constant level of maximum rates was reached until mid September when low temperatures and light strongly reduced flux density. Maximum sap flux density (60 g m?2 s?1) and canopy transpiration (1.5 mm d?1) were reached in the 67‐y stand. Average canopy transpiration of all age classes was 0.72 ± 0.3 mm d?1. Canopy transpiration (E) was not correlated with LAI but related to stand sapwood area SA (E = ? 0.02 + 1.15SA R2) which was determined by stand density and tree sapwood area.  相似文献   

11.
Short‐term measurements of carbon dioxide, water, and energy fluxes were collected at four locations along a mean annual precipitation gradient in southern Africa during the wet (growing) season with the purpose of determining how the observed vegetation–atmosphere exchange properties are functionally related to the long‐term climatic conditions. This research was conducted along the Kalahari Transect (KT), one in the global set of International Geosphere‐Biosphere Program transects, which covers a north–south aridity gradient, all on a homogenous sand formation. Eddy covariance instruments were deployed on a permanent tower in Mongu, Zambia (879 mm of rainfall per year), as well as on a portable tower in Maun (460 mm yr?1), Okwa River Crossing (407 mm yr?1), and Tshane (365 mm yr?1), Botswana for several days at each site. The relationships between CO2 flux, Fc, and photosynthetically active radiation were described well by a hyperbolic fit to the data at all locations except for Mongu, the wettest site. Here, there appeared to be an air temperature effect on Fc. While daytime values of Fc routinely approached or exceeded ?20 μmol m?2 s?1 at Mongu, the magnitude of Fc remained less than ?10 μmol m?2 s?1 when the air temperature was above 27°C. Canopy resistances to water vapor transfer, rc, displayed an overall decline from the wetter sites to the more arid sites, but the differences in rc could be almost exclusively accounted for by the decrease in leaf area index (LAI) from north to south along the KT. Ecosystem water use efficiency (WUE), defined as the ratio of net carbon flux to evapotranspiration, showed a general decrease with increasing vapor pressure deficit, D, for all of the sites. The magnitudes of WUE at a given D, however, were dissimilar for the individual sites and were found to be stratified according to the position of the sites along the long‐term aridity gradient. For example, Mongu, which has the wettest climate, has a much lower WUE for like levels of D than Tshane, which historically has the most arid climate. Given the similar inferred stomatal resistances between the sites, the disparate carbon uptake behavior for the grass vs. woody vegetation is the likely cause for the observed differences in WUE along the aridity gradient. The short‐term flux measurements provide a framework for evaluating the vegetation's functional adaptation to the long‐term climate and provide information that may be useful for predicting the dynamic response of the vegetation to future climate change.  相似文献   

12.
气候变化和大规模的生态恢复使中国北方旱区植被发生了显著变化,量化气候变化和人类活动对植被动态的相对贡献,对于旱区生态系统管理和应对未来气候变化具有重要意义。目前,中国北方旱区植被变化影响因素的时间动态(2000年大规模生态恢复工程实施前后)和空间异质性(沿干旱梯度)仍需进一步的定量研究。基于多源数据,采用趋势分析、偏相关分析和随机森林模型等方法,分析了1981-2018年中国北方旱区气候和植被的时空变化规律,量化了2000年前后气候变化和人类活动对植被动态的相对贡献并分析其在干旱梯度上的空间差异性。结果表明:(1)1981-2018年期间,中国北方旱区的叶面积指数(LAI)平均增加速率为(0.0037±0.0443) a-1,且增加速率沿干旱梯度增大。2000年前仅10.46%(P<0.05)的地区显著变绿,而2000年后达到36.84%,且植被变绿主要归因于非树木植被。(2)2000年后降水对植被变绿的正效应在不同干旱梯度均增加,而在半干旱区和亚湿润干旱区,温度对植被变绿由正向促进转为负向抑制,而辐射在干旱区由负效应转向正效应。(3)2000年前后,气候变化均主导着植被的动态,贡献率分别为96.07%和73.72%,人类活动的贡献在2000年后进一步增强(从3.93%增加到26.28%),且沿着干旱梯度而增加,其中人类活动对植被变绿的贡献在半干旱地区增加最显著(+0.0289 m2 m-2 a-1P<0.05)。研究结果可为未来气候变化下中国北方旱区的植被恢复和可持续发展提供科学依据。  相似文献   

13.
van Wijk MT  Williams M  Shaver GR 《Oecologia》2005,142(3):421-427
The large spatial heterogeneity of arctic landscapes complicates efforts to quantify key processes of these ecosystems, for example productivity, at the landscape level. Robust relationships that help to simplify and explain observed patterns, are thus powerful tools for understanding and predicting vegetation distribution and dynamics. Here we present the same linear relationship between Leaf area index (LAI) and Total foliar nitrogen (TFN), the two factors determining the photosynthetic capacity of vegetation, across a wide range of tundra vegetation types in both northern Sweden and Alaska between leaf area indices of 0 and 1 m2 m–2, which is essentially the entire range of leaf area index values for the Arctic as a whole. Surprisingly, this simple relationship arises as an emergent property at the plant community level, whereas at the species level a large variability in leaf traits exists. As the relationship between LAI and TFN exists among such varied ecosystems, the arctic environment must impose tight constraints on vegetation canopy development. This relationship simplifies the quantification of vegetation productivity of arctic vegetation types as the two most important drivers of productivity can be estimated reliably from remotely sensed NDVI images.  相似文献   

