首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of gammadelta T cells has been known for over 15 years, but their significance in innate immunity to virus infections has not been determined. We show here that gammadelta T cells are well suited to provide a rapid response to virus infection and demonstrate their role in innate resistance to vaccinia virus (VV) infection in both normal C57BL/6 and beta TCR knockout (KO) mice. VV-infected mice deficient in gammadelta T cells had significantly higher VV titers early postinfection (PI) and increased mortality when compared with control mice. There was a rapid and profound VV-induced increase in IFN-gamma-producing gammadelta T cells in the peritoneal cavity and spleen of VV-infected mice beginning as early as day 2 PI. This rapid response occurred in the absence of priming, as there was constitutively a significant frequency of VV-specific gammadelta T cells in the spleen in uninfected beta TCR KO mice, as demonstrated by limiting dilution assay. Also, like NK cells, another mediator of innate immunity to viruses, gammadelta T cells in uninfected beta TCR KO mice expressed constitutive cytolytic activity. This cytotoxicity was enhanced and included a broader range of targets after VV infection. VV-infected beta TCR KO mice cleared most of the virus by day 8 PI, the peak of the gammadelta T cell response, but thereafter the gammadelta T cell number declined and the virus recrudesced. Thus, gammadelta T cells can be mediators of innate immunity to viruses, having a significant impact on virus replication early in infection in the presence or absence of the adaptive immune response.  相似文献   

2.
Orthopoxviruses evade host immune responses by using a number of strategies, including decoy chemokine receptors, regulation of apoptosis, and evasion of complement-mediated lysis. Different from other poxviral subfamilies, however, orthopoxviruses are not known to evade recognition by CTL. In fact, vaccinia virus (VV) is used as a vaccine against smallpox and a vector for eliciting strong T cell responses to foreign Ags. and both human and mouse T cells are readily stimulated by VV-infected APC in vitro. Surprisingly, however, CD8(+) T cells of mice infected with cowpox virus (CPV) or VV recognized APC infected with VV but not APC infected with CPV. Likewise, CD8(+) T cells from vaccinated human subjects could not be activated by CPV-infected targets and CPV prevented the recognition of VV-infected APC upon coinfection. Because CD8(+) T cells recognize viral peptides presented by MHC class I (MHC I), we examined surface expression, total levels, and intracellular maturation of MHC I in CPV- and VV-infected human and mouse cells. Although total levels of MHC I were unchanged, CPV reduced surface levels and inhibited the intracellular transport of MHC I early during infection. CPV did not prevent peptide loading of MHC I but completely inhibited MHC I exit from the endoplasmic reticulum. Because this inhibition was independent of viral replication, we conclude that an early gene product of CPV abrogates MHC I trafficking, thus rendering CPV-infected cells "invisible" to T cells. The absence of this immune evasion mechanism in VV likely limits virulence without compromising immunogenicity.  相似文献   

3.
Immunity to Salmonella from a dendritic point of view   总被引:6,自引:1,他引:5  
Dendritic cells (DC) are the key link between innate and adaptive immunity. Features of DC, including their presence at sites of antigen entry, their ability to migrate from peripheral sites to secondary lymphoid organs, and their superior capacity to stimulate naïve T cells places them in this pivotal role in the immune system. DC also produce cytokines, particularly IL‐12, upon antigen encounter and can thus influence the ensuing adaptive immune response. As DC are phagocytic antigen‐presenting cells located at sites exposed to bacterial invaders, studies have been performed to gain insight into the role of DC in combating bacterial infections. Indeed, studies with Salmonella have shown that DC can internalize and process this bacterium for peptide presentation on MHC‐II as well as MHC‐I. DC can also act as bystander antigen‐­presenting cells by presenting Salmonella antigens after internalizing neighbouring cells that have undergone Salmonella‐induced apoptotic death. DC also produce IL‐12 and TNF‐α upon Salmonella encounter. Moreover, studies in a murine infection model have shown that splenic DC increase surface expression of co‐stimulatory molecules during infection, and DC contain intracellular bacteria. In addition, quantitative changes occur in splenic DC numbers in the early stages of oral Salmonella infection, and this is accompanied by redistribution of the defined DC subsets in the spleen of infected mice. DC from Salmonella‐infected mice also produce cytokines and can stimulate bacteria‐specific T cells upon ex vivo co‐culture. In addition, DC may play a role in the traversal of bacteria from the intestinal lumen. Studying the function of DC during Salmonella infection provides insight into the capacity of this sophisticated antigen‐presenting cell to initiate and modulate the immune response to bacteria.  相似文献   

