首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 40kDa glycoprotein from dry secretion of sheep is implicated as a signaling factor and is named as SPS-40. This protein is secreted only during the early phase of involution when the drastic tissue remodeling occurs in the mammary gland. SPS-40 was purified from sheep dry secretions and crystallized using hanging drop vapour diffusion method. The crystals belong to orthorhombic space group P2(1)2(1)2(1) with cell dimensions, a=62.7A, b=66.4A, c=107.5A. The protein was also cloned for the determination of its complete amino acid sequence. The three-dimensional structure of SPS-40 was determined by X-ray crystallographic method at 2.0A resolution. The structure revealed the presence of an N-linked glycan chain at Asn39. The protein adopts a conformation with a classical (beta/alpha)(8)-barrel fold of triosephosphate isomerase (TIM) (residues 1-237 and 310-360) with an insertion of a small (alpha+beta) domain (residues 240-307) similar to that observed in chitinases. However, the Leu substitution for Glu in the consensus catalytic sequence in SPS-40 causes a loss of chitinase activity. Furthermore, the sugar-binding groove in SPS-40 is distorted considerably from the standard chitin-binding site in chitinase enzymes and hence the binding of chitin-like oligosaccharides is considerably hampered. Three surface loops, His188-His197, Phe202-Arg212 and Phe244-Pro260 have exceptionally high values of B-factors (average=70.5A(2)), indicating the presence of a less defined region.  相似文献   

2.
Primary structure and crystallographic data of several legume lectins were used to predict the involvement in carbohydrate binding of six amino acid residues (Asp88, Glu108, Tyr134, Asn136, Leu226 and Gln227) in Griffonia simplicifolia lectin II (GS-II). The functional involvement of these residues was evaluated by assessing GlcNAc binding of modified forms of GS-II in which these residues were eliminated in truncated peptides or systematically substituted with other amino acids by site-specific mutations. Mutations at (Asp88, Tyr134 or Asn136 eliminated GlcNAc binding activity by GS-II, while those at Glut108, Leu226 or Gln227 did not alter the activity. The former three amino acids were functionally essential for carbohydrate binding by GS-II presumably through hydrogen bonding to and hydrophobic interactions with GlcNAc. Although an Asp or Gly substitution for Tyr134 eliminated GlcNAc affinity, substitution with Phe did not appreciably affect binding. Despite the fact that mutations to Leu226 and Gln227 did not alter carbohydrate binding, a truncated form of GS-II lacking these residues no longer exhibited carbohydrate binding affinity.  相似文献   

3.
Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9–2.6 Å. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.  相似文献   

4.
To gain insight into intramolecular carbohydrate-protein interactions at the molecular level, the solution structure of differently deglycosylated variants of the alpha-subunit of human chorionic gonadotropin have been studied by NMR spectroscopy. Significant differences in chemical shifts and NOE intensities were observed for amino acid residues close to the carbohydrate chain at Asn78 upon deglycosylation beyond Asn78-bound GlcNAc. As no straightforward strategy is available for the calculation of the NMR structure of intact glycoproteins, a suitable computational protocol had to be developed. To this end, the X-PLOR carbohydrate force field designed for structure refinement was extended and modified. Furthermore, a computational strategy was devised to facilitate successful protein folding in the presence of extended glycans during the simulation. The values for phi and psi dihedral angles of the glycosidic linkages of the oligosaccharide core fragments GlcNAc2(beta1-4)GlcNAc1 and Man3(beta1-4)GlcNAc2 are restricted to a limited range of the broad conformational energy minima accessible for free glycans. This demonstrates that the protein core affects the dynamic behavior of the glycan at Asn78 by steric hindrance. Reciprocally, the NMR structures indicate that the glycan at Asn78 affects the stability of the protein core. The backbone angular order parameters and displacement data of the generated conformers display especially for the beta-turn 20-23 a decreased structural order upon splitting off the glycan beyond the Asn78-bound GlcNAc. In particular, the Asn-bound GlcNAc shields the protein surface from the hydrophilic environment through interaction with predominantly hydrophobic amino acid residues located in both twisted beta-hairpins consisting of residues 10-28 and 59-84.  相似文献   

