首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Extensive ephemeral wetlands at Poyang Lake, created by dramatic seasonal changes in water level, constitute the main wintering site for migratory Anatidae in China. Reductions in wetland area during the last 15 years have led to proposals to build a Poyang Dam to retain high winter water levels within the lake. Changing the natural hydrological system will affect waterbirds dependent on water level changes for food availability and accessibility. We tracked two goose species with different feeding behaviors (greater white‐fronted geese Anser albifrons [grazing species] and swan geese Anser cygnoides [tuber‐feeding species]) during two winters with contrasting water levels (continuous recession in 2015; sustained high water in 2016, similar to those predicted post‐Poyang Dam), investigating the effects of water level change on their habitat selection based on vegetation and elevation. In 2015, white‐fronted geese extensively exploited sequentially created mudflats, feeding on short nutritious graminoid swards, while swan geese excavated substrates along the water edge for tubers. This critical dynamic ecotone successively exposes subaquatic food and supports early‐stage graminoid growth during water level recession. During sustained high water levels in 2016, both species selected mudflats, but also to a greater degree of habitats with longer established seasonal graminoid swards because access to tubers and new graminoid growth was restricted under high‐water conditions. Longer established graminoid swards offer less energetically profitable forage for both species. Substantial reduction in suitable habitat and confinement to less profitable forage by higher water levels is likely to reduce the ability of geese to accumulate sufficient fat stores for migration, with potential carryover effects on subsequent survival and reproduction. Our results suggest that high water levels in Poyang Lake should be retained during summer, but permitted to gradually recede, exposing new areas throughout winter to provide access for waterbirds from all feeding guilds.  相似文献   

2.
East Asian migratory waterfowl have greatly declined since the 1950s, especially the populations that winter in China. Conservation is severely hampered by the lack of primary information about migration patterns and stopover sites. This study utilizes satellite tracking techniques and advanced spatial analyses to investigate spring migration of the greater white‐fronted goose (Anser albifrons) and tundra bean goose (Anser serrirostris) wintering along the Yangtze River Floodplain. Based on 24 tracks obtained from 21 individuals during the spring of 2015 and 2016, we found that the Northeast China Plain is far‐out the most intensively used stopover site during migration, with geese staying for over 1 month. This region has also been intensely developed for agriculture, suggesting a causal link to the decline in East Asian waterfowl wintering in China. The protection of waterbodies used as roosting area, especially those surrounded by intensive foraging land, is critical for waterfowl survival. Over 90% of the core area used during spring migration is not protected. We suggest that future ground surveys should target these areas to confirm their relevance for migratory waterfowl at the population level, and core roosting area at critical spring‐staging sites should be integrated in the network of protected areas along the flyway. Moreover, the potential bird–human conflict in core stopover area needs to be further studied. Our study illustrates how satellite tracking combined with spatial analyses can provide crucial insights necessary to improve the conservation of declining Migratory species.  相似文献   

3.
East Dongting Lake is a Ramsar site and a particularly important wintering ground for herbivorous geese along the East Asian‐Australasian Flyway. The operation of the Three Gorges Dam has changed the water regime and has a significant impact on wetland ecosystems downstream. We studied the responses of two sympatric herbivorous goose species, the Lesser white‐fronted goose Anser erythropus and Bean goose Anser fabalis, to habitat change by investigating their food conditions, habitat selection, and diet composition in the wintering periods of 2016/2017 and 2017/2018, which had early and late water recession, respectively. It was expected that the contrasting water regimes would result in different food conditions and geese responses. The results showed that the food quality and quantity differed significantly between winters. As responses to the high‐quantity/low‐quality food during 2016/2017, more geese switched to feeding on mudflat and exploited plants such as dicotyledons and moss. The tall swards of Carex spp. (dominant plants in the meadow) that developed during the first growing season decreased the food accessibility during the second growing season and hindered the exploitation of newly generated shoots by the geese, which was further confirmed by our clipping control experiment. Nearly all the geese chose to feed on meadow, and Carex spp. made up the majority of their diet in 2017/2018 when there was more low‐quantity/high‐quality food. Compared with the globally vulnerable Lesser white‐fronted geese, the larger‐sized Bean geese seemed to be less susceptible to winter food shortages and exhibited more stable responses. We concluded that the food quality–quantity condition was the external factor influencing the geese responses, while morphological and physiological traits could be the internal factors causing different responses between the two species. This study enhanced the understanding of the influence that habitat change exerts on herbivorous geese in their wintering site in the context of the Three Gorges Dam operation. We suggested that regulating hydrological regime was important in terms of wetland management and species conservation.  相似文献   