4.
In the present study, we investigated in vivo the infection and APC functions of dendritic cells (DC) and macrophages (Mphi) after administration of live mycobacteria to mice. Experiments were conducted with Mycobacterium bovis bacillus Calmette-Guerin (BCG) or a rBCG expressing a reporter Ag. Following infection of mice, DC and Mphi were purified and the presence of immunogenic peptide/MHC class II complexes was detected ex vivo on sorted cells, as was the secretion of IL-12 p40. We show in this study that DC is a host cell for mycobacteria, and we provide an in vivo detailed picture of the role of Mphi and DC in the mobilization of immunity during the early stages of a bacterial infection. Strikingly, BCG bacilli survive but remain stable in number in the DC leukocyte subset during the first 2 wk of infection. As Ag presentation by DC is rapidly lost, this suggests that DC may represent a hidden reservoir for mycobacteria.  相似文献   

5.
Vaccinia virus (VV), currently used in humans as a live vaccine for smallpox, can interfere with host immunity via several discrete mechanisms. In this study, the effect of VV on MHC class II-mediated Ag presentation was investigated. Following VV infection, the ability of professional and nonprofessional APC to present Ag and peptides to CD4+ T cells was impaired. Viral inhibition of class II Ag presentation could be detected within 1 h, with diminished T cell responses dependent upon the duration of APC infection and virus titer. Exposure of APC to replication-deficient virus also diminished class II Ag presentation. Virus infection of APC perturbed Ag presentation by newly synthesized and recycling class II molecules, with disruptions in both exogenous and cytoplasmic Ag presentation. Virus-driven expression of an endogenous Ag, failed to restore T cell responsiveness specific for this Ag in the context of MHC class II molecules. Yet, both class II protein steady-state and cell surface expression were not altered by VV. Biochemical and functional analysis revealed that VV infection directly interfered with ligand binding to class II molecules. Together, these observations suggest that disruption of MHC class II-mediated Ag presentation may be one of multiple strategies VV has evolved to escape host immune surveillance.  相似文献   

6.
The induction of strong CD8(+) T-cell responses against infectious diseases and cancer has remained a major challenge. Depending on the source of antigen and the infectious agent, priming of CD8(+) T cells requires direct and/or cross-presentation of antigenic peptides on major histocompatibility complex (MHC) class I molecules by professional antigen-presenting cells (APCs). However, both pathways show distinct preferences concerning antigen stability. Whereas direct presentation was shown to efficiently present peptides derived from rapidly degraded proteins, cross-presentation is dependent on long-lived antigen species. In this report, we analyzed the role of antigen stability on DNA vaccination and recombinant vaccinia virus (VV) infection using altered versions of the same antigen. The long-lived nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) can be targeted for degradation by N-terminal fusion to ubiquitin or, as we show here, to the ubiquitin-like modifier FAT10. Direct presentation by cells either transfected with NP-encoding plasmids or infected with recombinant VV in vitro was enhanced in the presence of short-lived antigens. In vivo, however, the highest induction of NP-specific CD8(+) T-cell responses was achieved in the presence of long-lived NP. Our experiments provide evidence that targeting antigens for proteasomal degradation does not improve the immunogenicity of DNA vaccines and recombinant VVs. Rather, it is the long-lived antigen that is superior for the efficient activation of MHC class I-restricted immune responses in vivo. Hence, our results suggest a dominant role for antigen cross-priming in DNA vaccination and recombinant VV infection.  相似文献   

