首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The red‐spotted grouper Epinephelus akaara (E. akaara) is one of the most economically important marine fish in China, Japan and South‐East Asia and is a threatened species. The species is also considered a good model for studies of sex inversion, development, genetic diversity and immunity. Despite its importance, molecular resources for E. akaara remain limited and no reference genome has been published to date. In this study, we constructed a chromosome‐level reference genome of E. akaara by taking advantage of long‐read single‐molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi‐C. A red‐spotted grouper genome of 1.135 Gb was assembled from a total of 106.29 Gb polished Nanopore sequence (GridION, ONT), equivalent to 96‐fold genome coverage. The assembled genome represents 96.8% completeness (BUSCO) with a contig N50 length of 5.25 Mb and a longest contig of 25.75 Mb. The contigs were clustered and ordered onto 24 pseudochromosomes covering approximately 95.55% of the genome assembly with Hi‐C data, with a scaffold N50 length of 46.03 Mb. The genome contained 43.02% repeat sequences and 5,480 noncoding RNAs. Furthermore, combined with several RNA‐seq data sets, 23,808 (99.5%) genes were functionally annotated from a total of 23,923 predicted protein‐coding sequences. The high‐quality chromosome‐level reference genome of E. akaara was assembled for the first time and will be a valuable resource for molecular breeding and functional genomics studies of red‐spotted grouper in the future.  相似文献   

2.
Parasitoid wasps represent a large proportion of hymenopteran species. They have complex evolutionary histories and are important biocontrol agents. To advance parasitoid research, a combination of Illumina short‐read, PacBio long‐read and Hi‐C scaffolding technologies was used to develop a high‐quality chromosome‐level genome assembly for Pteromalus puparum, which is an important pupal endoparasitoid of caterpillar pests. The chromosome‐level assembly has aided in studies of venom and detoxification genes. The assembled genome size is 338 Mb with a contig N50 of 38.7 kb and a scaffold N50 of 1.16 Mb. Hi‐C analysis assembled scaffolds onto five chromosomes and raised the scaffold N50 to 65.8 Mb, with more than 96% of assembled bases located on chromosomes. Gene annotation was assisted by RNA sequencing for the two sexes and four different life stages. Analysis detected 98% of the BUSCO (Benchmarking Universal Single‐Copy Orthologs) gene set, supporting a high‐quality assembly and annotation. In total, 40.1% (135.6 Mb) of the assembly is composed of repetitive sequences, and 14,946 protein‐coding genes were identified. Although venom genes play important roles in parasitoid biology, their spatial distribution on chromosomes was poorly understood. Mapping has revealed venom gene tandem arrays for serine proteases, pancreatic lipase‐related proteins and kynurenine–oxoglutarate transaminases, which have amplified in the P. puparum lineage after divergence from its common ancestor with Nasonia vitripennis. In addition, there is a large expansion of P450 genes in P. puparum. These examples illustrate how chromosome‐level genome assembly can provide a valuable resource for molecular, evolutionary and biocontrol studies of parasitoid wasps.  相似文献   

3.
4.
Onychostoma macrolepis is an emerging commercial cyprinid fish species. It is a model system for studies of sexual dimorphism and genome evolution. Here, we report the chromosome‐level assembly of the O.macrolepis genome obtained from the integration of nanopore long‐read sequencing with physical maps produced using Bionano and Hi‐C technology. A total of 87.9 Gb of nanopore sequence provided approximately 100‐fold coverage of the genome. The preliminary genome assembly was 883.2 Mb in size with a contig N50 size of 11.2 Mb. The 969 corrected contigs obtained from Bionano optical mapping were assembled into 853 scaffolds and produced an assembly of 886.5 Mb with a scaffold N50 of 16.5 Mb. Finally, using the Hi‐C data, 881.3 Mb (99.4% of genome) in 526 scaffolds were anchored and oriented in 25 chromosomes ranging in size from 25.27 to 56.49 Mb. In total, 24,770 protein‐coding genes were predicted in the genome, and ~96.85% of the genes were functionally annotated. The annotated assembly contains 93.3% complete genes from the BUSCO reference set. In addition, we identified 409 Mb (46.23% of the genome) of repetitive sequence, and 11,213 non‐coding RNAs, in the genome. Evolutionary analysis revealed that O. macrolepis diverged from common carp approximately 24.25 million years ago. The chromosomes of O. macrolepis showed an unambiguous correspondence to the chromosomes of zebrafish. The high‐quality genome assembled in this work provides a valuable genomic resource for further biological and evolutionary studies of O. macrolepis.  相似文献   

