首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Previous results from this laboratory have shown that human kidney (293) cells transfected with the rat follitropin receptor (rFSHR) internalize agonist (i.e. human follitropin, hFSH) at a rate similar to that of other agonist-G protein-coupled receptor complexes while 293 cells transfected with the rat lutropin/choriogonadotropin receptor (rLHR) internalize agonist (human choriogonadotropin, hCG) at a rate that is about 1 order of magnitude slower. Taking advantage of this difference and the high degree of homology between the rLHR and rFSHR, we have now used chimeras of these two receptors to begin to delineate structural features that influence their internalization. Analysis of six chimeras that exchanged only the transmembrane domains (designated FLF and LFL), only the COOH-terminal domains (FFL or LLF) or both domains (FLL or LFF) show that the origin of the extracellular domain is at least as important, if not more, than the origin of the transmembrane and COOH-terminal domains in determining the rate of internalization of the gonadotropin receptors. Thus, the rates of internalization of agonist internalization mediated by FFL, FLF, and FLL more closely resemble rFSHR than rLHR, while the rates of agonist internalization mediated by LLF, LFL, and LFF more closely resemble rLHR than rFSHR. The importance of the extracellular domain was also evident even upon overexpression of arrestin-3, a protein that enhances the rate of internalization of the wild-type receptors and chimeras by binding to their intracellular regions.  相似文献   

2.
Abstract: Human m1 muscarinic acetylcholine receptor mutants were screened to determine receptor domains and cellular pathways relevant to down-regulation. Mutations in the second intracellular loop and the junctions of the third intracellular loop of the receptor, where a role for receptor activation or internalization had been previously demonstrated in HEK293 cells, were selected for this study. To assess receptor down-regulation, the m1 receptor mutants were transfected into Chinese hamster ovary cells. Because receptor internalization is expected to precede down-regulation, mutants displaying intact internalization were selected to permit interpretation of mutational effects on down-regulation alone. Four mutations were identified that specifically impaired down-regulation without altering receptor internalization: V127A, I211A, E360A, and K362A. The results define new receptor domains in the second intracellular loop and the junctions of the third intracellular loop that are involved in down-regulation. These same four mutants were also defective in signaling via the phospholipase C and the adenylyl cyclase pathways and in G protein activation, as measured by [35S]GTPγS binding. However, the level of second messenger stimulation correlated poorly with the extent of down-regulation. In summary, several mutations of the m1 receptor selectively affect down-regulation, demonstrating that internalization and down-regulation represent distinct events driven by different cellular mechanisms.  相似文献   

3.
Using chimeras and more discrete exchange mutations of the rat (r) and human (h) gonadotropin receptors, we had previously identified multiple noncontiguous residues of the lutropin (LHR) and follitropin (FSHR) receptors that dictate their rates of internalization. Since the internalization of the LHR and the FSHR is driven by their abilities to associate with the nonvisual arrestins, we hypothesized that one or more of the residues previously identified by the internalization assays are involved in the formation of the receptor/nonvisual arrestin complex. In the studies reported herein, we tested this hypothesis by measuring the association of arrestin-3 with a large number of rLHR/hLHR and rFSHR/hFSHR exchange mutants that affect internalization. The results presented show that the same residues that dictate the rate of internalization of these two receptor pairs affect their ability to associate with arrestin-3. Although these residues are located in distinct topological domains, our analyses show that threonine residues in the third intracellular loop of both receptor pairs are particularly important for the formation of the receptor/arrestin-3 complexes and internalization. We conclude that the different rates of internalization of the gonadotropin receptors are dictated by their different abilities to associate with the nonvisual arrestins and that this association is, in turn, largely dictated by the presence of threonine residues in their third intracellular loops.  相似文献   

