首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to the late Pleistocene extinctions, the megafauna of Europe, Australia and the Americas disappeared, and with them the dispersal service they offered megafaunal fruit. The African savanna elephant, the largest remaining megaherbivore, offers valuable insights into the seed dispersal services provided by extinct megafauna in prehistoric times. Elephant seed dispersal studies have for the most part concentrated on African and Asian forest elephants. African savanna elephants are morphologically distinct from their forest counterparts. Like the forest elephants they consume large quantities of fruit from a large number of tree species. Despite this little is known of the savanna trees that rely on elephants for their dispersal or the spatial scale at which these seeds are dispersed. We combined information from feeding trials conducted on four park elephants with field telemetry data from 38 collared elephants collected over an 8‐year period in APNR/Kruger National Park to assess the seed dispersal service provided by savanna elephants. This study provides the first detailed account of the spatial scale at which African savanna elephants disperse seeds. Our mechanistic model predicts that 50 percent of seeds are carried over 2.5 km, and distances up to 65 km are achievable in maximum gut passage time. These findings suggest the savanna elephant as the longest distance terrestrial vertebrate disperser yet investigated. Maintaining their ecological role as a seed disperser may prove a significant factor in the conservation of large‐fruited tree diversity within the savannas. These results suggest that extinct megafauna offered a functionally unique dispersal service to megafaunal fruit.  相似文献   

2.
Overhunting in tropical forests reduces populations of vertebrate seed dispersers. If reduced seed dispersal has a negative impact on tree population viability, overhunting could lead to altered forest structure and dynamics, including decreased biodiversity. However, empirical data showing decreased animal-dispersed tree abundance in overhunted forests contradict demographic models which predict minimal sensitivity of tree population growth rate to early life stages. One resolution to this discrepancy is that seed dispersal determines spatial aggregation, which could have demographic consequences for all life stages. We tested the impact of dispersal loss on population viability of a tropical tree species, Miliusa horsfieldii, currently dispersed by an intact community of large mammals in a Thai forest. We evaluated the effect of spatial aggregation for all tree life stages, from seeds to adult trees, and constructed simulation models to compare population viability with and without animal-mediated seed dispersal. In simulated populations, disperser loss increased spatial aggregation by fourfold, leading to increased negative density dependence across the life cycle and a 10-fold increase in the probability of extinction. Given that the majority of tree species in tropical forests are animal-dispersed, overhunting will potentially result in forests that are fundamentally different from those existing now.  相似文献   

3.
Seed dispersal by frugivores in tropical rain forests is important for maintaining viable tree populations. Over the years, vertebrate assemblages in tropical forests have been altered by anthropogenic disturbances, leading to concerns about the ability of remnant vertebrates to substitute for the lost or declining vertebrate populations. We compared vertebrate composition and frugivore visitation rates as an indirect measure of rate of seed dispersal in three tropical rain forests in Uganda, namely Mabira, Budongo and Kibale Forests. Mabira is highly disturbed, Kibale is little and Budongo is intermediate. The aim was to determine whether vertebrate assemblages in differentially disturbed forests had comparable abilities to disperse seeds and whether tree species were equally vulnerable to loss of seed dispersers. Assemblages of forest generalist species were similar in all forests, but specialists were less abundant in the heavily disturbed forest. Remnant frugivores in the heavily disturbed forest were mainly small-bodied species that spat seeds beneath fruiting trees compared to large-bodied species observed in the less disturbed forests that ingested and carried away the seeds. We postulate that the quantity of seeds dispersed in heavily disturbed forests is much reduced due to low visitation rates of frugivores and the absence of large frugivores that consume large quantities of fruit. The quality of seed dispersal is affected as well by the distance over which seeds are moved. Assessment of vulnerability of trees shows no evidence for disperser substitution for trees producing large fruits. Fruit trees with low nutritional contents and digestibility were least visited in frugivore-impoverished forests. The loss of large specialist frugivores is likely to affect recruitment of many trees, especially of species that cannot establish beneath adult conspecifics.  相似文献   

