首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An improved procedure for the isolation of the cytochromeb 6/f complex from spinach chloroplasts is reported. With this preparation up to tenfold higher plastoquinol-plastocyanin oxidoreductase activities were observed. Like the complex obtained by our previous procedure, the complex prepared by the modified way consisted of five polypeptides with apparent molecular masses of 34, 33, 23, 20, and 17 kD, which we call Ia, Ib, II, III, and IV, respectively. In addition, one to three small components with molecular masses below 6 kD were now found to be present. These polypeptides can be extracted with acidic acetone. Cytochromef, cytochromeb 6, and the Rieske Fe-S protein could be purified from the isolated complex and were shown to be represented by subunits Ia + Ib, II, and III, respectively. The heterogeneity of cytochromef is not understood at present. Estimations of the stoichiometry derived from relative staining intensities with Coomassie blue and amido black gave 1:1:1:1 for the subunits Ia + Ib/II/III/IV, which is interesting in of the presence of two cytochromesb 6 per cytochromef. Cytochromef titrated as a single-electron acceptor with a pH-independent midpoint potential of +339 mV between pH 6.5 and 8.3, while cytochromeb 6 was heterogeneous. With the assumption of two components present in equal amounts, two one-electron transitions withE m(1)=–40 mV andE m(2)=–172 at pH 6.5 were derived. Both midpoint potentials were pH-dependent.Abbreviation Tris tris(hydroxymethyl)aminomethane - SDS sodium dodecylsulfate - SDS-PAGE SDS polyacrylamide gel electrophoresis - MES 2-(N-morpholino)ethanesulfonic acid  相似文献   

2.
Summary During the past twenty years evidence has accumulated on the presence of a specific high-potential, ascorbate-reducibleb-type cytochrome in the plasma membrane (PM) of higher plants. This cytochrome is named cytochromeb 561 (cytb 561) according to the wavelength maximum of its -band in the reduced form. More recent evidence suggests that this protein is homologous to ab-type cytochrome present in chromaffin granules of animal cells. The plant and animal cytochromes share a number of strikingly similar features, including the high redox potential, the ascorbate reducibility, and most importantly the capacity to transport electrons across the membrane they are located in. The PM cytb 561 is found in all plant species and in a variety of tissues tested so far. It thus appears to be a ubiquitous electron transport component of the PM. The cytochromesb 561 probably constitute a novel class of transmembrane electron transport proteins present in a large variety of eukaryotic cells. Of particular interest is the recent discovery of a number of plant genes that show striking homologies to the genes coding for the mammalian cytochromesb 561. A number of highly relevant structural features, including hydrophobic domains, heme ligation sites, and possible ascorbate and monodehydroascorbate binding sites are almost perfectly conserved in all these proteins. At the same time the plant gene products show interesting differences related to their specific location at the PM, such as potentially N-linked glycosylation sites. It is also clear that at least in several plants cytb 561 is represented by a multigene family. The current paper presents the first overview focusing exclusively on the plant PM cytb 561, compares it to the animal cytb 561, and discusses the possible physiological function of these proteins in plants.Abbreviations Asc ascorbate - cyt cytochrome - DHA dehydroascorbate - E0 standard redox potential - EST expressed sequence tag - His histidine - MDA monodehydroascorbate - Met methionine - PM plasma membrane  相似文献   

3.
The cytochromebc 1 complex purified fromP. denitrificans has the same electron-transfer and energy-transducing activities, is sensitive to the same electron-transfer inhibitors, and contains cytochromesb, c 1, iron-sulfur protein, and thermodynamically stable ubisemiquinone identical to the counterpart complexes from mitochondria. However, the bacterialbc 1 complex consists of only three proteins, the obligate electron-transfer proteins, while the mitochondrial complexes contain six or more supernumerary poly-peptides, which have no obvious electron-transfer function. TheP. denitrificans complex is a paradigm for thebc 1 complexes of all gram-negative bacteria. In addition, because of its simple polypeptide composition and apparently minimal damage during isolation, theP. denitrificans bc 1 complex is an ideal system in which to study structure-function relationships requisite to energy transduction linked to electron transfer.  相似文献   