5.
CD40-CD154 (CD40 ligand) interactions are essential for the development of protective immunity. Previous studies have described the CD40 binding site as a shallow groove formed between two monomers of CD154. However, these studies have not examined the structure or biological function of the carbohydrate on CD154. Human CD154 contains a single N-linked glycosylation site at asparagine 240. We have characterized the interactions between CD40 and soluble (s) CD154 in which sCD154 contains different types of carbohydrates. Detailed carbohydrate analysis revealed high-mannose structures on sCD154 purified from Pichia pastoris, whereas CD154 purified from Chinese hamster ovary E1A contained heterogeneous populations of complex carbohydrates. sCD154 purified from either system was trimeric, it bound to CD40 with similar affinities of 10-30 nM, and it functionally induced CD69 and CD95 expression on primary B cells. Together, these results indicate that the presence of varied types of N-linked glycans on asparagine 240 of CD154 does not play a significant role in the CD40-CD154 interactions.  相似文献   

6.
The crystal structure of a chitinase from Carica papaya has been solved by the molecular replacement method and is reported to a resolution of 1.5 A. This enzyme belongs to family 19 of the glycosyl hydrolases. Crystals have been obtained in the presence of N-acetyl- d-glucosamine (GlcNAc) in the crystallization solution and two well-defined GlcNAc molecules have been identified in the catalytic cleft of the enzyme, at subsites -2 and +1. These GlcNAc moieties bind to the protein via an extensive network of interactions which also involves many hydrogen bonds mediated by water molecules, underlying their role in the catalytic mechanism. A complex of the enzyme with a tetra-GlcNAc molecule has been elaborated, using the experimental interactions observed for the bound GlcNAc saccharides. This model allows to define four major substrate interacting regions in the enzyme, comprising residues located around the catalytic Glu67 (His66 and Thr69), the short segment E89-R90 containing the second catalytic residue Glu89, the region 120-124 (residues Ser120, Trp121, Tyr123, and Asn124), and the alpha-helical segment 198-202 (residues Ile198, Asn199, Gly201, and Leu202). Water molecules from the crystal structure were introduced during the modeling procedure, allowing to pinpoint several additional residues involved in ligand binding that were not previously reported in studies of poly-GlcNAc/family 19 chitinase complexes. This work underlines the role played by water-mediated hydrogen bonding in substrate binding as well as in the catalytic mechanism of the GH family 19 chitinases. Finally, a new sequence motif for family 19 chitinases has been identified between residues Tyr111 and Tyr125.  相似文献   

7.
Two structures of cyclophilin 40: folding and fidelity in the TPR domains   总被引:7,自引:0,他引:7  
BACKGROUND: The "large immunophilin" family consists of domains of cyclophilin or FK506 binding protein linked to a tetratricopeptide (TPR) domain. They are intimately associated with steroid receptor complexes and bind to the C-terminal domain of Hsp90 via the TPR domain. The competitive binding of specific large immunophilins and other TPR-Hsp90 proteins provides a regulatory mechanism for Hsp90 chaperone activity. RESULTS: We have solved the X-ray structures of monoclinic and tetragonal forms of Cyp40. In the monoclinic form, the TPR domain consists of seven helices of variable length incorporating three TPR motifs, which provide a convincing binding surface for the Hsp90 C-terminal MEEVD sequence. The C-terminal residues of Cyp40 protrude out beyond the body of the TPR domain to form a charged helix-the putative calmodulin binding site. However, in the tetragonal form, two of the TPR helices have straightened out to form one extended helix, providing a dramatically different conformation of the molecule. CONCLUSIONS: The X-ray structures are consistent with the role of Cyclophilin 40 as a multifunctional signaling protein involved in a variety of protein-protein interactions. The intermolecular helix-helix interactions in the tetragonal form mimic the intramolecular interactions found in the fully folded monoclinic form. These conserved intra- and intermolecular TPR-TPR interactions are illustrative of a high-fidelity recognition mechanism. The two structures also open up the possibility that partially folded forms of TPR may be important in domain swapping and protein recognition.  相似文献   