4.
Reduced dispersal of large seeds into degraded areas is one of the major factors limiting rain forest regeneration, as many seed dispersers capable of transporting large seeds avoid these sites with a limited forest cover. However, the small size of tamarins allows them to use small trees, and hence to disperse seeds into young secondary forests. Seasonal variations in diet and home range use might modify their contribution to forest regeneration through an impact on the seed rain. For a 2-yr period, we followed a mixed-species group of tamarins in Peru to determine how their role as seed dispersers in a 9-yr-old secondary-growth forest varied across seasons. These tamarins dispersed small to large seeds of 166 tree species, 63 of which were into a degraded area. Tamarins’ efficiency in dispersing seeds from primary to secondary forest varied across seasons. During the late wet season, high dietary diversity and long forays in secondary forest allowed them to disperse large seeds involved in later stages of regeneration. This occurred precisely when tamarins spent a more equal amount of time eating a high diversity of fruit species in primary forest and pioneer species in secondary forest. We hypothesized that well-balanced fruit availability induced the movement of seed dispersers between these 2 habitats. The noteworthy number of large-seeded plant species dispersed by such small primates suggests that tamarins play an important, but previously neglected, role in the regeneration and maintenance of forest structure.  相似文献   

5.
Large vertebrates are important elements of mutualistic interactions and provide positive impacts on plant population and community dynamics. Despite the increasing interest on vertebrate frugivory we are still not able to disentangle the real contribution of seed dispersal to Neotropical forest functioning. Consuming fruits does not imply effective seed dispersal and many variables, such as seed size and animal diet, may influence the outcome of plant-animal interactions. Here, we performed a comprehensive literature search on seed dispersal by Neotropical vertebrates (with a focus on primates) to closely approach their role as seed dispersers, hypothesizing frugivory degree and seed size as main drivers of fruit handling behavior and diversity of dispersed seeds. We found that the great majority of seeds manipulated by Neotropical primates, with exception to the seed predators pitheciins, were swallowed and passed intact through their gut. Larger seeds (>12 mm) tended of being ingested exclusively by primates and other large vertebrates, such as tapirs and peccaries. Furthermore, primate feeding guild had a great influence on the richness and sizes of seeds dispersed, as primarily frugivores dispersed more species and had higher probabilities of ingesting larger seeds when compared to other feeding guilds. Organizing available knowledge and filling the main knowledge gaps allowed us to validate common sense assumptions and ultimately draw new conclusions about the role played by primates together with other major frugivores in Neotropical forests.  相似文献   

6.
Tree communities of secondary deciduous oak forests were surveyed in 13 forests (two in residential and 11 in rural areas) in the warm temperate Hokuriku District of Japan to understand the effects of fragmentation, location (residential or rural), and logging history. The rural forest logged most recently, where diameter at breast height was smallest, had a distinct canopy tree (>12 m) community due to an increase of trees from wind-dispersed seeds. The rural forest with gaps and the two residential forests also had different canopy tree communities from the other rural forests. In contrast, the tree community in the shrub layer (≤6 m) was not influenced by logging history and the existence of gaps but by location only. This was caused by an increase in evergreen trees (consequently causing poor light conditions on the forest floor) and a decrease in trees from wind-dispersed seeds in the residential forests. Among the rural forest patches, no negative effects of forest size and isolation on density of tree individuals were detected for any seed dispersal mode. This may be because many forest patches were arranged at distances of 10–50 m from neighboring patches in rural areas, which enables tree species with low dispersal ability to disperse their seeds to neighboring forests. However, as found in the residential forests, long-term abandonment and extensive fragmentation may gradually reduce tree diversity through loss of tree species with shade intolerance and low seed dispersal ability.  相似文献   