4.
Summary The complete nucleotide sequence of the genes encoding the Rieske FeS, the cytochrome b and the cytochrome c 1 subunits of the ubiquinol-cytochrome c 2 oxidoreductase from the photosynthetic purple bacterium Rhodopseudomonas viridis, and the derived amino acid sequences are presented. These three genes, fbcF, fbcB and fbcC, are located at contiguous sites of the genome. The DNA-deduced amino acid sequences are compared with known primary structures of corresponding proteins from other purple photosynthetic bacteria, as well as mitochondria, cyanobacteria and chloroplasts.Abbreviations BSA bovine serum albumin - Rb Rhodobacter - Rps Rhodopseudomonas  相似文献   

5.
The reduction of cyctochromesc +c 1 by durohydroquinone and ferrocyanide in electron transport particles (ETP) and intact cytochromec-depleted beef heart mitochondria has been studied. At least 94% of the ETP are in an inverted orientation. Durohydroquinone reduces 80% ofc +c 1 in ETP but less than 20% in mitochondria; sonication of mitochondria allows reduction of cytochromesc +c 1 (80%). Addition of ferrocyanide (effective redox potential +245 mV) to electron transport particles results in 30% reduction of cytochromesc +c 1. Addition of ferrocyanide to intact cytochromec-depleted mitochondria does not reduce cytochromec 1; treatment withN,N,N,N-tetramethylphenylenediamine, Triton X-100, or sonic oscillation results in 30% reduction of cytochromesc +c 1. TheK m value of ferrocyanide oxidase for K-ferrocyanide is pH-dependent in ETP only, increasing with increasing pH. The extent of reduction of cytochromec 1 is also pH-dependent in ETP only, the extent of reduction increasing with decreasing pH. On the basis of these data cytochromec 1 is exposed to the matrix face and cytochromec is exposed to the cytoplasmic face. No redox center other than cytochromec in the segment between the antimycin site and cytochromec is exposed on the C-side.Abbreviations Used: MES, 2(N-morpholino)-ethanesulfonic acid; EDTA, ethylenediaminetetraacetic acid; TMPD,N,N,N,N-tetramethylphenylenediamine; ETP, electron transport particles; NAD-NADH, nicotinamide adenine dinucleotide; PMS, phenazine methosulfate.  相似文献   

6.
Eduard Hurt  Günter Hauska   《BBA》1982,682(3):466-473
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6.  相似文献   

7.
Cytochrome bc 1 complexes have been isolated from wild type Rhodopseudomonas viridis and Rhodospirillum rubrum and purified by affinity chromatography on cytochrome c-Sepharose 4B. Both complexes are largely free of bacteriochlorophyll and carotenoids and contain cytochromes b and c 1 in a 2:1 molar ratio. For the Rps. viridis complex, evidence has been obtained for two spectrally distinct b-cytochromes. The R. rubrum complex contains a Rieske iron-sulfur protein (present in approximately 1:1 molar ratio to cytochrome c 1) and catalyzes an antimycin A- and myxothiazol-sensitive electron transfer from duroquinol to equine cytochrome c or R. rubrum cytochrome c 2. Although an attempt to prepare a cytochrome bc 1 complex from the gliding green bacterium Chloroflexus aurantiacus was not successful, membranes isolated from phototrophically grown Cfl. aurantiacus were shown to contain a Rieske iron-sulfur protein and protoheme (the prosthetic group of b-type cytochromes).Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

8.
The cytochrome b 6 f complex isolated from spinach chloroplast membranes can be resolved into two forms, a monomeric and a dimeric form, by centrifugation on sucrose gradients. The conversion of the dimeric form of the complex into the monomeric form could be prevented by cross-linking with the homobifunctional reagent, dithiobis(succinimidylpropionate) but not by cross-linking with disuccinimidyltartrate or glutaraldehyde. SDS-PAGE analyses of the monomeric and dimeric forms of the cytochrome complex showed the presence of specific cross-linked products in each respective form of the complex. For example, the monomeric form contained a cross-linked product of cytochrome f, cytochrome b 6 f and subunit IV while the dimeric form contained a cross-linked dimer of cytochrome b 6 f. The presence of the former in the isolated cytochrome b 6 f complex prepared by the method of Hurt and Hauska (Eur J Biochem 117: 591–599, 1981) indicates the presence of the monomer in his preparation.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DSP dithiobis(succinimidylpropionate) - DST disuccinimidyltartrate  相似文献   