14.
Leaf area index (LAI) is one of the key biophysical parameters for understanding land surface photosynthesis, transpiration, and energy balance processes. Estimation of LAI from remote sensing data has been a premier method for a large scale in recent years. Recent studies have revealed that the within-canopy vertical variations in LAI and biochemical properties greatly affect canopy reflectance and significantly complicate the retrieval of LAI inversely from reflectance based vegetation indices, which has yet been explicitly addressed. In this study, we have used both simulated datasets (dataset I with constant vertical profiles of LAI and biochemical properties, dataset II with varied vertical profile of LAI but constant vertical biochemical properties, and dataset III with both varied vertical profiles) generated from the multiple-layer canopy radiative transfer model (MRTM) and a ground-measured dataset to identify robust spectral indices that are insensitive to such within canopy vertical variations for LAI prediction. The results clearly indicated that published indices such as normalized difference vegetation index (NDVI) had obvious discrepancies when applied to canopies with different vertical variations, while the new indices identified in this study performed much better. The best index for estimating canopy LAI under various conditions was D(920,1080), with overall RMSEs of 0.62–0.96 m2/m2 and biases of 0.42–0.55 m2/m2 for all three simulated datasets and an RMSE of 1.22 m2/m2 with the field-measured dataset, although it was not the most conservative one among all new indices identified. This index responded mostly to the quantity of LAI but was insensitive to within-canopy variations, allowing it to aid the retrieval LAI from remote sensing data without prior information of within-canopy vertical variations of LAI and biochemical properties.  相似文献   

15.
Significant increases in remotely sensed vegetation indices in the northern latitudes since the 1980s have been detected and attributed at annual and growing season scales. However, we presently lack a systematic understanding of how vegetation responds to asymmetric seasonal environmental changes. In this study, we first investigated trends in the seasonal mean leaf area index (LAI) at northern latitudes (north of 30°N) between 1982 and 2009 using three remotely sensed long‐term LAI data sets. The most significant LAI increases occurred in summer (0.009 m2 m?2 year?1, p < .01), followed by autumn (0.005 m2 m?2 year?1, p < .01) and spring (0.003 m2 m?2 year?1, p < .01). We then quantified the contribution of elevating atmospheric CO2 concentration (eCO2), climate change, nitrogen deposition, and land cover change to seasonal LAI increases based on factorial simulations from 10 state‐of‐the‐art ecosystem models. Unlike previous studies that used multimodel ensemble mean (MME), we used the Bayesian model averaging (BMA) to optimize the integration of model ensemble. The optimally integrated ensemble LAI changes are significantly closer to the observed seasonal LAI changes than the traditional MME results. The BMA factorial simulations suggest that eCO2 provides the greatest contribution to increasing LAI trends in all seasons (0.003–0.007 m2 m?2 year?1), and is the main factor driving asymmetric seasonal LAI trends. Climate change controls the spatial pattern of seasonal LAI trends and dominates the increase in seasonal LAI in the northern high latitudes. The effects of nitrogen deposition and land use change are relatively small in all seasons (around 0.0002 m2 m?2 year?1 and 0.0001–0.001 m2 m?2 year?1, respectively). Our analysis of the seasonal LAI responses to the interactions between seasonal changes in environmental factors offers a new perspective on the response of global vegetation to environmental changes.  相似文献   

16.
Nitrogen (N) addition typically increases overall plant growth, but the nature of this response depends upon patterns of plant nitrogen allocation that vary throughout the growing season and depend upon canopy position. In this study seasonal variations in leaf traits were investigated across a canopy profile in Miscanthus (Miscanthus × giganteus) under two N treatments (0 and 224 kg ha?1) to determine whether the growth response of Miscanthus to N fertilization was related to the response of photosynthetic capacity and nitrogen allocation. Miscanthus yielded 24.1 Mg ha?1 in fertilized plots, a 40% increase compared to control plots. Photosynthetic properties, such as net photosynthesis (A), maximum rate of rubisco carboxylation (Vcmax), stomatal conductance (gs) and PSII efficiency (Fv'/Fm'), all decreased significantly from the top of the canopy to the bottom, but were not affected by N fertilization. N fertilization increased specific leaf area (SLA) and leaf area index (LAI). Leaf N concentration in different canopy layers was increased by N fertilization and the distribution of N concentration within canopy followed irradiance gradients. These results show that the positive effect of N fertilization on the yield of Miscanthus was unrelated to changes in photosynthetic rates but was achieved mainly by increased canopy leaf area. Vertical measurements through the canopy demonstrated that Miscanthus adapted to the light environment by adjusting leaf morphological and biochemical properties independent of nitrogen treatments. GPP estimated using big leaf and multilayer models varied considerably, suggesting a multilayer model in which Vcmax changes both through time and canopy layer could be adopted into agricultural models to more accurately predict biomass production in biomass crop ecosystems.  相似文献   