7.
Seed dispersal by avian frugivores is one of the key processes influencing plant spatial patterns, but may fail if there is disruption of plant–frugivore mutualisms, such as decline in abundance of dispersers, fragmentation of habitat, or isolation of individual trees. We used simulation model experiments to examine the interaction between frugivore density and behaviour and the spatial arrangement of fruiting plants and its effect on seed dispersal kernels. We focussed on two New Zealand canopy tree species that produce large fruits and are dispersed predominantly by one avian frugivore (Hemiphaga novaeseelandiae). Although the mean seed dispersal distance decreased when trees became more aggregated, there were more frugivore flights between tree clusters, consequently stretching the tails of the dispersal kernels. Conversely, when trees were less aggregated in the landscape, mean dispersal distances increased because seeds were deposited over larger areas, but the kernels had shorter tails. While there were no statistically meaningful changes in kernel parameters when frugivore density changed, decreases in density did cause a proportional reduction in the total number of dispersed seeds. However, birds were forced to move further when fruit availability and fruit ripening were low. Sensitivity analysis showed that dispersal kernels were primarily influenced by the model parameters relating to disperser behaviour, especially those determining attractiveness based on distance to candidate fruiting trees. Our results suggest that the spatial arrangement of plants plays an important role in seed dispersal processes – although tree aggregation curbed the mean seed dispersal distance, it was accompanied by occasional long distance events, and tree dispersion caused an increase in mean dispersal distance, both potentially increasing the probability of seeds finding suitable habitats for germination and growth. Even though low frugivore densities did not cause dispersal failure, there were negative effects on the quantity of seed dispersal because fewer seeds were dispersed.  相似文献   

8.
Selective logging of valuable tropical timber trees is a conservation concern because it threatens the long-term sustainability of forests. However, there is insufficient information regarding the postlogging recovery of harvested species. Here, I assessed the seed dispersal patterns, recruitment and abundance of Cordia millenii , a valuable timber tree in two Ugandan tropical rain forests that have been subjected to varying disturbance regimes. The aim was to determine the vulnerability of Cordia in these forests. The rate of seed dispersal was lower in the heavily disturbed Mabira Forest compared with the less disturbed Budongo Forest. Frugivores in Mabira were small-bodied individuals that spat seeds beneath fruiting trees, whereas 90% of the fruit in Budongo was consumed by large-bodied chimpanzees that disperse seeds over long distances. Juveniles of Cordia were not found in the closed forest, although they were found in forest gaps in Budongo but not Mabira. Mature tree density was higher in Budongo compared with Mabira. Lack of effective seed dispersal coupled with the inability of seedlings of Cordia to establish under closed canopy account for the arrested recruitment in Mabira. Enrichment planting in felling gaps is necessary to avoid local extinction of Cordia in forests without large vertebrates.  相似文献   

9.
Most tropical plants produce fleshy fruits that are dispersed primarily by vertebrate frugivores. Behavioral disparities among vertebrate seed dispersers could influence patterns of seed distribution and thus forest structure. This study investigated the relative importance of arboreal seed dispersers and seed predators on the initial stage of forest organization–seed deposition. We asked the following questions: (1) To what degree do arboreal seed dispersers influence the species richness and abundance of the seed rain? and (2) Based on the plant species and strata of the forest for which they provide dispersal services, do arboreal seed dispersers represent similar or distinct functional groups? To answer these questions, seed rain was sampled for 12 months in the Dja Reserve, Cameroon. Seed traps representing five percent of the crown area were erected below the canopies of 90 trees belonging to nine focal tree species: 3 dispersed by monkeys, 3 dispersed by large frugivorous birds, and 3 wind‐dispersed species. Seeds disseminated by arboreal seed dispersers accounted for ca 12 percent of the seeds and 68 percent of the seed species identified in seed traps. Monkeys dispersed more than twice the number of seed species than large frugivorous birds, but birds dispersed more individual seeds. We identified two distinct functional dispersal groups, one composed of large frugivorous birds and one composed of monkeys, drop dispersers, and seed predators. These groups dispersed plants found in different canopy strata and exhibited low overlap in the seed species they disseminated. We conclude it is unlikely that seed dispersal services provided by monkeys could be compensated for by frugivorous birds in the event of their extirpation from Afrotropical forests.  相似文献   