7.
B cells and dendritic cells (DC) internalize and degrade exogenous Ags and present them as peptides bound to MHC class II molecules for scrutiny by CD4(+) T cells. Here we use an Ab specific for a processed form of the model Ag, hen egg lysozyme (HEL), to demonstrate that this protein is not efficiently presented by lymph node DC following s.c. immunization. HEL presentation by the DC can be dramatically enhanced upon coinjection of a microbial adjuvant, which appears to act by enhancing peptide loading onto MHC class II. CD40 cross-linking or the presence of a high frequency of T cells specific for HEL can similarly improve presentation by DC in vivo. For any of these activating stimuli, CD8alpha(+) DC consistently display the highest proportion of HEL-loaded MHC class II molecules. These data indicate that exogenous Ags can be displayed to T cells in lymphoid tissues by a large cohort of resident DC whose presentation is regulated by innate and adaptive stimuli. Our data further reveal the existence of a feedback mechanism that augments Ag presentation during cognate APC-T cell interactions.  相似文献   

8.
Invariant natural killer T (iNKT) cells are innate T cells with powerful immune regulatory functions that recognize glycolipid antigens presented by the CD1D protein. While iNKT cell-activating glycolipids are currently being explored for their efficacy to improve immunotherapy against infectious diseases and cancer, little is known about the mechanisms that control CD1D antigen presentation and iNKT cell activation in vivo. CD1D molecules survey endocytic pathways to bind lipid antigens in MHC class II-containing compartments (MIICs) before recycling to the plasma membrane. Autophagosomes intersect with MIICs and autophagy-related proteins are known to support antigen loading for increased CD4+ T cell immunity. Here, we report that mice with dendritic cell (DC)-specific deletion of the essential autophagy gene Atg5 showed better CD1D1-restricted glycolipid presentation in vivo. These effects led to enhanced iNKT cell cytokine production upon antigen recognition and lower bacterial loads during Sphingomonas paucimobilis infection. Enhanced iNKT cell activation was independent of receptor-mediated glycolipid uptake or costimulatory signals. Instead, loss of Atg5 in DCs impaired clathrin-dependent internalization of CD1D1 molecules via the adaptor protein complex 2 (AP2) and, thus, increased surface expression of stimulatory CD1D1-glycolipid complexes. These findings indicate that the autophagic machinery assists in the recruitment of AP2 to CD1D1 molecules resulting in attenuated iNKT cell activation, in contrast to the supporting role of macroautophagy in CD4+ T cell stimulation.  相似文献   

9.
The extent to which naive CD8(+) CTLs (T(CD8)(+)) are primed by APCs presenting endogenous Ags (direct priming) or Ags acquired from other infected cells (cross-priming) is a critical topic in basic and applied immunology. To examine the contribution of direct priming in the induction of VV-specific T(CD8)(+), we generated recombinant vaccinia viruses that express human CMV proteins (US2 and US11) that induce the destruction of newly synthesized MHC class I molecules. Expression of US2 or US11 was associated with a 24-63% decrease in numbers of primary or secondary VV-specific T(CD8)(+) responding to i.p. infection. Using HPLC-isolated peptides from VV-infected cells, we show that US2 and US11 selectively inhibit T(CD8)(+) responses to a subset of immunogenic VV determinants. Moreover, VV-US2 and lysates from VV-infected histoincompatible cells elicit T(CD8)(+) specific for a similar subset of VV determinants. These findings indicate that US2 and US11 can function in vivo to interfere with the activation of virus-specific T(CD8)(+). Furthermore, they suggest that 1) both cross-priming and direct priming contribute significantly to the generation of VV-specific T(CD8)(+), 2) the sets of immunogenic vaccinia virus determinants generated by cross-priming and direct priming are not completely overlapping, and 3) cross-priming overrides the effects of cis-acting viral interference with the class I Ag presentation pathway.  相似文献   

10.
Dendritic cells (DC) are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+) T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+) T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+) and CD8(+) T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+) and CD4(+) T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+) T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+) T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+) T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.  相似文献   