8.
MD-1 and MD-2 are secretory glycoproteins that exist on the cell surface in complexes with transmembrane proteins. MD-1 is anchored by radioprotective 105 (RP105), and MD-2 is associated with TLR4. In vivo studies revealed that MD-1 and MD-2 have roles in responses to LPS. Although the direct binding function of MD-2 to LPS has been observed, the physiological function of MD-1 remains unknown. In this study, we compared the LPS-binding functions of MD-1 and MD-2. LPS binding to cell surface complexes was detected for cells transfected with TLR4/MD-2. In contrast, binding was not observed for RP105/MD-1-transfected cells. When rMD-2 protein was expressed in Escherichia coli, it was purified in complexes containing LPS. In contrast, preparations of MD-1 did not contain LPS. When rMD-2 protein was prepared in a mutant strain lacking the lpxM gene, LPS binding disappeared. Therefore, the secondary myristoyl chain attached to the (R)-3-hydroxymyristoyl chain added by LpxM is required for LPS recognition by MD-2, under these conditions. An amphipathic cluster composed of basic and hydrophobic residues in MD-2 has been suggested to be the LPS-binding site. We specifically focused on two Phe residues (119 and 121), which can associate with fatty acids. A mutation at Phe(191) or Phe(121) strongly reduced binding activity, and a double mutation at these residues prevented any binding from occurring. The Phe residues are present in MD-2 and absent in MD-1. Therefore, the LPS recognition mechanism by RP105/MD-1 is distinct from that of TLR4/MD-2.  相似文献   

9.
10.
The HNK-1 carbohydrate epitope is found on many neural cell adhesion molecules. Its structure is characterized by a terminal sulfated glucuronyl acid. The glucuronyltransferases, GlcAT-P and GlcAT-S, are involved in the biosynthesis of the HNK-1 epitope, GlcAT-P as the major enzyme. We overexpressed and purified the recombinant human GlcAT-P from Escherichia coli. Analysis of its enzymatic activity showed that it catalyzed the transfer reaction for N-acetyllactosamine (Galbeta1-4GlcNAc) but not lacto-N-biose (Galbeta1-3GlcNAc) as an acceptor substrate. Subsequently, we determined the first x-ray crystal structures of human GlcAT-P, in the absence and presence of a donor substrate product UDP, catalytic Mn(2+), and an acceptor substrate analogue N-acetyllactosamine (Galbeta1-4GlcNAc) or an asparagine-linked biantennary nonasaccharide. The asymmetric unit contains two independent molecules. Each molecule is an alpha/beta protein with two regions that constitute the donor and acceptor substrate binding sites. The UDP moiety of donor nucleotide sugar is recognized by conserved amino acid residues including a DXD motif (Asp(195)-Asp(196)-Asp(197)). Other conserved amino acid residues interact with the terminal galactose moiety of the acceptor substrate. In addition, Val(320) and Asn(321), which are located on the C-terminal long loop from a neighboring molecule, and Phe(245) contribute to the interaction with GlcNAc moiety. These three residues play a key role in establishing the acceptor substrate specificity.  相似文献   

11.
J E Coleman  I M Armitage 《Biochemistry》1978,17(23):5038-5045
The interactions of oligodeoxynucleotides with the aromatic residues of gene 5 protein in complexes with d(pA)8 and d(pT)8 have been determined by 1H NMR of the protein in which the five tyrosyl residues have been selectively deuterated either in the 2,6 or the 3,5 positions. Only the 3,5 protons of the three surface tyrosyls (26, 41, and 56) interact with the bases. The remainder of the aromatic protons undergoing base-dependent upfield ring-current shifts on complex formation are phenylalanyl protons, assigned to Phe(13) on the basis of model building. 19F NMR of the complexes of the m-fluorotyrosyl-labeled protein with d(pT)4 and d(pA)8 confirms the presence of ring-current perturbations of nuclei at the 3,5-tyrosyl positions of the three surface tyrosyls. Differential expression of the 19F(1H) nuclear Overhauser effect confirms the presence of two buried and three surface tyrosyl residues. A new model of the DNA binding groove is presented involving Tyr(26)-base-Phe(13) intercalation.  相似文献   