4.
5.
Monoclonal anti-receptor antibodies were used to study the cellular traffic of the hCG/LH receptor by immunoelectron microscopy. The LHR38 antibody was shown to bind to the extracellular domain of the receptor but not to interfere with hormone binding, adenylate cyclase activation or with the rate of internalization of the receptor. Pig Leydig cells and a permanent L-cell line expressing the LH receptor were used for the study. Incubation with LHR38-gold complexes showed the LH receptors to be randomly distributed over the cell surface including the clathrin coated pits. The LH receptors were internalized via a route including coated pits, coated vesicles and multivesicular bodies to lysosomes. This route is different from that observed for beta-adrenergic, muscarinic, and yeast mating factor receptors and considered previously as possibly general for G-protein-coupled receptors. The use of [125I]LHR38 allowed precise measurement of the rate of internalization, showing the existence of a constitutive pathway which was increased 11-fold by hormone administration. Double labeling experiments suggested that the hormone (hCG-Au15nm) and the receptor (labeled with LHR38-Au5nm) have similar routes of endocytosis, both of them being degraded in lysosomes. Studies of the reappearance of LHR38-Au5nm on the surface of the cells and the use of monensin indicated that only a very small proportion of the receptor molecules were recycled to the cell surface. The distribution and the intracellular pathways of LH receptors are very similar in Leydig cells and transfected L-cells. This opens the possibility of using the latter to study, by in vitro mutagenesis, the molecular mechanisms involved in the cellular traffic of LH receptors.  相似文献   

6.
The amino acid sequences of the human (h) and rat (r) lutropin/choriogonadotropin receptors (LHR) are 87% identical, but the rate of agonist-induced internalization of the hLHR is approximately 7 times faster than that of the rLHR. Chimeras of the hLHR and the rLHR showed that this rate is dictated by the serpentine domain and the cytoplasmic tail. Further mutational analysis identified seven residues, two adjacent residues in the second intracellular loop (Val/Gln in the rLHR and Ile/His in the hLHR), four non-contiguous residues in the third intracellular loop (Arg/Gln/Thr/Pro in the rLHR and Lys/Arg/Met/Thr in the hLHR), and one in the C-terminal tail (Leu in the rLHR and Phe in the hLHR), that are necessary and sufficient to impart the slow rate of internalization of the rLHR and the fast rate of internalization of the hLHR. The internalization of the rLHR and the hLHR display different sensitivities to the non-visual arrestins. Therefore, we also tested if the simultaneous exchange of these seven residues resulted in the exchange of this property. Since this was found to be the case, we propose that these seven residues identified here form a non-visual arrestin-binding site.  相似文献   

7.
A(3) adenosine receptors have been proposed to play an important role in the pathophysiology of cerebral ischemia with a regimen-dependent nature of the therapeutic effects probably related to receptor desensitization and down-regulation. Here we studied the agonist-induced internalization of human A(3) adenosine receptors in transfected Chinese hamster ovary cells, and then we evaluated the relationship between internalization and signal desensitization and resensitization. Binding of N(6)-(4-amino-3-[(125)I]iodobenzyl)adenosine-5'-N-methyluronamide to membranes from Chinese hamster ovary cells stably transfected with the human A(3) adenosine receptor showed a profile typical of these receptors in other cell lines (K:(D) = 1.3+/-0.08 nM; B(max) = 400+/-28 fmol/mg of proteins). The iodinated agonist, bound at 4 degrees C to whole transfected cells, was internalized by increasing the temperature to 37 degrees C with a rate constant of 0.04+/-0.034 min(-1). Agonist-induced internalization of A(3) adenosine receptors was directly demonstrated by immunogold electron microscopy, which revealed the localization of these receptors in plasma membranes and intracellular vesicles. Moreover, short-term exposure of these cells to the agonist caused rapid desensitization as tested in adenylyl cyclase assays. Subsequent removal of the agonist led to restoration of the receptor function and recycling of the receptors to the cell surface. The rate constant of receptor recycling was 0.02+/-0.0017 min(-1). Blockade of internalization and recycling demonstrated that internalization did not affect signal desensitization, whereas recycling of internalized receptors was implicated in the signal resensitization.  相似文献   