11.
Natural killer (NK) cells play an essential role in innate immune control of poxviral infections in vivo. However, the mechanism(s) underlying NK cell activation and function in response to poxviruses remains poorly understood. In a mouse model of infection with vaccinia virus (VV), the most studied member of the poxvirus family, we identified that the Toll-like receptor (TLR) 2-myeloid differentiating factor 88 (MyD88) pathway was critical for the activation of NK cells and the control of VV infection in vivo. We further showed that TLR2 signaling on NK cells, but not on accessory cells such as dendritic cells (DCs), was necessary for NK cell activation and that this intrinsic TLR2-MyD88 signaling pathway was required for NK cell activation and played a critical role in the control of VV infection in vivo. In addition, we showed that the activating receptor NKG2D was also important for efficient NK activation and function, as well as recognition of VV-infected targets. We further demonstrated that VV could directly activate NK cells via TLR2 in the presence of cytokines in vitro and TLR2-MyD88-dependent activation of NK cells by VV was mediated through the phosphatidylinositol 3-kinase (PI3K)-extracellular signal-regulated kinase (ERK) pathway. Taken together, these results represent the first evidence that intrinsic TLR signaling is critical for NK cell activation and function in the control of a viral infection in vivo, indicate that multiple pathways are required for efficient NK cell activation and function in response to VV infection, and may provide important insights into the design of effective strategies to combat poxviral infections.  相似文献   

12.
Dendritic cells (DC) undergo complex developmental changes during maturation. The MHC class II (MHC II) molecules of immature DC accumulate in intracellular compartments, but are expressed at high levels on the plasma membrane upon DC maturation. It has been proposed that the cysteine protease inhibitor cystatin C (CyC) plays a pivotal role in the control of this process by regulating the activity of cathepsin S, a protease involved in removal of the MHC II chaperone Ii, and hence in the formation of MHC II-peptide complexes. We show that CyC is differentially expressed by mouse DC populations. CD8(+) DC, but not CD4(+) or CD4(-)CD8(-) DC, synthesize CyC, which accumulates in MHC II(+)Lamp(+) compartments. However, Ii processing and MHC II peptide loading proceeded similarly in all three DC populations. We then analyzed MHC II localization and Ag presentation in CD8(+) DC, bone marrow-derived DC, and spleen-derived DC lines, from CyC-deficient mice. The absence of CyC did not affect the expression, the subcellular distribution, or the formation of peptide-loaded MHC II complexes in any of these DC types, nor the efficiency of presentation of exogenous Ags. Therefore, CyC is neither necessary nor sufficient to control MHC II expression and Ag presentation in DC. Our results also show that CyC expression can differ markedly between closely related cell types, suggesting the existence of hitherto unrecognized mechanisms of control of CyC expression.  相似文献   

13.
Natural killer (NK) cells and dendritic cells (DCs) are, respectively, central components of innate and adaptive immune responses. We describe here a third DC lineage, termed interferon-producing killer DCs (IKDCs), distinct from conventional DCs and plasmacytoid DCs and with the molecular expression profile of both NK cells and DCs. They produce substantial amounts of type I interferons (IFN) and interleukin (IL)-12 or IFN-gamma, depending on activation stimuli. Upon stimulation with CpG oligodeoxynucleotides, ligands for Toll-like receptor (TLR)-9, IKDCs kill typical NK target cells using NK-activating receptors. Their cytolytic capacity subsequently diminishes, associated with the loss of NKG2D receptor (also known as Klrk1) and its adaptors, Dap10 and Dap12. As cytotoxicity is lost, DC-like antigen-presenting activity is gained, associated with upregulation of surface major histocompatibility complex class II (MHC II) and costimulatory molecules, which formally distinguish them from classical NK cells. In vivo, splenic IKDCs preferentially show NK function and, upon systemic infection, migrate to lymph nodes, where they primarily show antigen-presenting cell activity. By virtue of their capacity to kill target cells, followed by antigen presentation, IKDCs provide a link between innate and adaptive immunity.  相似文献   