10.
An aggregated distribution of dispersed seeds may influence the colonization process in tree communities via inflated spatial uncertainty. To evaluate this possibility, we studied 10 tree species in a temperate forest: one primarily barochorous, six anemochorous and two endozoochorous species. A statistical model was developed by combining an empirical seed dispersal kernel with a gamma distribution of seedfall density, with parameters that vary with distance. In the probability density, the fitted models showed that seeds of Fagaceae (primarily barochorous) and Betulaceae (anemochorous) were disseminated locally (i.e. within 60 m of a mother tree), whereas seeds of Acer (anemochorous) and endozoochorous species were transported farther. Greater fecundity compensated for the lower probability of seed dispersal over long distances for some species. Spatial uncertainty in seedfall density was much greater within 60 m of a mother tree than farther away, irrespective of dispersal mode, suggesting that seed dispersal is particularly aggregated in the vicinity of mother trees. Simulation results suggested that such seed dispersal patterns could lead to sites in the vicinity of a tree being occupied by other species that disperse seeds from far away. We speculate that this process could promote coexistence by making the colonization rates of the species more similar on average and equalizing species fitness in this temperate forest community.  相似文献   

11.

Background

Some neotropical, fleshy-fruited plants have fruits structurally similar to paleotropical fruits dispersed by megafauna (mammals >103 kg), yet these dispersers were extinct in South America 10–15 Kyr BP. Anachronic dispersal systems are best explained by interactions with extinct animals and show impaired dispersal resulting in altered seed dispersal dynamics.

Methodology/Principal Findings

We introduce an operational definition of megafaunal fruits and perform a comparative analysis of 103 Neotropical fruit species fitting this dispersal mode. We define two megafaunal fruit types based on previous analyses of elephant fruits: fruits 4–10 cm in diameter with up to five large seeds, and fruits >10 cm diameter with numerous small seeds. Megafaunal fruits are well represented in unrelated families such as Sapotaceae, Fabaceae, Solanaceae, Apocynaceae, Malvaceae, Caryocaraceae, and Arecaceae and combine an overbuilt design (large fruit mass and size) with either a single or few (<3 seeds) extremely large seeds or many small seeds (usually >100 seeds). Within-family and within-genus contrasts between megafaunal and non-megafaunal groups of species indicate a marked difference in fruit diameter and fruit mass but less so for individual seed mass, with a significant trend for megafaunal fruits to have larger seeds and seediness.

Conclusions/Significance

Megafaunal fruits allow plants to circumvent the trade-off between seed size and dispersal by relying on frugivores able to disperse enormous seed loads over long-distances. Present-day seed dispersal by scatter-hoarding rodents, introduced livestock, runoff, flooding, gravity, and human-mediated dispersal allowed survival of megafauna-dependent fruit species after extinction of the major seed dispersers. Megafauna extinction had several potential consequences, such as a scale shift reducing the seed dispersal distances, increasingly clumped spatial patterns, reduced geographic ranges and limited genetic variation and increased among-population structuring. These effects could be extended to other plant species dispersed by large vertebrates in present-day, defaunated communities.  相似文献   

12.
An hypothesized advantage of seed dispersal is avoidance of high per capita mortality (i.e. density-dependent mortality) associated with dense populations of seeds and seedlings beneath parent trees. This hypothesis, inherent in nearly all seed dispersal studies, assumes that density effects are species-specific. Yet because many tree species exhibit overlapping fruiting phenologies and share dispersers, seeds may be deposited preferentially under synchronously fruiting heterospecific trees, another location where they may be particularly vulnerable to mortality, in this case by generalist seed predators. We demonstrate that frugivores disperse higher densities of Cornus florida seeds under fruiting (female) Ilex opaca trees than under non-fruiting (male) Ilex trees in temperate hardwood forest settings in South Carolina, USA. To determine if density of Cornus and/or Ilex seeds influences survivorship of dispersed Cornus seeds, we followed the fates of experimentally dispersed Cornus seeds in neighborhoods of differing, manipulated background densities of Cornus and Ilex seeds. We found that the probability of predation on dispersed Cornus seeds was a function of both Cornus and Ilex background seed densities. Higher densities of Ilex seeds negatively affected Cornus seed survivorship, and this was particularly evident as background densities of dispersed Cornus seeds increased. These results illustrate the importance of viewing seed dispersal and predation in a community context, as the pattern and intensity of density-dependent mortality may not be solely a function of conspecific densities.  相似文献   