9.
The cytochrome b 6 f complex occupies a central position in photosynthetic electron transport and proton translocation by linking PS II to PS I in linear electron flow from water to NADP+, and around PS I for cyclic electron flow. Cytochrome b 6 f complexes are uniquely located in three membrane domains: the appressed granal membranes, the non-appressed stroma thylakoids and end grana membranes, and also the non-appressed grana margins, in contrast to the marked lateral heterogeneity of the localization of all other thylakoid multiprotein complexes. In addition to its vital role in vectorial electron transfer and proton translocation across the membrane, cytochrome b 6 f complex is also involved in the regulation of balanced light excitation energy distribution between the photosystems, since its redox state governs the activation of LHC II kinase (the kinase that phosphorylates the mobile peripheral fraction of the chlorophyll a/b-proteins of LHC II of PS II). Hence, cytochrome b 6 f complex is the molecular link in the interactive co-regulation of light-harvesting and electron transfer.The importance of a highly dynamic, yet flexible organization of the thylakoid membranes of plants and green algae has been highlighted by the exciting discovery that a lateral reorganization of some cytochrome b 6 f complexes occurs in the state transition mechanism both in vivo and in vitro (Vallon et al. 1991). The lateral redistribution of phosphorylated LHC II from stacked granal membrane regions is accompanied by a concomitant movement of some cytochrome b 6 f complexes from the granal membranes out to the PS I-containing stroma thylakoids. Thus, the dynamic movement of cytochrome b 6 f complex as a multiprotein complex is a molecular mechanism for short-term adaptation to changing light conditions. With the concept of different membrane domains for linear and cyclic electron flow gaining credence, it is thought that linear electron flow occurs in the granal compartments and cyclic electron flow is localised in the stroma thylakoids at non-limiting irradiances. It is postulated that dynamic lateral reversible redistribution of some cytochrome b 6 f complexes are part of the molecular mechanism involved in the regulation of linear electron transfer (ATP and NADPH) and cyclic electron flow (ATP only). Finally, the molecular significance of the marked regulation of cytochrome b 6 f complexes for long-term regulation and optimization of photosynthetic function under varying environmental conditions, particularly light acclimation, is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - PS Photosystem  相似文献   

10.
Dicyclohexylcarbodiimide (DCCD) binds covalently to an acidic amino acid located in the cd loop connecting membrane-spanning helices C and D of cytochrome b resulting in an inhibition of proton translocation in the cytochrome bc 1 complex with minimal effects on the steady state rate of electron transfer. Single turnover studies performed with the yeast cytochrome bc 1 complex indicated that the initial phase of cytochrome b reduction was inhibited 25–45% in the DCCD-treated cytochrome bc 1 complex, while the rate of cytochrome c 1 reduction was unaffected. Simulations by molecular modeling predict that binding of DCCD to glutamate 163 located in the cd2 loop of cytochrome b of chicken liver mitochondria results in major conformational changes in the protein. The conformation of the cd loop and the end of helix C appeared twisted with a concomitant rearrangement of the amino acid residues of both cd1 and cd2 loops. The predicted rearrangement of the amino acid residues of the cd loop results in disruptions of the hydrogen bonds predicted to form between amino acid residues of the cd and ef loops. Simultaneously, two new hydrogen bonds are predicted to form between glutamate 272 and two residues, aspartate 253 and tyrosine 272. Formation of these new hydrogen bonds would restrict the rotation and protonation of glutamate 272, which may be necessary for the release of the second electrogenic proton obtained during ubiquinol oxidation in the bc1 complex.  相似文献   