14.
Cytotoxic T lymphocytes and natural killer cells are essential effectors of anti-tumor immune responses in vivo. Dendritic cells (DC) 'prime' tumor antigen-specific cytotoxic T lymphocytes; thus, we investigated whether DC might also trigger the innate, NK cell-mediated anti-tumor immunity. In mice with MHC class I-negative tumors, adoptively transferred- or Flt3 ligand-expanded DC promoted NK cell-dependent anti-tumor effects. In vitro studies demonstrated a cell-to-cell contact between DC and resting NK cells that resulted in a substantial increase in both NK cell cytolytic activity and IFN-gamma production. Thus, DC are involved in the interaction between innate and adaptive immune responses.  相似文献   

15.
Supernatants from vaccinia virus (VV)-infected CV-1 cells were examined and found to contain a 33 kd protein capable of binding murine interleukin-1 beta (mIL-1 beta). A VV open reading frame (ORF) that exhibits 30% amino acid identity to the type II IL-1 receptor was expressed in CV-1-EBNA cells and shown specifically to bind mIL-1 beta. A similar ORF from cowpox virus was expressed and also specifically bound mIL-1 beta. A recombinant VV was constructed in which this ORF was disrupted (vB15RKO). Supernatants from vB15RKO-infected cells did not contain an IL-1-binding protein. Supernatants from VV-infected CV-1 cells were capable of inhibiting IL-1-induced murine lymphocyte proliferation in vitro while supernatants from vB15RKO infected cells did not. Intracranial inoculation of mice with vB15RKO suggests that this ORF is involved in VV virulence. The possible role of a virus-encoded IL-1-binding protein in the pathology of a poxvirus infection and its relationship to other poxvirus-encoded immune modulators is discussed.  相似文献   

16.
Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo   总被引:12,自引:0,他引:12  
The immunoreceptor NKG2D stimulates activation of cytotoxic lymphocytes upon engagement with MHC class I-related NKG2D ligands of which at least some are expressed inducibly upon exposure to carcinogens, cell stress, or viruses. In this study, we investigated consequences of a persistent NKG2D ligand expression in vivo by using transgenic mice expressing MHC class I chain-related protein A (MICA) under control of the H2-K(b) promoter. Although MICA functions as a potent activating ligand of mouse NKG2D, H2-K(b)-MICA mice appear healthy without aberrations in lymphocyte subsets. However, NKG2D-mediated cytotoxicity of H2-K(b)-MICA NK cells is severely impaired in vitro and in vivo. This deficiency concurs with a pronounced down-regulation of surface NKG2D that is also seen on activated CD8 T cells. As a consequence, H2-K(b)-MICA mice fail to reject MICA-expressing tumors and to mount normal CD8 T cell responses upon Listeria infection emphasizing the importance of NKG2D in immunity against tumors and intracellular infectious agents.  相似文献   

17.

Background

Dendritic cells (DC) pulsed with MHC class I-restricted tumour associated antigen (TAA) peptides have been widely tested in pre-clinical models and early clinical studies for their ability to prime cytotoxic T cell (CTL) responses. The effect of co-expression of allogeneic MHC antigens on DC immunogenicity has not been addressed, and has implications for the feasibility of clinical applications.

Objective

This study compared DC from autologous H-2b or semi-allogeneic F1 H-2bxk mice pulsed with the H-2b-restricted model ovalbumin (OVA) peptide SIINFEKL, and compared in vitro and in vivo their ability to (i) activate specific OT1 cells, (ii) prime naïve CTL, and (iii) protect against B16.OVA challenge. Peptide-pulsed autologous and allogeneic DC were also tested in naïve human CTL priming assays.

Results

Semi-allogeneic DC expressed higher levels of co-stimulatory molecules. On pulsing with SIINFEKL they triggered greater proliferation of OT1 cells in vitro and in vivo, but were less effective at naïve CTL priming and tumour protection. Autologous human DC were similarly more potent at naïve CTL priming against the melanoma-associated TAA MART-1 in vitro.