12.
The cyanobacterial protein MVL inhibits HIV-1 envelope-mediated cell fusion at nanomolar concentrations by binding to high mannose N-linked carbohydrate on the surface of the envelope glycoprotein gp120. Although a number of other carbohydrate-binding proteins have been shown to inhibit HIV-1 envelope-mediated cell fusion, the specificity of MVL is unique in that its minimal target comprises the Man(alpha)(1-->6)Man(beta)(1-->4)GlcNAc(beta)(1-->4)GlcNAc tetrasaccharide core of oligomannosides. We have solved the crystal structures of MVL free and bound to the pentasaccharide Man3GlcNAc2 at 1.9- and 1.8-A resolution, respectively. MVL is a homodimer stabilized by an extensive intermolecular interface between monomers. Each monomer contains two structurally homologous domains with high sequence similarity connected by a short five-amino acid residue linker. Intriguingly, a water-filled channel is observed between the two monomers. Residual dipolar coupling measurements indicate that the structure of the MVL dimer in solution is identical to that in the crystal. Man3GlcNAc2 binds to a preformed cleft at the distal end of each domain such that a total of four independent carbohydrate molecules associate with each homodimer. The binding cleft provides shape complementarity, including the presence of a deep hydrophobic hole that accommodates the N-acetyl methyl at the reducing end of the carbohydrate, and specificity arises from 7-8 intermolecular hydrogen bonds. The structures of MVL and the MVL-Man3GlcNAc2 complex further our understanding of the molecular basis of high affinity and specificity in protein-carbohydrate recognition.  相似文献   

13.
We constructed the complexes between HEWL and (GlcNAc)6 oligomer in order to investigate the amino acid residues related to substrate binding in the productive and nonproductive complexes, and the relationship between the distortion of the GlcNAc residue D and the formation of the productive complexes. We obtained 49 HEWL-(GlcNAc)6 complexes by a systematic conformational search and classified the each one to the three binding modes; left side, center, or right side. Furthermore we performed the molecular dynamics simulation against 20 HEWL-(GlcNAc)6 complexes (8: chair model, 12 : half-chair model) selected from the 49 complexes to investigate the interaction between HEWL and (GlcNAc)6. As results, we confirmed that it is necessary for GlcNAc residue D to be half-chaired form to bind toward the right side to form productive complexes. We found newly that eight amino acid residues interact with the (GlcNAc)6 oligomer, as follows, Arg73, Gly102, Asn103 for GlcNAc residue A; Asn103 for GlcNAc residues B and C; Leu56, Ala107, Val109 for GlcNAc residue D; Ala110 for GlcNAc residue E; and Lys33 for GlcNAc residue F. We also indicated that GlcNAc residue F does not interact with Thr47 and rarely interacts with Phe34 and Asn37.  相似文献   