8.
The LH/CG receptor is a member of the family of G protein-coupled receptors and consists of a large N-terminal extracellular domain (which is responsible for binding hormone) attached to a region that spans the plasma membrane seven times, ending with an intracellularly located C-terminus. Binding of LH or human CG (hCG) to the LH/CG receptor causes a stimulation of adenylyl cyclase, presumably via activation of Gs. The binding of hormone also leads to its subsequent internalization by receptor-mediated endocytosis. In order to investigate the role of the cytoplasmic tail of this receptor in these events, we prepared a series of mutants in which progressively larger portions of the cytoplasmic tail were deleted. Deletion of 58 amino acids from the C-terminus, in which only 11 cytoplasmic residues remain, resulted in a receptor that was not expressed on the plasma membrane. Receptors rat LHR (rLHR)-t653 and rLHR-t631, in which 21 or 43 amino acids were removed, respectively, were properly expressed. These results suggest that a region(s) between residues 616 and 631 of the rLH/CG receptor are required for proper insertion and/or targeting of the receptor into the plasma membrane. Cells expressing rLHR-t653 or rLHR-t631 bound hCG with the same high affinity as cells expressing the full-length receptor, and basal levels of cAMP were the same among the cells. However, cells expressing the truncated receptors responded to hCG with approximately 2-fold greater levels of maximal cAMP accumulation than cells expressing the full-length receptor. Deletion of up to 43 amino acids from the C-terminus of the rLH/CG receptor had no deleterious effect on hCG internalization. In fact, mutants lacking 21 and 43 amino acids exhibited progressively faster rates of hCG internalization as compared to the full-length receptor. Once internalized, hCG was also degraded at a faster rate in cells expressing the truncated LH/CG receptors. Since hCG-stimulated cAMP stimulation and hCG internalization are retained by rLHR-t631, it can be concluded that the residues, not necessarily the same, required for these functions reside within the 26 amino acids of the cytoplasmic tail closest to the seventh transmembrane helix and/or residues within the intracellular loops. Our data show, however, that both hCG-stimulated cAMP production and hCG internalization are enhanced by the removal of the distal portion of the cytoplasmic tail.  相似文献   

9.
Type-specific sorting of G protein-coupled receptors after endocytosis   总被引:7,自引:0,他引:7  
The beta(2)-adrenergic receptor (B2AR) and delta-opioid receptor (DOR) are structurally distinct G protein-coupled receptors (GPCRs) that undergo rapid, agonist-induced internalization by clathrin-coated pits. We have observed that these receptors differ substantially in their membrane trafficking after endocytosis. B2AR expressed in stably transfected HEK293 cells exhibits negligible (<10%) down-regulation after continuous incubation of cells with agonist for 3 h, as assessed both by radioligand binding (to detect functional receptors) and immunoblotting (to detect total receptor protein). In contrast, DOR exhibits substantial (>/=50%) agonist-induced down-regulation when examined by similar means. Degradation of internalized DOR is sensitive to inhibitors of lysosomal proteolysis. Flow cytometric and surface biotinylation assays indicate that differential sorting of B2AR and DOR between distinct recycling and non-recycling pathways (respectively) can be detected within approximately 10 min after endocytosis, significantly before the onset of detectable proteolytic degradation of receptors ( approximately 60 min after endocytosis). Studies using pulsatile application of agonist suggest that after this sorting event occurs, later steps of membrane transport leading to lysosomal degradation of receptors do not require the continued presence of agonist in the culture medium. These observations establish that distinct GPCRs differ significantly in endocytic membrane trafficking after internalization by the same membrane mechanism, and they suggest a mechanism by which brief application of agonist can induce substantial down-regulation of receptors.  相似文献   

10.
11.
Alanine scanning mutagenesis of the second extracellular loop of the human lutropin receptor (hLHR) showed that mutation of most of the residues present in this region either enhance or impair the internalization of agonist. A more complete analysis of four mutants, two that enhanced internalization (F515A and T521A) and two that impaired internalization (S512A and V519A), showed that the two mutants that impaired internalization also show a decrease in the sensitivity for agonist-induced cAMP accumulation, whereas the two mutants that enhanced internalization show an increase in the sensitivity for agonist-induced cAMP accumulation. None of these mutants had an effect on the agonist-induced phosphorylation of the hLHR, however. We conclude that, in contrast to the prevailing view of the relative importance of receptor phosphorylation in the internalization of G protein-coupled receptors, the phosphorylation of the hLHR is less important than the agonist-induced activation of the hLHR in the process of internalization.  相似文献   