17.
An elevated atmospheric CO2 concentration ([CO2]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open‐air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor‐pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m2 m?2, can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2] and 1.17 at elevated [CO2]. This study provides the first direct measurement of the effects of elevated [CO2] on rice canopy evapotranspiration under open‐air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields.  相似文献   

18.
1. Physiological experiments have indicated that the lower CO2 levels of the last glaciation (200 μmol mol?1) probably reduced plant water-use efficiency (WUE) and that they combined with increased aridity and colder temperatures to alter vegetation structure and composition at the Last Glacial Maximum (LGM). 2. The effects of low CO2 on vegetation structure were investigated using BIOME3 simulations of leaf area index (LAI), and a two-by-two factorial experimental design (modern/LGM CO2, modern/LGM climate).3. Using BIOME3, and a combination of lowered CO2 and simulated LGM climate (from the NCAR-CCM1 model), results in the introduction of additional xeric vegetation types between open woodland and closed-canopy forest along a latitudinal gradient in eastern North America.4. The simulated LAI of LGM vegetation was 25–60% lower in many regions of central and eastern United States relative to modern climate, indicating that glacial vegetation was much more open than today.5. Comparison of factorial simulations show that low atmospheric CO2 has the potential to alter vegetation structure (LAI) to a greater extent than LGM climate.6. If the magnitude of LAI reductions simulated for glacial North America were global, then low atmospheric CO2 may have promoted atmospheric warming and increased aridity, through alteration of rates of water and heat exchange with the atmosphere.  相似文献   

19.
华北落叶松人工林蒸散及产流对叶面积指数变化的响应   总被引:2,自引:0,他引:2  
定量评价林地蒸散和产流等水文过程对冠层叶面积指数(LAI)的响应,对于深入认识森林植被的生态水文过程及其发生机制,实现半干旱区林水综合管理和区域可持续发展是非常必要的。应用集总式生态水文模型BROOK90,模拟分析了不同降水年型(丰水年、平水年、枯水年)下,位于半干旱区的宁夏六盘山叠叠沟小流域内华北落叶松(Larix principis-rupprechtii)人工林的水文过程对冠层LAI变化的响应关系。结果发现:林分总蒸散量、冠层截留量、蒸腾量与LAI都呈显著的正相关关系(R~20.99,P0.01),而土壤蒸发量、产流量则与LAI均呈显著的负相关关系(R~20.99,P0.01);在不同的降水年型下,各水文过程变量与LAI的关系都可以很好地用指数函数来表达,且都存在着一个LAI阈值。当LAI低于阈值时,各水文过程变量随LAI的变化幅度较大;但高于阈值时,各变量的变化十分缓慢并趋于稳定。在不同降水年型下,各变量LAI阈值之间存在着一定的差异。一般地,丰水年各变量的LAI阈值要大于枯水年,尤其是冠层截留和土壤蒸发。在丰水年,各水文过程变量随LAI增加而变化的速率要比在平水年、枯水年更快,说明在水分充足年份中各变量的波动更多取决于LAI变化,而在水分亏缺的年份中则可能更多地受到水分条件的限制。模拟结果表明,通过减少冠层LAI(如间伐)导致的林分的降低蒸散耗水和增加产流的作用是有限的,这是由于林分蒸散降低的幅度要比LAI降低的幅度小。例如,在平水年,当LAI从4.2变为2.0(减少幅度52.4%)时,林分年蒸散仅从357.2 mm减少至333.9 mm(减少幅度6.5%)。  相似文献   

20.
为构建树种叶面积指数的估算模型,以NDVI、RVI、FREP、CIGreen、CIRed-edge、MSAVI2为高光谱特征变量,通过统计分析,确定反演树种叶面积指数的最佳光谱特征变量,构建华南农业大学校园内50种亚热带树木的叶片反射率和叶面积指数(LAI)模型。结果表明,6种高光谱特征变量与树种叶面积指数间都具有极显著相关性,其中红边位置反射率(FREP)和比值植被指数(RVI)与LAI的拟合方程的R2都大于0.8,决定系数分别为0.820和0.811。经过精度验证,FREP估算的均方根误差(RMSE)只有0.13,该回归模型为估测亚热带典型树种的叶片LAI最佳模型。从高光谱遥感的角度结合亚热带植被的群落结构特点来看,建立的红边位置光谱反射率与叶面积指数的回归模型普遍具有较高的拟合度,所以利用高光谱特征变量反演亚热带树木叶片的叶面积指数等植被参数的应用前景较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号