14.
G C King  J E Coleman 《Biochemistry》1988,27(18):6947-6953
The interaction between Ff gene 5 protein (G5P) and d(pA)40-60 serves as an improved model system for a 1H NMR examination of the G5P-ssDNA interface under cooperative binding conditions. Selective deuteriation of aromatic residues enables individual Tyr (3,5)H and (2,6)H resonances to be monitored in spectra of high molecular weight nucleoprotein assemblies. Analysis of complexation-induced chemical shift changes and intermolecular NOEs indicates that Tyr 26 is the only tyrosine to interact directly with ssDNA. Tyr 41, which is immobilized upon binding, is implicated in a dimer-dimer contact role. These and other NMR data are consistent with a previously outlined model of the protein-DNA interface in which Phe 73', Leu 28, and Tyr 26 form components of a base-binding pocket or "dynamic clamp" fringed by a cluster of positively charged residues [King, G. C., & Coleman, J. E. (1987) Biochemistry 26, 2929-2937]. In the present version of this model, the Phe and Leu side chains are proposed to stack on either side of a single base, while there is the possibility that Tyr 26 may H-bond to the sugar-phosphate backbone in addition to or instead of stacking. Chemical-exchange effects underscore the dynamic nature of binding at the pocket. A comparison of d(pA)40-60 and oligo(dA)-induced chemical shift changes suggests that poly- and oligonucleotide complexes have indistinguishable base-binding loci but appear to differ in their dimer-dimer interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Alok Sharma  K. Sekar  M. Vijayan 《Proteins》2009,77(4):760-777
Molecular dynamics simulations have been carried out on all the jacalin–carbohydrate complexes of known structure, models of unliganded molecules derived from the complexes and also models of relevant complexes where X‐ray structures are not available. Results of the simulations and the available crystal structures involving jacalin permit delineation of the relatively rigid and flexible regions of the molecule and the dynamical variability of the hydrogen bonds involved in stabilizing the structure. Local flexibility appears to be related to solvent accessibility. Hydrogen bonds involving side chains and water bridges involving buried water molecules appear to be important in the stabilization of loop structures. The lectin–carbohydrate interactions observed in crystal structures, the average parameters pertaining to them derived from simulations, energetic contribution of the stacking residue estimated from quantum mechanical calculations, and the scatter of the locations of carbohydrate and carbohydrate‐binding residues are consistent with the known thermodynamic parameters of jacalin–carbohydrate interactions. The simulations, along with X‐ray results, provide a fuller picture of carbohydrate binding by jacalin than provided by crystallographic analysis alone. The simulations confirm that in the unliganded structures water molecules tend to occupy the positions occupied by carbohydrate oxygens in the lectin–carbohydrate complexes. Population distributions in simulations of the free lectin, the ligands, and the complexes indicate a combination of conformational selection and induced fit. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Moothoo  DN; Naismith  JH 《Glycobiology》1998,8(2):173-181
Carbohydrate recognition by proteins is a key event in many biological processes. Concanavalin A is known to specifically recognize the pentasaccharide core (beta-GlcNAc-(1-->2)-alpha- Man-(1-->3)-[beta- GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man) of N-linked oligosaccharides with a Ka of 1.41 x 10(6 )M-1. We have determined the structure of concanavalin A bound to beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta- GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man to 2.7A. In six of eight subunits there is clear density for all five sugar residues and a well ordered binding site. The pentasaccharide adopts the same conformation in all eight subunits. The binding site is a continuous extended cleft on the surface of the protein. Van der Waals interactions and hydrogen bonds anchor the carbohydrate to the protein. Both GlcNAc residues contact the protein. The GlcNAc on the 1-->6 arm of the pentasaccharide makes particularly extensive contacts and including two hydrogen bonds. The binding site of the 1-->3 arm GlcNAc is much less extensive. Oligosaccharide recognition by Con A occurs through specific protein carbohydrate interactions and does not require recruitment of adventitious water molecules. The beta-GlcNAc-(1-->2)-Man glycosidic linkage PSI torsion angle on the 1-->6 arm is rotated by over 50 degrees from that observed in solution. This rotation is coupled to disruption of interactions at the monosaccharide site. We suggest destabilization of the monosaccharide site and the conformational strain reduces the free energy liberated by additional interactions at the 1-->6 arm GlcNAc site.   相似文献   

17.
The specificity of intracellular signaling events is controlled, in part, by compartmentalization of protein kinases and phosphatases. The subcellular localization of these enzymes is often maintained by protein- protein interactions. A prototypic example is the compartmentalization of the cAMP-dependent protein kinase (PKA) through its association with A-kinase anchoring proteins (AKAPs). A docking and dimerization domain (D/D) located within the first 45 residues of each regulatory (R) subunit protomer forms a high affinity binding site for its anchoring partner. We now report the structures of two D/D-AKAP peptide complexes obtained by solution NMR methods, one with Ht31(493-515) and the other with AKAP79(392-413). We present the first direct structural data demonstrating the helical nature of the peptides. The structures reveal conserved hydrophobic interaction surfaces on the helical AKAP peptides and the PKA R subunit, which are responsible for mediating the high affinity association in the complexes. In a departure from the dimer-dimer interactions seen in other X-type four-helix bundle dimeric proteins, our structures reveal a novel hydrophobic groove that accommodates one AKAP per RIIalpha D/D.  相似文献   

