首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2003篇
  免费   69篇
  2023年   7篇
  2022年   6篇
  2021年   17篇
  2020年   13篇
  2019年   12篇
  2018年   15篇
  2017年   11篇
  2016年   52篇
  2015年   95篇
  2014年   94篇
  2013年   120篇
  2012年   189篇
  2011年   171篇
  2010年   112篇
  2009年   84篇
  2008年   148篇
  2007年   161篇
  2006年   142篇
  2005年   140篇
  2004年   123篇
  2003年   112篇
  2002年   103篇
  2001年   6篇
  2000年   8篇
  1999年   8篇
  1998年   13篇
  1997年   6篇
  1996年   4篇
  1995年   6篇
  1994年   7篇
  1993年   9篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1978年   4篇
  1977年   4篇
  1976年   1篇
  1975年   6篇
  1974年   3篇
  1973年   1篇
  1969年   1篇
排序方式: 共有2072条查询结果,搜索用时 15 毫秒
1.
2.
The chemical composition of the pore water from the sediment of a eutrophic lake is dominated by high concentrations of total dissolved CO2 (up to 12 mM), reduced soluble iron (up to 2 mM) and dissolved silica (up to 1 mM). The pH lies within the range of 6.70 ± 0.02; this reflects that the pore water is efficiently buffered by the CO2 acid/base system. This composition is directly related to the main diagenetic reactions which drive the organic matter mineralization i.e. methanogenesis and ferric oxides reduction. Other geochemical processes are of minor importance. A stoichiometric model based on these main reactions allow us: (i) to define a general formula for the organic matter which is close to Redfield's one for the C:N ratio, while the C:P ratio is much higher owing to a probable adsorption of phosphorus onto reactive surfaces of the solid and due to heterotrophic bacterial uptake; (ii) to calculate a global first order kinetic constant which drives the organo-polymers breakdown. Due to the strong influence on the trophic status of the lake caused by an excess of phosphate, special attention is devoted to this species. We show that the sediment-water interface is a source of dissolved phosphate when the hypolimnion is anoxic between May and November. This contribution represents about 17% of the river input and should be taken into account in any attempt toward lake restoration.  相似文献   
3.
4.
5.
A new jakobid genus has been isolated from Moroccan desert soil. The cyst-forming protist Moramonas marocensis gen. nov., sp. nov. has two anteriorly inserted flagella of which one points to the posterior cell pole accompanying the ventral feeding groove and is equipped with a dorsal vane—a feature typical for the Jakobida. It further shows a flagellar root system consisting of singlet microtubular root, left root (R1), right root (R2) and typical fibres associated with R1 and R2. The affiliation of M. marocensis to the Jakobida was confirmed by molecular phylogenetic analyses of the SSU rRNA gene, five nuclear genes and 66 mitochondrial protein-coding genes. The mitochondrial genome has the high number of genes typical for jakobids, and bacterial features, such as the four-subunit RNA polymerase and Shine–Dalgarno sequences upstream of the coding regions of several genes. The M. marocensis mitochondrial genome encodes a similar number of genes as other jakobids, but is unique in its very large genome size (greater than 264 kbp), which is three to four times higher than that of any other jakobid species investigated yet. This increase seems to be due to a massive expansion in non-coding DNA, creating a bloated genome like those of plant mitochondria.  相似文献   
6.
7.
It is generally accepted that in order to establish a systemic infection in a plant, viruses move from the initially infected cell to the vascular tissues by cell-to-cell movement through plasmodesmata (PD), and load into the vascular conducting tubes (i.e. phloem sieve elements and xylem vessel elements) for long-distance movement. The viral unit in these movements can be a virion or a yet-to-be-defined ribonucleic protein (RNP) complex. Using live-cell imaging, our laboratory has previously demonstrated that membrane-bound replication complexes move cell-to-cell during turnip mosaic virus (TuMV) infection. Our recent study shows that these membrane-bound replication complexes end up in the vascular conducting tubes, which is likely the case for potato virus X (PVX) also. The presence of TuMV-induced membrane complexes in xylem vessels suggests that viral components could also be found in other apoplastic regions of the plant, such as the intercellular space. This possibility may have implications regarding how we approach the study of plant innate immune responses against viruses.  相似文献   
8.
Pyruvate kinase (PKLR) is a critical erythrocyte enzyme that is required for glycolysis and production of ATP. We have shown that Pklr deficiency in mice reduces the severity (reduced parasitemia, increased survival) of blood stage malaria induced by infection with Plasmodium chabaudi AS. Likewise, studies in human erythrocytes infected ex vivo with P. falciparum show that presence of host PK-deficiency alleles reduces infection phenotypes. We have characterized the genetic diversity of the PKLR gene, including haplotype structure and presence of rare coding variants in two populations from malaria endemic areas of Thailand and Senegal. We investigated the effect of PKLR genotypes on rich longitudinal datasets including haematological and malaria-associated phenotypes. A coding and possibly damaging variant (R41Q) was identified in the Thai population with a minor allele frequency of ~4.7%. Arginine 41 (R41) is highly conserved in the pyruvate kinase family and its substitution to Glutamine (R41Q) affects protein stability. Heterozygosity for R41Q is shown to be associated with a significant reduction in the number of attacks with Plasmodium falciparum, while correlating with an increased number of Plasmodium vivax infections. These results strongly suggest that PKLR protein variants may affect the frequency, and the intensity of malaria episodes induced by different Plasmodium parasites in humans living in areas of endemic malaria.  相似文献   
9.
Potato plants grown in vitro were subjected to different salt stresses by providing the salts NaCl, Na2SO4, MgCl2 and MgSO4 in different concentrations up to 300 mM. Salinity greatly affected the survival and the rooting of the plants. Shoot and root growth decreased with increasing salt concentrations. Under mild stress conditions, i.e. in conditions where the plant is able to adapt to the stress, the observed decrease was dependent upon the salt used. Under severe stress conditions, however, the decrease of the shoot and root growth was independent of the nature of the ions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号