13.
We investigated the spatial pattern of tree recruitment 15 years after clear-cutting in two logged strips in the Peruvian Amazon, focusing on differences between seed dispersal modes and cohorts, and relating these to spatial patterns of seed dispersal in the years immediately following clearing. Most trees that recruited in logged strips belonged to taxa dispersed by birds or nonvolant mammals, with smaller numbers dispersed by bats or wind. Seed dispersal patterns differed, with few mammal-dispersed seeds reaching strips, bird-dispersed seeds more abundant near the forest edge than strip centers, and bat- and wind-dispersed seeds more evenly distributed. However, this pattern was not reflected in the tree recruits, except in the deferment cut half of strip 2. Different dispersal modes were differentially represented in different cohorts; for example, in strip 1 bird-dispersed trees predominated in early cohorts, while trees dispersed by nonvolant mammals predominated in later cohorts. Our finding that trees dispersed by mammals (which disperse the majority of commercial trees in Amazonia) successfully regenerate from seed in the interior of logged strips highlights the value of maintaining these animals in forest management systems.  相似文献   

14.
Elephants, the largest terrestrial mega-herbivores, play an important ecological role in maintaining forest ecosystem diversity. While several plant species strongly rely on African elephants (Loxodonta africana; L. cyclotis) as seed dispersers, little is known about the dispersal potential of Asian elephants (Elephas maximus). We examined the effects of elephant fruit consumption on potential seed dispersal using the example of a tree species with mega-faunal characteristics, Dillenia indica L., in Thailand. We conducted feeding trials with Asian elephants to quantify seed survival and gut passage times (GPT). In total, 1200 ingested and non-ingested control seeds were planted in soil and in elephant dung to quantify differences in germination rates in terms of GPT and dung treatment. We used survival analysis as a novel approach to account for the right-censored nature of the data obtained from germination experiments. The average seed survival rate was 79% and the mean GPT was 35 h. The minimum and maximum GPT were 20 h and 72 h, respectively. Ingested seeds were significantly more likely to germinate and to do so earlier than non-ingested control seeds (P = 0.0002). Seeds with the longest GPT displayed the highest germination success over time. Unexpectedly, seeds planted with dung had longer germination times than those planted without. We conclude that D. indica does not solely depend on but benefits from dispersal by elephants. The declining numbers of these mega-faunal seed dispersers might, therefore, have long-term negative consequences for the recruitment and dispersal dynamics of populations of certain tree species.  相似文献   

15.
We evaluated the role of wild large mammals as dispersers of fleshy-fruited woody plants in woodland pastures of the Cantabrian range (N Spain). By searching for seeds in mammal scats across four localities, we addressed how extensive seed dispersal was in relation to the fleshy-fruited plant community, and applied a network approach to identify the relative role of mammal species in the seed dispersal process. We also tested the response of mammalian dispersers to forest availability at increasing spatial scales. Five carnivores and three ungulates dispersed seeds of eight fleshy-fruited trees and shrubs. Mammalian seed dispersal did not mirror community-wide fruit availability, as abundant fruiting trees were scarce whereas thorny shrubs were over-represented among dispersed species. The dispersal network was dominated by bramble (Rubus ulmifolius/fruticosus), the remaining plants being rarer and showing more restricted disperser coteries. Fox (Vulpes vulpes), badger (Meles meles), and wild boar (Sus scrofa) dispersed mostly bramble, whereas martens (Martes sp.) dispersed mostly wild rose (Rosa sp.). Ungulates occasionally dispersed holly (Ilex aquifolium) and hawthorn (Crataegus monogyna). The empirical network reflected a skewed distribution of interactions and some functional complementarity (as judged from the low levels of connectance and nestedness), but also some degree of specialization. Mammals overused uncovered microsites for seed deposition, and increased their disperser activity in those landscape sectors devoid of forest. Combined with previous findings on avian seed dispersal, this study suggest a strong functional complementarity coming from the low overlap in the main plant types that mammals and birds disperse – thorny shrubs and trees, respectively – and the differential patterns of seed deposition, with mammals mostly dispersing into deforested areas, and birds into forest-rich landscapes.  相似文献   