18.
The structure of the maltodextrin or maltose-binding protein, an initial receptor for bacterial ABC-type active transport and chemotaxis, consists of two globular domains that are separated by a groove wherein the ligand is bound and enclosed by an inter-domain rotation. Here, we report the determination of the crystal structures of the protein complexed with reduced maltooligosaccharides (maltotriitol and maltotetraitol) in both the "closed" and "open" forms. Although these modified sugars bind to the receptor, they are not transported by the wild-type transporter. In the closed structures, the reduced sugars are buried in the groove and bound by both domains, one domain mainly by hydrogen-bonding interactions and the other domain primarily by non-polar interactions with aromatic side-chains. In the open structures, which abrogate both cellular activities of active transport and chemotaxis because of the large separation between the two domains, the sugars are bound almost exclusively to the domain rich in aromatic residues. The binding site for the open chain glucitol residue extends to a subsite that is distinct from those for the glucose residues that were uncovered in prior structural studies of the binding of active linear maltooligosaccharides. Occupation of this subsite may also account for the inability of the reduced oligosaccharides to be transported. The structures reported here, combined with those previously determined for several other complexes with active oligosaccharides in the closed form and with cyclodextrin in the open form, revealed at least four distinct modes of ligand binding but with only one being functionally active. This versatility reflects the flexibility of the protein, from very large motions of interdomain rotation to more localized side-chain conformational changes, and adaptation by the oligosaccharides as well.  相似文献   

19.
1H NMR (500 MHz) of gene 32 protein--oligonucleotide complexes   总被引:6,自引:0,他引:6  
In concentrated solutions, gene 32 single-stranded DNA binding protein from bacteriophage T4 (gene 32P) forms oligomers with long rotational correlation times, rendering 1H NMR signals from most of the protons too broad to be detected. Small flexible N- and C-terminal domains are present, however, the protons of which give rise to sharp resonances. If the C-terminal A domain (48 residues) and the N-terminal B domain (21 residues) are removed, the resultant core protein of 232 residues (gene 32P) retains high affinity for ssDNA and remains a monomer in concentrated solution, and most of the proton resonances of the core protein can now be observed. Proton NMR spectra (500 MHz) of gene 32P and its complexes with ApA, d(pA)n (n = 2, 4, 6, 8, and 10), and d(pT)8 show that the resonances of a group of aromatic protons shift upfield upon oligonucleotide binding. Proton difference spectra show that the 1H resonances of at least one Phe, one Trp, and five Tyr residues are involved in the chemical shift changes observed with nucleotide binding. The number of aromatic protons involved and the magnitude of the shifts change with the length of the oligonucleotide until the shifts are only slightly different between the complexes with d(pA)8 and d(pA)10, suggesting that the binding groove accommodates approximately eight nucleotide bases. Many of the aromatic proton NMR shifts observed on oligonucleotide complex formation are similar to those observed for oligonucleotide complex formation with gene 5P of bacteriophage fd, although more aromatic residues are involved in the case of gene 32P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Infection of vertebrates with the parasitic blood fluke Schistosoma mansoni induces a variety of host immune responses, which are directed against both protein and carbohydrate antigens. In this report, we describe our studies on the structures of antigenic oligosaccharides derived from glycoproteins synthesized by S. mansoni. Immobilized antibodies derived from the sera of infected hamsters and mice bind to a family of high molecular weight Asn-linked oligosaccharides in glycoproteins from the adult parasite. Structural analysis of the major antigenic oligosaccharides revealed that they have high amounts of fucose-linked alpha 1,3 to N-acetylglucosamine residues within the linear repeating disaccharide (3Gal beta 1-4GlcNAc beta 1)n, a poly-N-acetyllactosamine sequence containing the Lewis X antigenic blood group. The remarkable ability of S. mansoni to synthesize these vertebrate-type oligosaccharides may have implications in both the mechanisms of host-parasite interactions and on the development of vaccines to prevent this disease in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号