11.
The midpoint potential of the [2Fe–2S] cluster of the Rieske iron–sulfurprotein (E m 7 = +280mV) is the primary determinant of the rate of electron transfer from ubiquinol to cytochromec catalyzed by the cytochrome bc 1 complex. As the midpoint potential of the Rieske clusteris lowered by altering the electronic environment surrounding the cluster, theubiquinol-cytochrome c reductase activity of the bc 1 complex decreases; between 220 and 280 mV therate changes 2.5-fold. The midpoint potential of the Rieske cluster also affects thepresteady-state kinetics of cytochrome b and c 1 reduction. When the midpoint potential of the Rieskecluster is more positive than that of the heme of cytochrome c 1, reduction of cytochrome bis biphasic. The fast phase of b reduction is linked to the optically invisible reduction of theRieske center, while the rate of the second, slow phase matches that of c 1 reduction. The ratesof b and c 1 reduction become slower as the potential of the Rieske cluster decreases andchange from biphasic to monophasic as the Rieske potential approaches that of theubiquinone/ubiquinol couple. Reduction of b and c 1 remain kinetically linked as the midpoint potentialof the Rieske cluster is varied by 180 mV and under conditions where the presteady statereduction is biphasic or monophasic. The persistent linkage of the rates of b and c 1 reduction isaccounted for by the bifurcated oxidation of ubiquinol that is unique to the Q-cycle mechanism.  相似文献   

12.
The peripheral stalk of F1F0 ATP synthase is composed of a parallel homodimer of b subunits that extends across the cytoplasmic membrane in F0 to the top of the F1 sector. The stalk serves as the stator necessary for holding F1 against movement of the rotor. A series of insertions and deletions have been engineered into the hydrophilic domain that interacts with F1. Only the hydrophobic segment from {val-121} to {ala-132} and the extreme carboxyl terminus proved to be highly sensitive to mutation. Deletions in either site apparently abolished enzyme function as a result of defects is assembly of the F1F0 complex. Other mutations manipulating the length of the sequence between these two areas had only limited effects on enzyme function. Expression of a b subunit with insertions with as few as two amino acids into the hydrophobic segment also resulted in loss of F1F0 ATP synthase. However, a fully defective b subunit with seven additional amino acids could be stabilized in a heterodimeric peripheral stalk within a functional F1F0 complex by a normal b subunit.  相似文献   

13.
Two central redox enzyme systems exist to reduce eukaryotic P450 enzymes, the P450 oxidoreductase (POR) and the cyt b5 reductase–cyt b5. In fungi, limited information is available for the cyt b5 reductase–cyt b5 system. Here we characterized the kinetic mechanism of (cyt b5r)–cyt b5 redox system from the model white-rot fungus Phanerochaete chrysosporium (Pc) and made a quantitative comparison to the POR system. We determined that Pc-cyt b5r followed a “ping-pong” mechanism and could directly reduce cytochrome c. However, unlike other cyt b5 reductases, Pc-cyt b5r lacked the typical ferricyanide reduction activity, a standard for cyt b5 reductases. Through co-expression in yeast, we demonstrated that the Pc-cyt b5r–cyt b5 complex is capable of transferring electrons to Pc-P450 CYP63A2 for its benzo(a)pyrene monooxygenation activity and that the efficiency was comparable to POR. In fact, both redox systems supported oxidation of an estimated one-third of the added benzo(a)pyrene amount. To our knowledge, this is the first report to indicate that the cyt b5r–cyt b5 complex of fungi is capable of transferring electrons to a P450 monooxygenase. Furthermore, this is the first eukaryotic quantitative comparison of the two P450 redox enzyme systems (POR and cyt b5r–cyt b5) in terms of supporting a P450 monooxygenase activity.  相似文献   