16.
We examined assemblages of trees and two major groups of vertebrate seed dispersers, birds and primates, in Ugandan protected areas to evaluate the roles of dispersal limitation and species sorting in community assembly. We conducted partial Mantel tests to investigate relationships between community similarity, environmental distance and geographic distance. Results showed that environmental factors, specifically temperature and rainfall, significantly and more strongly structured tree assemblages than geographic distance. Analysis of tree dispersal modes revealed wind‐dispersed tree guilds were significantly dispersal limited but trees dispersed by animals were not. For assemblages of vertebrate seed dispersers, dispersal limitation significantly and more strongly structured assemblages of primates than species sorting whereas environmental factors significantly and more strongly structured assemblages of birds than dispersal limitation. We therefore examined whether trees dispersed by primates were more dispersal limited than trees dispersed by birds. We found consistent trends that primate fruit trees were more dispersal limited than bird fruit trees using three definitions of dispersal syndromes based on fruit color. Our results suggest that the dispersal abilities of primary consumers may affect the distribution of primary producers at large spatial scales.  相似文献   

17.
Seed dispersal selection pressures may cause morphological differences in cone structure and seed traits of large‐seeded pine trees. We investigated the cone, seed, and scale traits of four species of animal‐dispersed pine trees to explore the adaptations of morphological structures to different dispersers. The four focal pines analyzed in this study were Chinese white pine (Pinus armandi), Korean pine (P. koraiensis), Siberian dwarf pine (P. pumila), and Dabieshan white pine (P. dabeshanensis). There are significant differences in the traits of the cones and seeds of these four animal‐dispersed pines. The scales of Korean pine and Siberian dwarf pine are somewhat opened after cone maturity, the seeds are closely combined with scales, and the seed coat and scales are thick. The cones of Chinese white pine and Dabieshan white pine are open after ripening, the seeds fall easily from the cones, and the seed coat and seed scales are relatively thin. The results showed that the cone structure of Chinese white pine is similar to that of Dabieshan white pine, whereas Korean pine and Siberian dwarf pine are significantly different from the other two pines and vary significantly from each other. This suggests that species with similar seed dispersal strategies exhibit similar morphological adaptions. Accordingly, we predicted three possible seed dispersal paradigms for animal‐dispersed pines: the first, as represented by Chinese white pine and Dabieshan white pine, relies upon small forest rodents for seed dispersal; the second, represented by Korean pine, relies primarily on birds and squirrels to disperse the seeds; and the third, represented by Siberian dwarf pine, relies primarily on birds for seed dispersal. Our study highlights the significance of animal seed dispersal in shaping cone morphology, and our predictions provide a theoretical framework for research investigating the coevolution of large‐seeded pines and their seed dispersers.  相似文献   