4.
Feeding on farmland by overwintering populations of pink-footed geese ( Anser brachyrhynchus ) conflicts with agricultural interests in Northern Europe. In order to forecast the potential future of this conflict, we used generalized linear models to relate the presence and absence of pink-footed geese to variables describing the contemporary landscape, and predicted their future distributions in relation to two land-use scenarios for the year 2050. One future scenario represented a global, economically orientated world (A1) and the other represented a regional, environmentally concerned world (B2). The probability of goose occurrence increased within cropland and grassland, and could be explained by their proximity to coast, elevation, and the degree of habitat closure. Predictions to future scenarios revealed noticeable shifts in the suitability of goose habitat evident at the local and regional scale in response to future shifts in land use. In particular, as grasslands and croplands give way to unsuitable land-use types (e.g. woody biofuel crops, increased urbanization, and forest) under both future scenarios, our models predicted a decrease in habitat suitability for geese. If coupled with continued goose population expansion, we expect that the agricultural conflict will intensify under the A1 and particularly the B2 scenarios.  相似文献   

5.
6.
An understanding of the genetic structure of populations in the wild is essential for long‐term conservation and stewardship in the face of environmental change. Knowledge of the present‐day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white‐fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine‐scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long‐lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population‐specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white‐fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.  相似文献   

7.
Seasonal changes in the distribution and feeding behaviour of dark-bellied brent geese Branta b. bernicla (L.) and the biomass of their food plants were studied in three successive winters on the Norfolk coast. The data was used, in conjunction with published information, to show how depletion, productivity and mortality of food plants drive the pattern of habitat switching in this species. It is then possible to explain the habitat shifts observed over the last 35 years and predict future changes. On arrival, geese fed first on algal beds and then on salt marsh, grass and arable fields before returning to feed entirely on the salt marsh in spring. The biomass of green algae, and subsequently the salt marsh vegetation, declined during the autumn and this could be attributed to depletion through goose grazing and natural mortality. As depletion occurred the geese fed more intensively, for a greater percentage of time and with an increasing pace rate, the net result, however, was a declining intake rate (as measured by defaecation rate). The algal biomass at which the geese switched from the algal beds to salt marsh was consistent between years, with heavy storm-induced loss of algae in one year resulting in an earlier switch. That the timing of habitat switches may be explained by depletion of food plants was further supported by historical data: the number of brent geese wintering at the site has increased dramatically over the last 30–35 years and the time of switching from algal beds to salt marsh and from salt marsh to salt marsh and fields has become progressively earlier, as expected from the increased depletion. The expected further increase in brent goose numbers will increase the rate of depletion of intertidal vegetation so that the switches between habitats will be more rapid and the geese will move inland earlier and remain inland longer. The expected increase in the brent goose population will thus result in a disproportionate increase in the levels of conflict between brent geese and agriculture.  相似文献   

8.
The phylogenetic relationships of seven goose species and two of the subspecies representing the genus Anser were studied by approximately 1180 bp of mitochondrial DNA tRNAglu, control region and tRNAphe sequences. Despite obvious morphological and behavioural affinities among the species, their evolutionary relationships have not been studied previously. The small amount of genetic differentiation observed in the mitochondrial DNA indicates an extremely close evolutionary relationship between the Anser species. The sequence divergences between the species (0.9–5.5%) are among the lowest reported for avian species with speciation events of Anser geese dating to late Pliocene and Pleistocene. The species grouped into four mtDNA lineages: (1) snow and Ross’ goose, (2) greylag goose, (3) white‐fronted goose, and (4) bean, pink‐footed and lesser white‐fronted goose. The phylogenetic relationships of the most closely related species, bean, pink‐footed and lesser white‐fronted goose, indicate a period of rapid cladogenesis. The poor agreement between morphological relationships and the phylogenetic relationships indicated by mtDNA sequences implies that either ancestral polymorphism and lineage sorting, hybridization and introgression or convergent evolution has been involved.  相似文献   