14.
Membrane-bound ATP synthases (F1F0) catalyze the synthesis of ATP via a rotary catalyticmechanism utilizing the energy of an electrochemical ion gradient. The transmembrane potentialis supposed to propel rotation of a subunit c ring of F0 together with subunits and of F1,hereby forming the rotor part of the enzyme, whereas the remainder of the F1F0 complexfunctions as a stator for compensation of the torque generated during rotation. This reviewfocuses on our recent work on the stator part of the F0 complex, e.g., subunits a and b. Usingepitope insertion and antibody binding, subunit a was shown to comprise six transmembranehelixes with both the N- and C-terminus oriented toward the cytoplasm. By use of circulardichroism (CD) spectroscopy, the secondary structure of subunit b incorporated intoproteoliposomes was determined to be 80% -helical together with 14% turn conformation, providingflexibility to the second stalk. Reconstituted subunit b together with isolated ac subcomplexwas shown to be active in proton translocation and functional F1 binding revealing the nativeconformation of the polypeptide chain. Chemical crosslinking in everted membrane vesiclesled to the formation of subunit b homodimers around residues bQ37 to bL65, whereas bA32Ccould be crosslinked to subunit a, indicating a close proximity of subunits a and b near themembrane. Further evidence for the proposed direct interaction between subunits a and b wasobtained by purification of a stable ab 2 subcomplex via affinity chromatography using Histags fused to subunit a or b. This ab 2 subcomplex was shown to be active in proton translocationand F1 binding, when coreconstituted with subunit c. Consequences of crosslink formationand subunit interaction within the F1F0 complex are discussed.  相似文献   

15.
Eric Lam  Richard Malkin   《BBA》1982,682(3):378-386
Photoreactions of cytochrome b6 have been studied using resolved chloroplast electron-transfer complexes. In the presence of Photosystem (PS) II and the cytochrome b6-f complex, photoreduction of the cytochrome can be observed. No soluble components are required for this reaction. Cytochrome b6 photoreduction was found to be inhibited by quinone analogs, which inhibit at the Rieske iron-sulfur center of the cytochrome complex, by the addition of ascorbate and by depletion of the Rieske center and bound plastoquinone from the cytochrome complex. Photoreduction of cytochrome b6 can also be demonstrated in the presence of the cytochrome complex and PS I. This photoreduction requires plastocyanin and a low-potential electron donor, such as durohydroquinone. Cytochrome b6 photoreduction in the presence of PS I is inhibited by quinone analogs which interact with the Rieske iron-sulfur center. These results are discussed in terms of a Q-cycle mechanism in which plastosemiquinone serves as the reductant for cytochrome b6 via an oxidant-induced reductive pathway.  相似文献   

16.
A. Bérczi  S. Lüthje  H. Asard 《Protoplasma》2001,217(1-3):50-55
Summary The plasma membrane of higher plants contains more than one kind ofb-type cytochromes. One of these has a high redox potential and can be fully reduced by ascorbate. This component, the cytochromeb 561 (cytb 561), has its characteristic -band absorbance close to 561 nm wavelength at room temperature. Cytb 561 was first isolated from etiolated bean hook plasma membranes by two consecutive anion exchange chromatography steps. During the first step performed at pH 8, cytb 561 did not bind to the anion exchange column, but otherb-type cytochromes did. In the second step performed at pH 9.9, cytb 561 was bound to the column and was eluted from the column at an ionic strength of about 100 mM KCl. However, when the same protocol was applied to the solubilized plasma membrane proteins fromArabidopsis thaliana leaves and maize roots, the ascorbate-reducible cytb 561 bound already to the first anion exchange column at pH 8 and was eluted also at an ionic strength of about 100 mM KCl. Otherb-type cytochromes than the ascorbate-reducible cytb 561 from the plasma membranes of Arabidopsis leaves and maize roots showed similar Chromatographic characteristics to that of bean hypocotyls. These results demonstrate particular differences in the Chromatographic behavior of cytb 561 from different sources.Abbreviations cyt b 561 cytochromeb 561 - PM plasma membrane - PAGE polyacrylamide gel electrophoresis  相似文献   

17.
The singlet excited state lifetime of the chlorophyll a (Chi a) in cytochrome b6f (Cyt b6f) complex was reported to be shorter than that of free Chl a in methanol, but the value was different for Cyt b6f complexes from different sources (~200 and ~600 ps are the two measured results). The present study demonstrated that the singiet excited state lifetime is associated with the detergents n-dodecyl-β-D-maltoside (DDM) and n-octyl-β-D-glucopyranoside (β-OG), but has nothing to do with the different sources of Cyt b6f complexes. Compared with the Cyt b6f dissolved in β-OG, the Cyt b6f in DDM had a lower fluorescence yield, a lower photodegradation rate of Chl a, and a shorter lifetime of Chl a excited state. In short, the singlet excited state lifetime, ~200 ps, of the Chl a in Cyt b6f complex in DDM is closer to the true in vivo.  相似文献   