Conclusion

The expression of allogeneic MHC antigens on peptide-pulsed DC impairs naïve CTL priming and anti-tumour effects, despite effective TAA presentation both in vitro and in vivo.
  相似文献   

18.
Dendritic cells (DC) play a key role in antiviral immunity, functioning both as innate effector cells in early phases of the immune response and subsequently as antigen-presenting cells that activate the adaptive immune response. In the murine respiratory tract, there are several respiratory dendritic cell (RDC) subsets, including CD103(+) DC, CD11b(hi) DC, monocyte/macrophage DC, and plasmacytoid DC. However, little is known about the interaction between these tissue-resident RDC and viruses that are encountered during natural infection in the respiratory tract. Here, we show both in vitro and in vivo that the susceptibility of murine RDC to infection with type A influenza virus varies with the level of MHC class II expression by RDC and with the virus strain. Both CD103(+) and CD11b(hi) RDC, which express the highest basal level of major histocompatibility complex (MHC) class II, are highly susceptible to infection by type A influenza virus. However, efficient infection is restricted to type A influenza virus strains of the H2N2 subtype. Furthermore, enhanced infectivity by viruses of the H2N2 subtype is linked to expression of the I-E MHC class II locus product. These results suggest a potential novel role for MHC class II molecules in influenza virus infection and pathogenesis in the respiratory tract.  相似文献   

19.
Cellular and humoral immunity against vaccinia virus infection of mice   总被引:8,自引:0,他引:8  
Despite the widespread use of vaccinia virus (VV) as a vector for other Ags and as the smallpox vaccine, there is little information available about the protective components of the immune response following VV infection. In this study, protection against wild-type VV was evaluated in mice with respect to the relative contributions of CD8(+) T cells vs that of CD4(+) T cells and Ab. C57BL/6 mice primed with the Western Reserve strain of VV mount significant IgM and IgG Ab responses, specific cytotoxic T cell responses, IFN-gamma responses in CD4(+) and CD8(+) T cells, and effectively clear the virus. This protection was abrogated by in vivo depletion of CD4(+) T cells or B cells in IgH(-/-) mice, but was not sensitive to CD8(+) T cell depletion alone. However, a role for CD8(+) T cells in primary protection was demonstrated in MHC class II(-/-) mice, where depleting CD8(+) T cells lead to increase severity of disease. Unlike control MHC class II(-/-) mice, the group depleted of CD8(+) T cells developed skin lesions on the tail and feet and had adrenal necrosis. Adoptive transfer experiments also show CD8(+) T cells can mediate protective memory. These results collectively show that both CD4(+) and CD8(+) T cell-mediated immunity can contribute to protection against VV infection. However, CD4(+) T cell-dependent anti-virus Ab production plays a more important role in clearing virus following acute infection, while in the absence of Ab, CD8(+) T cells can contribute to protection against disease.  相似文献   

20.
We hypothesize that over-expression of transporters associated with antigen processing (TAP1 and TAP2), components of the major histocompatibility complex (MHC) class I antigen-processing pathway, enhances antigen-specific cytotoxic activity in response to viral infection. An expression system using recombinant vaccinia virus (VV) was used to over-express human TAP1 and TAP2 (VV-hTAP1,2) in normal mice. Mice coinfected with either vesicular stomatitis virus plus VV-hTAP1,2 or Sendai virus plus VV-hTAP1,2 increased cytotoxic lymphocyte (CTL) activity by at least 4-fold when compared to coinfections with a control vector, VV encoding the plasmid PJS-5. Coinfections with VV-hTAP1,2 increased virus-specific CTL precursors compared to control infections without VV-hTAP1,2. In an animal model of lethal viral challenge after vaccination, VV-hTAP1,2 provided protection against a lethal challenge of VV at doses 100-fold lower than control vector alone. Mechanistically, the total MHC class I antigen surface expression and the cross-presentation mechanism in spleen-derived dendritic cells was augmented by over-expression of TAP. Furthermore, VV-hTAP1,2 increases splenic TAP transport activity and endogenous antigen processing, thus rendering infected targets more susceptible to CTL recognition and subsequent killing. This is the first demonstration that over-expression of a component of the antigen-processing machinery increases endogenous antigen presentation and dendritic cell cross-presentation of exogenous antigens and may provide a novel and general approach for increasing immune responses against pathogens at low doses of vaccine inocula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号