9.
Abstract The Beringia region of the Arctic contains 2 colonies of lesser snow geese (Chen caerulescens caerulescens) breeding on Wrangel Island, Russia, and Banks Island, Canada, and wintering in North America. The Wrangel Island population is composed of 2 subpopulations from a sympatric breeding colony but separate wintering areas, whereas the Banks Island population shares a sympatric wintering area in California, USA, with one of the Wrangel Island subpopulations. The Wrangel Island colony represents the last major snow goose population in Russia and has fluctuated considerably since 1970, whereas the Banks Island population has more than doubled. The reasons for these changes are unclear, but hypotheses include independent population demographics (survival and recruitment) and immigration and emigration among breeding or wintering populations. These demographic and movement patterns have important ecological and management implications for understanding goose population structure, harvest of admixed populations, and gene flow among populations with separate breeding or wintering areas. From 1993 to 1996, we neckbanded molting birds at their breeding colonies and resighted birds on the wintering grounds. We used multistate mark-recapture models to evaluate apparent survival rates, resighting rates, winter fidelity, and potential exchange among these populations. We also compared the utility of face stain in Wrangel Island breeding geese as a predictor of their wintering area. Our results showed similar apparent survival rates between subpopulations of Wrangel Island snow geese and lower apparent survival, but higher emigration, for the Banks Island birds. Males had lower apparent survival than females, most likely due to differences in neckband loss. Transition between wintering areas was low (<3%), with equal movement between northern and southern wintering areas for Wrangel Island birds and little evidence of exchange between the Banks and northern Wrangel Island populations. Face staining was an unreliable indicator of wintering area. Our findings suggest that northern and southern Wrangel Island subpopulations should be considered a metapopulation in better understanding and managing Pacific Flyway lesser snow geese. Yet the absence of a strong population connection between Banks Island and Wrangel Island geese suggests that these breeding colonies can be managed as separate but overlapping populations. Additionally, winter population fidelity may be more important in lesser snow geese than in other species, and both breeding and wintering areas are important components of population management for sympatric wintering populations.  相似文献   

10.
Dispersal and migratory behavior are influential factors in determining how genetic diversity is distributed across the landscape. In migratory species, genetic structure can be promoted via several mechanisms including fidelity to distinct migratory routes. Particularly within North America, waterfowl management units have been delineated according to distinct longitudinal migratory flyways supported by banding data and other direct evidence. The greater white‐fronted goose (Anser albifrons) is a migratory waterfowl species with a largely circumpolar distribution consisting of up to six subspecies roughly corresponding to phenotypic variation. We examined the rangewide population genetic structure of greater white‐fronted geese using mtDNA control region sequence data and microsatellite loci from 23 locales across North America and Eurasia. We found significant differentiation in mtDNA between sampling locales with flyway delineation explaining a significant portion of the observed genetic variation (~12%). This is concordant with band recovery data which shows little interflyway or intercontinental movements. However, microsatellite loci revealed little genetic structure suggesting a panmictic population across most of the Arctic. As with many high‐latitude species, Beringia appears to have played a role in the diversification of this species. A common Beringian origin of North America and Asian populations and a recent divergence could at least partly explain the general lack of structure at nuclear markers. Further, our results do not provide strong support for the various taxonomic proposals for this species except for supporting the distinctness of two isolated breeding populations within Cook Inlet, Alaska (A. a. elgasi) and Greenland (A. a. flavirostris), consistent with their subspecies status.  相似文献   