5.
The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome‐scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single‐molecule real‐time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi‐C‐based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein‐coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.  相似文献   

6.
The greenfin horse‐faced filefish, Thamnaconus septentrionalis, is a valuable commercial fish species that is widely distributed in the Indo‐West Pacific Ocean. This fish has characteristic blue–green fins, rough skin and a spine‐like first dorsal fin. Thamnaconus septentrionalis is of conservation concern because its population has declined sharply, and it is an important marine aquaculture fish species in China. Genomic resources for the filefish are lacking, and no reference genome has been released. In this study, the first chromosome‐level genome of T. septentrionalis was constructed using nanopore sequencing and Hi‐C technology. A total of 50.95 Gb polished nanopore sequences were generated and were assembled into a 474.31‐Mb genome, accounting for 96.45% of the estimated genome size of this filefish. The assembled genome contained only 242 contigs, and the achieved contig N50 was 22.46 Mb, a surprisingly high value among all sequenced fish species. Hi‐C scaffolding of the genome resulted in 20 pseudochromosomes containing 99.44% of the total assembled sequences. The genome contained 67.35 Mb of repeat sequences, accounting for 14.2% of the assembly. A total of 22,067 protein‐coding genes were predicted, 94.82% of which were successfully annotated with putative functions. Furthermore, a phylogenetic tree was constructed using 1,872 single‐copy orthologous genes, and 67 unique gene families were identified in the filefish genome. This high‐quality assembled genome will be a valuable resource for a range of future genomic, conservation and breeding studies of T. septentrionalis.  相似文献   

7.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean that is spreading across major soybean production regions worldwide. Increased SCN virulence has recently been observed in both the United States and China. However, no study has reported a genome assembly for H. glycines at the chromosome scale. Herein, the first chromosome‐level reference genome of X12, an unusual SCN race with high infection ability, is presented. Using whole‐genome shotgun (WGS) sequencing, Pacific Biosciences (PacBio) sequencing, Illumina paired‐end sequencing, 10X Genomics linked reads and high‐throughput chromatin conformation capture (Hi‐C) genome scaffolding techniques, a 141.01‐megabase (Mb) assembled genome was obtained with scaffold and contig N50 sizes of 16.27 Mb and 330.54 kilobases (kb), respectively. The assembly showed high integrity and quality, with over 90% of Illumina reads mapped to the genome. The assembly quality was evaluated using Core Eukaryotic Genes Mapping Approach and Benchmarking Universal Single‐Copy Orthologs. A total of 11,882 genes were predicted using de novo, homolog and RNAseq data generated from eggs, second‐stage juveniles (J2), third‐stage juveniles (J3) and fourth‐stage juveniles (J4) of X12, and 79.0% of homologous sequences were annotated in the genome. These high‐quality X12 genome data will provide valuable resources for research in a broad range of areas, including fundamental nematode biology, SCN–plant interactions and co‐evolution, and also contribute to the development of technology for overall SCN management.  相似文献   