18.
The Q cycle mechanism of thebc 1 complex requires two quinone reaction centers, the hydroquinone oxidation (QP) and the quinone reduction (QN) center. These sites can be distinguished by the specific binding of inhibitors to either of them. A substantial body of information about the hydroquinone oxidation site has been provided by the analysis of the binding of QP site inhibitors to thebc 1 complex in different redox states and to preparations depleted of lipid or protein components as well as by functional studies with mutantbc 1 complexes selected for resistance toward the inhibitors. The reaction site is formed by at least five protein segments of cytochromeb and parts of the iron-sulfur protein. At least two different binding sites for QP site inhibitors could be detected, one for the methoxyacrylate-type inhibitors binding predominantly to cytochromeb, the other for the chromone-type inhibitors and hydroxyquinones binding predominantly to the iron-sulfur protein. The interactions with the protein segments, between different protein segments, and between protein and ligands (substrate, inhibitors) are discussed in detail and a working model of the QP pocket is proposed.  相似文献   

19.
The arrangement and function of the redox centers of the mammalianbc 1 complex is described on the basis of structural data derived from amino acid sequence studies and secondary structure predictions and on the basis of functional studies (i.e., EPR data, inhibitor studies, and kinetic experiments). Two ubiquinone reaction centers do exist—a QH2 oxidation center situated at the outer, cytosolic surface of the cristae membrane (Q0 center), and a Q reduction center (Q i center) situated more to the inner surface of the cristae membrane. The Q0 center is formed by theb-566 domain of cytochromeb, the FeS protein, and maybe an additional small subunit, whereas the Q i center is formed by theb-562 domain of cytochromeb and presumably the 13.4kDa protein (QP-C). The Q binding proteins are proposed to be protein subunits of the Q reaction centers of various multiprotein complexes. The path of electron flow branches at the Q0 center, half of the electrons flowing via the high-potential cytochrome chain to oxygen and half of the electrons cycling back into the Q pool via the cytochromeb path connecting the two Q reaction centers. During oxidation of QH2, 2H+ are released to the cytosolic space and during reduction of Q, 2H+ are taken up from the matrix side, resulting in a net transport across the membrane of 2H+ per e flown from QH2 to cytochromec, the H+ being transported across the membrane as H (H+ + e) by the mobile carrier Q. The authors correct their earlier view of cytochromeb functioning as a H+ pump, proposing that the redox-linkedpK changes of the acidic groups of cytochromeb are involved in the protonation/deprotonation processes taking place during the reduction and oxidation of Q. The reviewers stress that cytochromeb is in equilibrium with the Q pool via the Q i center, but not via the Q0 center. Their view of the mechanisms taking place at the reductase is a Q cycle linked to a Q-pool where cytochromeb is acting as an electron pump.  相似文献   

20.
Photosynthetic bacteria offer excellent experimental opportunities to explore both the structure and function of the ubiquinol-cytochromec oxidoreductase (bc 1 complex). In bothRhodobacter sphaeroides andRhodobacter capsulatus, thebc 1 complex functions in both the aerobic respiratory chain and as an essential component of the photosynthetic electron transport chain. Because thebc 1 complex in these organisms can be functionally coupled to the photosynthetic reaction center, flash photolysis can be used to study electron flow through the enzyme and to examine the effects of various amino acid substitutions. During the past several years, numerous mutations have been generated in the cytochromeb subunit, in the Rieske iron-sulfur subunit, and in the cytochromec 1 subunit. Both site-directed and random mutagenesis procedures have been utilized. Studies of these mutations have identified amino acid residues that are metal ligands, as well as those residues that are at or near either the quinol oxidase (Qo) site or the quinol reductase (Qi) site. The postulate that these two Q-sites are located on opposite sides of the membrane is supported by these studies. Current research is directed at exploring the details of the catalytic mechanism, the nature of the subunit interactions, and the assembly of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号