11.
For migrant birds, which habitats are suitable during the non‐breeding season influences habitat availability, population resilience to habitat loss, and ultimately survival. Consequently, habitat preferences during winter and whether habitat segregation according to age and sex occurs directly influences migration ecology, survival and breeding success. We tested the fine‐scale habitat preferences of a declining Palearctic migrant, the whinchat Saxicola rubetra, on its wintering grounds in west Africa. We explored the influence of habitat at the territory‐scale and whether dominance‐based habitat occupancy occurs by describing the variation in habitat characteristics across wintering territories, the degree of habitat change within territories held throughout winter, and whether habitat characteristics influenced territory size and space‐use within territories or differed with age and sex. Habitat characteristics varied substantially across territories and birds maintained the same territories even though habitat changed significantly throughout winter. We found no evidence of dominance‐based habitat occupancy; instead, territories were smaller if they contained more perching shrubs or maize crops, and areas with more perching shrubs were used more often within territories, likely because perches are important for foraging and territory defence. Our findings suggest that whinchats have non‐specialised habitat requirements within their wintering habitat of open savannah and farmland, and respond to habitat variation by adjusting territory size and space‐use within their territories instead of competing with conspecifics. Whinchats show a tolerance for human‐modified habitats and results support previous findings that some crop types may provide high‐quality wintering habitat by increasing perch density and foraging opportunities. By having non‐specialised requirements within broad winter habitat types, migrants are likely to be flexible to changing wintering conditions in Africa, both within and across winters, so possibly engendering some resilience to the rapid anthropogenic habitat degradation occurring throughout their wintering range.  相似文献   

12.
Changing energy requirements and dramatic shifts in food availability are major factors driving behaviour and distribution of herbivores. We investigate this in wintering East Canadian High Arctic light-bellied brent geese Branta bernicla hrota in Northern Ireland. They followed a sequential pattern of habitat use, feeding on intertidal Zostera spp. in autumn and early winter before moving to predominantly saltmarsh and farmland in late winter and early spring. Night-time feeding occurred throughout and made a considerable contribution to the birds' daily energy budget, at times accounting for >50% of energy intake. Nocturnal feeding, however, is limited to the intertidal, possibly because of predation risk on terrestrial habitat, and increases with moonlight. The amount of Zostera spp., declined dramatically after the arrival of birds, predominantly, but not entirely, due to consumption by the birds. Birds gained fat reserves in the first 2 months but then this was dramatically lost as their major food source collapsed and their daily energy intake declined. Single birds consistently fared worse than paired birds and pairs with juveniles fared better than those without suggesting a benefit of having a family to compete for food. Many birds leave the Lough at this time of reduced Zostera spp. for other sea inlets in Ireland but some remain. Body condition of the latter gradually improved in early spring and reflected a heavy reliance on terrestrial habitats, particularly farmland, to meet the birds' daily energy requirements. However, even in the period immediately before migration to the breeding ground, the birds did not regain the amount of abdominal fatness observed in November. The dramatic changes in available food and requirements of the birds drive the major changes seen in foraging behaviour as the birds evade starvation in the wintering period.  相似文献   

13.
A detailed knowledge of the habitat requirements of steppe birds living in farmland habitats is necessary to identify agricultural practices compatible with their conservation. The globally threatened Great Bustard Otis tarda is a partial migrant in central Iberia, but factors affecting its winter habitat use have not been identified. We assessed habitat differences between breeding and wintering areas and winter habitat selection of radiotagged migrant female Great Bustards in central Spain. Of 68 tagged females, 35% moved to wintering areas located 64.3 ± 24.0 km south of their breeding areas, and 80% wintered in a single area of c. 236 km2. A census of the population in this area identified it as one of the most important wintering areas of this species in the world, holding c. 1500 individuals. There were significant differences between breeding and wintering habitats of individually marked migrant females. Compared with breeding areas, wintering areas of migrant females were located further from roads and urban nuclei, had lower human population densities and area of urban developments, and a higher diversity of land‐use types, with less cover of cereals and more vineyards and olive groves. Within this area, radiotracked migrant females preferred sites with more vineyards and a lower land‐use diversity. Our results highlight the importance of traditional Mediterranean dry farmland mosaics, and suggest that different conservation strategies are needed for migrant and resident populations in winter to secure the conservation of suitable wintering habitat for Great Bustards in the Iberian Peninsula.  相似文献   