8.
Dendrolimus spp. are important destructive pests of conifer forests, and Dendrolimus punctatus Walker (Lepidoptera; Lasiocampidae) is the most widely distributed Dendrolimus species. During periodic outbreaks, this species is said to make “fire without smoke” because large areas of pine forest can be quickly and heavily damaged. Yet, little is known about the molecular mechanisms that underlie the unique ecological characteristics of this forest insect. Here, we combined Pacific Biosciences (PacBio) RSII single‐molecule long reads and high‐throughput chromosome conformation capture (Hi‐C) genomics‐linked reads to produce a high‐quality, chromosome‐level reference genome for D. punctatus. The final assembly was 614 Mb with contig and scaffold N50 values of 1.39 and 22.15 Mb, respectively, and 96.96% of the contigs anchored onto 30 chromosomes. Based on the prediction, this genome contained 17,593 protein‐coding genes and 56.16% repetitive sequences. Phylogenetic analyses indicated that D. punctatus diverged from the common ancestor of Hyphantria cunea, Spodoptera litura and Thaumetopoea pityocampa ~ 108.91 million years ago. Many gene families that were expanded in the D. punctatus genome were significantly enriched for the xenobiotic biodegradation system, especially the cytochrome P450 gene family. This high‐quality, chromosome‐level reference genome will be a valuable resource for understanding mechanisms of D. punctatus outbreak and host resistance adaption. Because this is the first Lasiocampidae insect genome to be sequenced, it also will serve as a reference for further comparative genomics.  相似文献   

9.
Bivalves, a highly diverse and the most evolutionarily successful class of invertebrates native to aquatic habitats, provide valuable molecular resources for understanding the evolutionary adaptation and aquatic ecology. Here, we reported a high‐quality chromosome‐level genome assembly of the razor clam Sinonovacula constricta using Pacific Bioscience single‐molecule real‐time sequencing, Illumina paired‐end sequencing, 10X Genomics linked‐reads and Hi‐C reads. The genome size was 1,220.85 Mb, containing scaffold N50 of 65.93 Mb and contig N50 of 976.94 Kb. A total of 899 complete (91.92%) and seven partial (0.72%) matches of the 978 metazoa Benchmarking Universal Single‐Copy Orthologs were determined in this genome assembly. And Hi‐C scaffolding of the genome resulted in 19 pseudochromosomes. A total of 28,594 protein‐coding genes were predicted in the S. constricta genome, of which 25,413 genes (88.88%) were functionally annotated. In addition, 39.79% of the assembled genome was composed of repetitive sequences, and 4,372 noncoding RNAs were identified. The enrichment analyses of the significantly expanded and contracted genes suggested an evolutionary adaptation of S. constricta to highly stressful living environments. In summary, the genomic resources generated in this work not only provide a valuable reference genome for investigating the molecular mechanisms of S. constricta biological functions and evolutionary adaptation, but also facilitate its genetic improvement and disease treatment. Meanwhile, the obtained genome greatly improves our understanding of the genetics of molluscs and their comparative evolution.  相似文献   

10.
The greenhouse whitefly, Trialeurodes vaporariorum Westwood, is an agricultural pest of global importance. Here we report a 787‐Mb high‐quality draft genome sequence of T. vaporariorum assembled from PacBio long reads and Hi‐C chromatin interaction maps, which has scaffold and contig N50 lengths of 70 Mb and 500 kb, respectively, and contains 18,275 protein‐coding genes. About 98.8% of the assembled contigs were placed onto the 11 T. vaporariorum chromosomes. Comparative genomic analysis reveals significantly expanded gene families such as aspartyl proteases in T. vaporariorum compared to Bemisia tabaci Mediterranean (MED) and Middle East‐Asia Minor 1 (MEAM1). Furthermore, the cytochrome CYP6 subfamily shows significant expansion in T. vaporariorum and several genes in this subfamily display developmental stage‐specific expression patterns. The high‐quality T. vaporariorum genome provides a valuable resource for research in a broad range of areas such as fundamental molecular ecology, insect–plant/insect–microorganism or virus interactions and pest resistance management.  相似文献   