18.
Fragmentation that alters mutualistic relationships between plants and frugivorous animals may reduce the seed dispersal of trees. We examined the effects of forest fragmentation on the distributions of seeds and seedlings of a Central Amazon endemic tree, Duckeodendron cestroides . In the dry seasons of 2002–2004, seeds and first-year seedlings were counted within wedge-shaped transects centered around Duckeodendron adults in fragments and nearby continuous forests at the Biological Dynamics of Forest Fragmentation Project. Analyses showed that fragmentation reduced seed dispersal quantity and quality. The percent and distance of dispersed seeds were both twice as great in continuous forest as in fragments. The distances of each tree's five furthest dispersed seeds were three times greater in continuous forest than fragments. Over the 3-yr study, 20 times more seeds were dispersed more than 10 m from parent crowns in continuous forest than fragments. A regression analysis showed more dispersed seeds at all distances in continuous forest than fragments. Dispersal differences were strong in 2002 and 2004, years of large fruit crops, but weak or absent in 2003, when fruit production was low. As distance from parent crowns increased, the number of seedlings declined more rapidly in fragments than continuous forest. Distance-dependent mortality between the seed and seedling stages appeared to be more important in continuous forest than fragments. This research provides ample, indirect evidence demonstrating that forest fragmentation can result in the breakdown of a seed dispersal mutualism, potentially jeopardizing the reproduction of a rare, tropical tree.  相似文献   

19.
Abstract Although pigeons from the genus Ducula are considered among the best avian dispersers of large seeds in Asia and the Pacific, little has been documented on their role. The early fate of dispersed and undispersed seeds of the large‐seeded tree Myristica hypargyraea A. Gray was studied in order to understand the advantage of seed dispersal by the Pacific Pigeon, Ducula pacifica Gmelin in Tonga. Frequency of visits by frugivores to fruiting trees and dispersal distance of seeds were measured. Pre‐dispersal vertebrate seed predation was assessed, then post‐dispersal predation was measured over 160 days. Overall, pre‐dispersal seed predation by parrots was low but variable among trees sampled. Most seeds (54.7%) in the study area were estimated to be dispersed by D. pacifica; 79.7% of those ingested were expelled directly beneath conspecific fruiting crowns, 20% were dispersed locally and < 0.3% were dispersed more than 300 m into a different forest type. Flying foxes (Pteropus tonganus Quoy and Gaimard) dispersed very few seeds (0.7%) and all were dropped below fruiting crowns. Between 4% and 39% of dispersed and undispersed seeds were still viable, or had established seedlings after 160 days. Most seeds had been removed or killed by rats, and seed survival was highest for locally dispersed seeds (approx. 20 m from source trees and within the M. hypargyraea forest). Although D. pacifica was the only frugivore observed to disperse seeds into this higher zone of survival, overall they did not confer a great advantage to seed survival since significant numbers of seeds/seedlings also persisted under fruiting crowns (27% under crowns compared with 39% locally dispersed). Nevertheless, D. pacifica was the only vector by which seeds were regularly moved within the M. hypargyraea forest and over longer distances, and hence, D. pacifica still plays a significant role in the regeneration of M. hypargyraea.  相似文献   

20.
  1. Bushmeat hunting has reduced population sizes of large frugivorous vertebrates throughout the tropics, thereby reducing the dispersal of seeds. This is believed to affect tree population dynamics, and therefore community composition, because the seed dispersal of large‐seeded trees depends upon large‐bodied vertebrates.
  2. We report on a long‐running study of the effect of defaunation on a tropical tree community. In three censuses over 11 years, we compared sapling recruitment between a hunted and a nonhunted site, which are nearby and comparable to one another, to determine the extent to which species composition has changed through time following defaunation. We expected to find a reduced abundance of tree species that rely on large frugivores for dispersal at the hunted site and altered community structure as a consequence.
  3. Although community composition at the hunted site diverged from that at the nonhunted site, the changes were independent of dispersal syndrome, with no trend toward a decline in species that are dispersed by large, hunted vertebrates. Moreover, the loss of large‐bodied dispersers did not generate the changes in tree community composition that we hypothesized. Some species presumed to rely on large‐bodied frugivores for dispersal are effectively recruiting despite the absence of their dispersers.
  4. Synthesis: The presumption that forests depleted of large‐bodied dispersers will experience rapid, directional compositional change is not fully supported by our results. Altered species composition in the sapling layer at the hunted site, however, indicates that defaunation may be connected with changes to the tree community, but that the nature of these changes is not unidirectional as previously assumed. It remains difficult to predict how defaunation will affect tree community composition without a deeper understanding of the driving mechanisms at play.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号