14.
Anthropogenic climate disruption, including temperature and precipitation regime shifts, has been linked to animal population declines since the mid‐20th century. However, some species, such as Arctic‐breeding geese, have thrived during this period. An increased understanding of how climate disruption might link to demographic rates in thriving species is an important perspective in quantifying the impact of anthropogenic climate disruption on the global state of nature. The Greenland barnacle goose (Branta leucopsis) population has increased tenfold in abundance since the mid‐20th century. A concurrent weather regime shift towards warmer, wetter conditions occurred throughout its range in Greenland (breeding), Ireland and Scotland (wintering) and Iceland (spring and autumn staging). The aim of this study was to determine the relationship between weather and demographic rates of Greenland barnacle geese to discern the role of climate shifts in the population trend. We quantified the relationship between temperature and precipitation and Greenland barnacle goose survival and productivity over a 50 year period from 1968 to 2018. We detected significant positive relationships between warmer, wetter conditions on the Icelandic spring staging grounds and survival. We also detected contrasting relationships between warmer, wetter conditions during autumn staging and survival and productivity, with warm, dry conditions being the most favourable for productivity. Survival increased in the latter part of the study period, supporting the possibility that spring weather regime shifts contributed to the increasing population trend. This may be related to improved forage resources, as warming air temperatures have been shown to improve survival rates in several other Arctic and northern terrestrial herbivorous species through indirect bottom‐up effects on forage availability.  相似文献   

15.
The pre-nesting feeding behaviour of greylag Anser anser and pink-footed geese A brachyrhynchus was studied on agricultural land at low altitude in southern Iceland from 10 April to 8 May 1990 Greylag geese were already present on 12 April increased to 4580 birds by 24 April, but declined to 1300 by 3 May Pink-footed geese arrived around 20 April and numbers continued to increase to a peak count of 11340 on 3 May Over 60% of greylag geese initially used stubble fields on the coast where this habitat was most frequent, but increasingly resorted to grassland and wetland habitats during late April Later-arriving pink-feet predominantly used managed grassland, away from coastal areas At inland grassland sites, greylag numbers peaked on 20 April, pink-feet m early May The early exploitation by greylags was associated with grass growth initiated under protective snow-patches Greylags spent 90 times more time feeding within 1 m of snow patches with enhanced grass growth than expected by chance and their feeding rates near snow patches were faster and their step rates slower than further away By early May, grass growth was uniform and, although snow-patches persisted, no difference in forage quality, goose feeding rates or step rates could be detected It is concluded that, in spring 1990 at least, habitat segregation during spring migration in southern Iceland minimised competition between these two closely related goose species within the same geographical area In areas where both species exploit the same habitat, a two week difference m timing of breeding (and hence phenology of migration) further assures minimal overlap in feeding exploitation  相似文献   

16.
ABSTRACT Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998-Mar 2000) using capture-recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.  相似文献   

17.
We studied diet and habitat use of greater white-fronted geese (Anser albifrons) from autumn through spring on their primary staging and wintering areas in the Pacific Flyway, 1979–1982. There have been few previous studies of resource use and forage quality of wintering greater white-fronted geese in North America, and as a consequence there has been little empirical support for management practices pertaining to habitat conservation of this broadly distributed species. Observations of >2,500 flocks of geese and collections of foraging birds revealed seasonal and geographic variation in resource use reflective of changes in habitat availability, selection, and fluctuating physiological demands. Autumn migrants from Alaska arrived first in the Klamath Basin of California and southern Oregon, where they fed on barley, oats, wheat, and potatoes. Geese migrated from the Klamath Basin into the Central Valley of California in late autumn where they exploited agricultural crops rich in soluble carbohydrates, with geese in the Sacramento Valley feeding almost exclusively on rice and birds on the Sacramento–San Joaquin Delta primarily utilizing corn. White-fronted geese began their northward migration in late winter, and by early spring most had returned to the Klamath Basin where 37% of flocks were found in fields of new growth cultivated and wild grasses. Cereal grains and potatoes ingested by geese were low in protein (7–14%) and high in soluble nutrients (17–47% neutral detergent fiber [NDF]), whereas grasses were low in available energy (47–49% NDF) but high in protein (26–42%). Greater white-fronted geese are generalist herbivores and can exploit a variety of carbohydrate-rich cultivated crops, likely making these geese less susceptible to winter food shortages than prior to the agriculturalization of the North American landscape. However, agricultural landscapes can be extremely dynamic and may be less predictable in the long-term than the historic environments to which geese are adapted. Thus far greater white-fronted geese have proved resilient to changes in land cover in the Pacific Flyway and by altering their migration regime have even been able to adapt to changes in the availability of suitable forage crops. © 2010 The Wildlife Society.  相似文献   

18.
Capsule Based upon resighting histories of marked individuals, a high level of site loyalty was found for Greenland White-fronted Geese staging in Icelandic stopover areas in spring and autumn.