11.
The ladybird beetle Propylea japonica is an important natural enemy in agro‐ecological systems. Studies on the strong tolerance of P. japonica to high temperatures and insecticides, and its population and phenotype diversity have recently increased. However, abundant genome resources for obtaining insights into stress‐resistance mechanisms and genetic intra‐species diversity for P. japonica are lacking. Here, we constructed the P. japonica genome maps using Pacific Bioscience (PacBio) and Illumina sequencing technologies. The genome size was 850.90 Mb with a contig N50 of 813.13 kb. The Hi‐C sequence data were used to upgrade draft genome assemblies; 4,777 contigs were assembled to 10 chromosomes; and the final draft genome assembly was 803.93 Mb with a contig N50 of 813.98 kb and a scaffold N50 of 100.34 Mb. Approximately 495.38 Mb of repeated sequences was annotated. The 18,018 protein‐coding genes were predicted, of which 95.78% were functionally annotated, and 1,407 genes were species‐specific. The phylogenetic analysis showed that P. japonica diverged from the ancestor of Anoplophora glabripennis and Tribolium castaneum ~ 236.21 million years ago. We detected that some important gene families involved in detoxification of pesticides and tolerance to heat stress were expanded in P. japonica, especially cytochrome P450 and Hsp70 genes. Overall, the high‐quality draft genome sequence of P. japonica will provide invaluable resource for understanding the molecular mechanisms of stress resistance and will facilitate the research on population genetics, evolution and phylogeny of Coccinellidae. This genome will also provide new avenues for conserving the diversity of predator insects.  相似文献   

12.
13.
China is the origin and evolutionary centre of Oriental pears. Pyrus betuleafolia is a wild species native to China and distributed in the northern region, and it is widely used as rootstock. Here, we report the de novo assembly of the genome of P. betuleafolia‐Shanxi Duli using an integrated strategy that combines PacBio sequencing, BioNano mapping and chromosome conformation capture (Hi‐C) sequencing. The genome assembly size was 532.7 Mb, with a contig N50 of 1.57 Mb. A total of 59 552 protein‐coding genes and 247.4 Mb of repetitive sequences were annotated for this genome. The expansion genes in P. betuleafolia were significantly enriched in secondary metabolism, which may account for the organism's considerable environmental adaptability. An alignment analysis of orthologous genes showed that fruit size, sugar metabolism and transport, and photosynthetic efficiency were positively selected in Oriental pear during domestication. A total of 573 nucleotide‐binding site (NBS)‐type resistance gene analogues (RGAs) were identified in the P. betuleafolia genome, 150 of which are TIR‐NBS‐LRR (TNL)‐type genes, which represented the greatest number of TNL‐type genes among the published Rosaceae genomes and explained the strong disease resistance of this wild species. The study of flavour metabolism‐related genes showed that the anthocyanidin reductase (ANR) metabolic pathway affected the astringency of pear fruit and that sorbitol transporter (SOT) transmembrane transport may be the main factor affecting the accumulation of soluble organic matter. This high‐quality P. betuleafolia genome provides a valuable resource for the utilization of wild pear in fundamental pear studies and breeding.  相似文献   

14.
Triplophysa is an endemic fish genus of the Tibetan Plateau in China. Triplophysa tibetana, which lives at a recorded altitude of ~4,000 m and plays an important role in the highland aquatic ecosystem, serves as an excellent model for investigating high‐altitude environmental adaptation. However, evolutionary and conservation studies of T. tibetana have been limited by scarce genomic resources for the genus Triplophysa. In the present study, we applied PacBio sequencing and the Hi‐C technique to assemble the T. tibetana genome. A 652‐Mb genome with 1,325 contigs with an N50 length of 3.1 Mb was obtained. The 1,137 contigs were further assembled into 25 chromosomes, representing 98.7% and 80.47% of all contigs at the base and sequence number level, respectively. Approximately 260 Mb of sequence, accounting for ~39.8% of the genome, was identified as repetitive elements. DNA transposons (16.3%), long interspersed nuclear elements (12.4%) and long terminal repeats (11.0%) were the most repetitive types. In total, 24,372 protein‐coding genes were predicted in the genome, and ~95% of the genes were functionally annotated via a search in public databases. Using whole genome sequence information, we found that T. tibetana diverged from its common ancestor with Danio rerio ~121.4 million years ago. The high‐quality genome assembled in this work not only provides a valuable genomic resource for future population and conservation studies of T. tibetana, but it also lays a solid foundation for further investigation into the mechanisms of environmental adaptation of endemic fishes in the Tibetan Plateau.  相似文献   