12.
Selected regions of the Hm1 muscarinic cholinergic receptor were mutated to analyze the molecular mechanisms of agonist-induced receptor internalization (or sequestration). The wild-type and mutant Hm1 genes were expressed, using pSG5, in U293 human kidney cells. Whereas surface receptor density measured with the polar tracer N-[3H]methylscopolamine was rapidly reduced by carbachol exposure, total receptor content measured with [3H]quinuclidinyl benzilate did not decline for at least 24 h, indicating the absence of extensive receptor down-regulation in U293 cells. Carbachol stimulation of phosphatidylinositol turnover paralleled receptor internalization, both with EC50 values of 10-20 microM. Furthermore, a D71N point mutation that prevented receptor activation also abolished carbachol-induced receptor internalization, indicating that receptor activation (but not necessarily second messenger stimulation) was required for internalization. Truncation of the COOH-terminal tail (K447 trunc) and point mutations of several potential Ser and Thr phosphorylation sites to Ala failed to affect receptor activation and internalization. In contrast, partial deletions of the third intracellular loop (i3) (Tyr208-Thr366) resulted in receptor mutants deficient in agonist-induced receptor internalization/sequestration. Various deletions caused either complete loss of internalization (d 232-358) or impaired internalization, ranging from 10 to 30% over 2 h, whereas wild-type Hm1 internalized to approximately 50%. Whereas the reason for the observed differences among the deficient deletion mutants remains unclear, the initial rate of N-[3H]methylscopolamine binding loss from the cell surface was much slower than that of wild-type Hm1 in each case. The deletion of only one single domain, 284-292 (SMESLTSSE), in the middle of i3 was consistently associated with impaired internalization. Domain 284-292 is partially conserved among closely related muscarinic receptors, whereas most of the remainder of i3 is not (except for the i3 membrane junctions), and similar Ser- and Thr-rich regions are present in many other G protein-coupled receptors. We propose that a small receptor domain in the middle of the i3 loop of Hm1 is involved in agonist-induced receptor internalization.  相似文献   

13.
Transfection of cells with expression vectors is one of the most important tools used to assess the effects of receptor mutations on ligand-induced receptor sequestration. Most transfection methods give rise to transiently or stably transfected clones with a wide range of receptor expression levels that may also depend on the mutations made. It is, therefore, important to determine how the regulation of the receptors depends on their numbers per cell. In Chinese hamster ovary (CHO) and human embryonic kidney (HEK)-293 cells expressing high levels of B(2) kinin receptors, we observed poor sequestration indicated by <20% reduction in cell surface receptor number after 10 min of stimulation with 1 microM bradykinin (BK) compared with >70% in low-expressing cells. Whereas the rate of [(3)H]BK internalization (internalized [(3)H]BK in percentage of total bound [(3)H]BK) in low-expressing cells was independent of the ligand-concentration used, in high-expressing cells a strong rate decrease was observed with higher (>1 nM) concentrations. Lower ligand concentrations, however, led to internalization rates identical to those obtained in low-expressing cells. Transiently transfected HEK and COS-7 cells showed results similar to those of stably high-expressing cells. Our results demonstrate the difficulty in determining the internalization pattern of (mutated) B(2) kinin receptors, and possibly of G protein-coupled receptors in general, using a sequestration assay in high-expressing cells or transiently transfected cells with high numbers of receptors per transfected cell. However, the receptor (mutant)-specific internalization rate can be measured, provided that the ligand concentrations used are below a threshold at which the internalization rate is still independent of the ligand concentration.  相似文献   