Aims To determine levels of within- and between-season staging site fidelity, to assess whether offspring adopt the staging areas of their parents and to determine relationships between Icelandic staging areas and winter provenance of individuals.

Methods Sequential resighting histories and recoveries (2658 observations) of 415 different individually marked geese were analysed from the period 1986–99.

Results In spring, > 90% of goslings associated with parents and siblings and all goslings were subsequently seen <4 km from where they were first sighted with parents in spring. Ninety-six percent of all multiple within-spring resightings of 192 marked individuals were within 4 km of each other; three geese moved 88 km from the southern to the western staging areas. Four percent of the 45 marked geese seen in two consecutive springs and none of the 27 birds seen in consecutive autumns moved more than 4 km between years. By contrast, significantly more (12%) moved greater than 4 km in subsequent seasons between spring/autumn (n = 56) and autumn/spring (n = 49). All these individuals shifted to Hvanneyri Agricultural College in autumn, the only declared hunting-free area for Greenland White-fronted Geese. Based upon resighting histories and recoveries of shot birds, Scottish wintering birds were more likely to use southern staging areas, and Wexford (Ireland) wintering birds were generally more likely to be seen staging in the western lowlands in Iceland.

Conclusions Given the apparent cultural reinforcement of patterns of use of staging areas in Iceland, the high levels of site loyalty and the relatively limited exchange between southern and western staging areas, we argue for strategic refuge designation throughout both staging areas to protect the population.  相似文献   

19.
Bean geese (Anser fabalis) and Greater white-fronted geese (Anser albifrons) are the dominant wintering waterfowl in South Korea. Although they are commonly observed in estuaries and rice fields during the winter, the diet composition of the geese during the winter has rarely been studied. In this study, we provide the results from preliminary analyses on the diet of these two geese species overwintering in Daebu Island of South Korea. We used a total of 13 fecal samples from Bean geese (n?=?4) and Greater white-fronted geese (n?=?9), and performed a BLAST search for the sequences obtained from 87 clones (n?=?36 for Bean geese and n?=?51 for Greater white-fronted geese). The diet of Bean geese consisted of five families of plants: Caryophyllaceae (75.0%), Poaceae (13.9%), Asteraceae (5.5%), Polygonaceae (2.8%) and Cucurbitacea (2.8%). On the other hand, the diet of Greater white-fronted geese consisted of 6 families of plants: Poaceae (74.5%), Caryophyllaceae (9.8%), Solanacea (5.9%), Portulacaceae (3.9%), Lamiaceae (3.9%) and Brassicaceae (2.0%). We found that plants of the rice family (Poaceae) are important in the diet of wintering geese, especially for Greater white-fronted geese. This knowledge can be used to establish conservation strategies of the geese overwintering in South Korea.  相似文献   

20.
The North American greater snow goose population has increased dramatically during the last 40 years. We evaluated whether refuge creation, changes in land use on the wintering and staging grounds, and climate warming have contributed to this expansion by affecting the distribution, habitat use, body condition, and migration phenology of birds. We also reviewed the effects of the increasing population on marshes on the wintering grounds, along the migratory routes and on the tundra in summer. Refuges established before 1970 may have contributed to the initial demographic increase. The most important change, however, was the switch from a diet entirely based on marsh plants in spring and winter (rhizomes of Scirpus/Spartina) to one dominated by crops (corn/young grass shoots) during the 1970s and 1980s. Geese now winter further north along the US Atlantic coast, leading to reduced hunting mortality. Their migratory routes now include portions of southwestern Québec where corn production has increased exponentially. Since the mid‐1960s, average temperatures have increased by 1–2.4°C throughout the geographic range of geese, which may have contributed to the northward shift in wintering range and an earlier migration in spring. Access to spilled corn in spring improved fat reserves upon departure for the Arctic and may have contributed to a high fecundity. The population increase has led to intense grazing of natural wetlands used by geese although these habitats are still largely undamaged. The foraging in fields allowed the population to exceed limits imposed by natural marshes in winter and spring, but also prevented permanent damage because of their overgrazing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号