15.
The leopard coral grouper, Plectropomus leopardus, belonging to the family Epinephelinae, is a carnivorous coral reef fish widely distributed in tropical and subtropical waters of the Indo‐Pacific. Due to its appealing body appearance and delicious taste, P. leopardus has become a popular commercial fish for aquaculture in many countries. However, the lack of genomic and molecular resources for P. leopardus has hindered study of its biology and genomic breeding programmes. Here we report the de novo sequencing and assembly of the P. leopardus genome using a combination of 10 × Genomics, high‐throughput chromosome conformation capture (Hi‐C) and PacBio long‐read sequencing technologies. The genome assembly has a total length of 881.55 Mb with a scaffold N50 of 34.15 Mb, consisting of 24 pseudochromosome scaffolds. busco analysis showed that 97.2% of the conserved single‐copy genes were retrieved, indicating the assembly was almost entire. We predicted 25,248 protein‐coding genes, among which 96.5% were functionally annotated. Comparative genomic analyses revealed that gene family expansions in P. leopardus were associated with immune‐related pathways. In addition, we identified 5,178,453 single nucleotide polymorphisms based on genome resequencing of 54 individuals. The P. leopardus genome and genomic variation data provide valuable genomic resources for studies of its genetics, evolution and biology. In particular, it is expected to benefit the development of genomic breeding programmes in the farming industry.  相似文献   

16.
The brown planthopper Nilaparvata lugens, white‐backed planthopper Sogatella furcifera, and small brown planthopper Laodelphax striatellus are three major insect pests of rice. They are genetically close; however, they differ in several ecological traits such as host range, migration capacity, and in their sex chromosomes. Though the draft genome of these three planthoppers have been previously released, the quality of genome assemblies need to be improved. The absence of chromosome‐level genome resources has hindered in‐depth research of these three species. Here, we performed a de novo genome assembly for N. lugens to increase its genome assembly quality with PacBio and Illumina platforms, increasing the contig N50 to 589.46 Kb. Then, with the new N. lugens genome and previously reported S. furcifera and L. striatellus genome assemblies, we generated chromosome‐level scaffold assemblies of these three planthopper species using HiC scaffolding technique. The scaffold N50s significantly increased to 77.63 Mb, 43.36 Mb and 29.24 Mb for N. lugens, S. furcifera and L. striatellus, respectively. To identify sex chromosomes of these three planthopper species, we carried out genome re‐sequencing of males and females and successfully determined the X and Y chromosomes for N. lugens, and X chromosome for S. furcifera and L. striatellus. The gene content of the sex chromosomes showed high diversity among these three planthoppers suggesting the rapid evolution of sex‐linked genes, and all chromosomes showed high synteny. The chromosome‐level genome assemblies of three planthoppers would provide a valuable resource for a broad range of future research in molecular ecology, and subsequently benefits development of modern pest control strategies.  相似文献   

17.
The rice stem borer, Chilo suppressalis, is one of the most damaging insect pests to rice production worldwide. Although C. suppressalis has been the focus of numerous studies examining cold tolerance and diapause, plant–insect interactions, pesticide targets and resistance, and the development of RNAi‐mediated pest management, the absence of a high‐quality genome has limited deeper insights. To address this limitation, we generated a draft C. suppressalis genome constructed from both Illumina and PacBio sequences. The assembled genome size was 824.35 Mb with a contig N50 of 307 kb and a scaffold N50 of 1.75 Mb. Hi‐C scaffolding assigned 99.2% of the bases to one of 29 chromosomes. Based on universal single‐copy orthologues (BUSCO), the draft genome assembly was estimated to be 97% complete and is predicted to encompass 15,653 protein‐coding genes. Cold tolerance is an extreme survival strategy found in animals. However, little is known regarding the genetic basis of the winter ecology of C. suppressalis. Here, we focused our orthologous analysis on those gene families associated with animal cold tolerance. Our finding provided the first genomic evidence revealing specific cold‐tolerant strategies in C. suppressalis, including those involved in glucose‐originated glycerol biosynthesis, triacylglycerol‐originated glycerol biosynthesis, fatty acid synthesis and trehalose transport‐intermediate cold tolerance. The high‐quality C. suppressalis genome provides a valuable resource for research into a broad range of areas in molecular ecology, and subsequently benefits developing modern pest control strategies.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号