14.
The effects of several mutations of the human LH receptor (hLHR) on the phosphorylation, internalization, and turnover of the cell surface receptor were examined. Three gain-of-function mutations associated with Leydig cell hyperplasia (L457R and D578Y) and one associated with Leydig cell adenomas (D578H), one signaling-impaired mutation associated with Leydig cell hypoplasia (I625K), and two laboratory designed signaling-impaired mutations (D405N and Y546F) were used. The signaling-impaired mutations showed a reduction in human CG (hCG)-induced receptor phosphorylation and internalization. Mutation of the phosphorylation sites of these loss-of-function mutants had little or no additional effect on internalization. Cotransfection with G protein-coupled receptor kinase-2 (GRK2) rescued the hCG-induced phosphorylation and internalization of the signaling-impaired mutations but only if the phosphorylation sites were intact. Overexpression of arrestin-3 rescued the rate of internalization regardless of whether or not the phosphorylation sites were intact. Only two of the three constitutively active mutants displayed an increase in basal phosphorylation. Although they all failed to respond to hCG with increased receptor phosphorylation, they all internalized hCG faster than wild-type hLHR (hLHR-wt). Mutation of the phosphorylation sites of these constitutively active mutants lengthened the half-time of internalization of hCG toward that of hLHR-wt. Overexpression of arrestin-3 had little or no effect on the already short half-time of internalization of hCG mediated by these mutants. The data obtained with the signaling-impaired and phosphorylation-deficient mutants of the hLHR support a model whereby receptor phosphorylation and activation play a redundant role in the internalization of hCG. The results obtained with the constitutively active mutants suggest that, when occupied by hCG, these mutants assume a conformation that bypasses many of the steps (i.e. activation, phosphorylation, and/or arrestin binding) involved in internalization.  相似文献   

15.
16.
Insulin internalization and degradation, insulin receptor internalization and recycling, as well as long term receptor down-regulation were comparatively studied in Chinese hamster ovary (CHO) cell lines, either parental or expressing the wild-type human insulin receptor (CHO.R) or a mutated receptor in which the tyrosine residues in positions 1162 and 1163 were replaced by phenylalanines (CHO.Y2). The two transfected cell lines presented very similar binding characteristics, and their pulse labeling with [35S]methionine revealed that the receptors were processed normally. As expected, the mutation of these twin tyrosines resulted in a defective insulin stimulation of both receptor kinase activity and glycogen synthesis. We now present evidence that compared to CHO.R cells, which efficiently internalized and degraded insulin, CHO.Y2 cells exhibited a marked defect in hormone internalization, leading to impaired insulin degradation. Moreover, the mutated receptors were found to be less effective than the wild-type receptors in transducing the hormone signal for receptor internalization, whereas the process of receptor recycling after internalization seemed not to be altered. In parental CHO cells, insulin induced long term receptor down-regulation, but was totally ineffective in both transfected cell lines. These results reveal that the tyrosines 1162 and 1163 in the kinase regulatory domain of the receptor beta-subunit play a pivotal role in insulin and receptor internalization.  相似文献   

17.
The high degree of amino acid sequence homology and the divergent ligand binding affinities of the rat (r) and human (h) LH receptors (LHRs) allowed us to identify amino acid residues of their extracellular domain that are responsible for the different binding affinities of bovine (b) and hLH, and human choriogonadotropin (hCG) to the hLHR and rLHR. Because of the proposed importance of the beta-sheets of the leucine-rich repeats (LRRs) of the extracellular domain of the LHR on hormone binding, we examined 10 divergent residues present in these regions by analyzing two complementary sets of mutants in which hLHR residues were substituted with the corresponding rLHR residues and vice versa. These experiments resulted in the identification of a single residue (a Ile or Ser in the C-terminal end of LRR2 of the hLHR or rLHR, respectively) that is important for hLH binding affinity. Surprisingly, however, this residue does not affect hCG or for bLH binding affinity. In fact, the results obtained with bLH and hCG show that several of the divergent residues in the beta-sheets of LRR1-9 affect bLH binding affinity, but none of them affect hCG binding affinity. Importantly, our results also emphasize the involvement of residues outside of the beta-sheets of the LRRs of the LHR in ligand binding affinity. This finding has to be considered in future models of the interaction of LH/CG with the LHR.  相似文献   

18.
The types I, II, and III receptors (RI, RII, RIII) for transforming growth factor-beta (TGF-beta) become down-regulated in response to ligand, presumably via their internalization from the cell surface. This report examines the down-regulation of full-length RI, RII, and RIII in cells endogenously or transiently expressing these receptors. Down-regulation occurred rapidly (within 2 h after TGF-beta1 treatment at 37 degrees C) and showed a dose response, between 10 and 200 pM TGF-beta1, in cells expressing RI, RII, and RIII (Mv1lu and A549 cells). A comparison between Mv1Lu and mutant cell derivatives R-1B (lacking RI) or DR-26 (lacking RII) indicated that all three receptors were necessary for efficient down-regulation. Down-regulation experiments, utilizing TGF-beta-treated 293 cells transiently expressing different combinations of these receptors indicated that neither RII or RIII were down-regulated when expressed alone and that RI was required for maximal down-regulation of RII. RII and RIII were partially down-regulated when these receptors were coexpressed in the absence of RI (in R-1B and 293 cells). Surprisingly, TGF-beta receptors were partially down-regulated in Mv1Lu, A549, and 293 cells treated with TGF-beta1 at 4 degrees C. Microscopic examination of 293 cells coexpressing RI fused to green fluorescent protein (RI-GFP) and RII indicated that, after treatment with TGF-beta1 at 4 degrees C, RI-GFP formed aggregates at the cell surface at this temperature. RI-GFP was not detected at the surface of these cells after TGF-beta1 treatment at 37 degrees C. Our results suggest a two phase mechanism for TGF-beta1 receptor down-regulation involving receptor modulation (aggregation) at the cell surface and internalization.  相似文献   

19.
Internalization is an important mechanism regulating the agonist-dependent responses of G-protein-coupled receptors. The internalization of the M(2) muscarinic cholinergic receptors (mAChR) in HEK293 cells has been demonstrated to occur by an unknown mechanism that is independent of arrestins and dynamin. In this study we examined various aspects of the trafficking of the M(2) mAChR in HEK293 cells to characterize this unknown pathway of internalization. Internalization of the M(2) mAChR was rapid and extensive, but prolonged incubation with agonist did not lead to appreciable down-regulation (a decrease in total receptor number) of the receptors. Recovery of M(2) mAChRs to the cell surface following agonist-mediated internalization was a very slow process that contained protein synthesis-dependent and -independent components. The protein synthesis-dependent component of the recovery of receptors to the cell surface did not appear to reflect a requirement for synthesis of new receptors, as no changes in total receptor number were observed either in the presence or absence of cycloheximide. Phosphorylation of the M(2) mAChR did not appear to influence the rate or extent of the recovery of receptors to the cell surface, as the recovery of a phosphorylation-deficient mutant M(2) mAChR, the N,C(Ala-8) mutant, was similar to the recovery of the wild type M(2) mAChR. Finally, the constitutive, nonagonist-dependent internalization and recycling of the M(2) mAChR was very slow and also contained protein synthesis-dependent and -independent components, suggesting that a similar pathway controls the recovery from agonist-dependent and -independent internalization. Overall, these data demonstrated a variety of previously unappreciated facets involved in the regulation of M(2) mAChRs.  相似文献   

20.
Human BSEP (ABCB11) mutations are the molecular basis for at least three clinical forms of liver disease, progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), and intrahepatic cholestasis of pregnancy (ICP). To better understand the pathobiology of these disease phenotypes, we hypothesized that different mutations may cause significant differences in protein defects. Therefore we compared the effect of two PFIC2 mutations (D482G, E297G) with two BRIC2 mutations (A570T and R1050C) and one ICP mutation (N591S) with regard to the subcellular localization, maturation, and function of the rat Bsep protein. Bile salt transport was retained in all but the E297G mutant. Mutant proteins were expressed at reduced levels on the plasma membrane of transfected HEK293 cells compared with wild-type (WT) Bsep in the following order: WT > N591S > R1050C approximately A570T approximately E297G > D482G. Total cell protein and surface protein expression were reduced to the same extent, suggesting that trafficking of these mutants to the plasma membrane is not impaired. All Bsep mutants accumulate in perinuclear aggresome-like structures in the presence of the proteasome inhibitor MG-132, suggesting that mutations are associated with protein instability and ubiquitin-dependent degradation. Reduced temperature, sodium butyrate, and sodium 4-phenylbutyrate enhanced the expression of the mature and cell surface D482G protein in HEK293 cells. These results suggest that the clinical phenotypes of PFIC2, BRIC2, and ICP may directly correlate with the amount of mature protein that is expressed at the cell surface and that strategies to stabilize cell surface mutant protein may be therapeutic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号