首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrate ligands are important mediators of biomolecular recognition. Microcalorimetry has found the complex-type N-linked glycan core pentasaccharide beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man to bind to the lectin, Concanavalin A, with almost the same affinity as the trimannoside, Man-alpha-(1-->6)-[Man-alpha-(1-->3)]-Man. Recent determination of the structure of the pentasaccharide complex found a glycosidic linkage psi torsion angle to be distorted by 50 degrees from the NMR solution value and perturbation of some key mannose-protein interactions observed in the structures of the mono- and trimannoside complexes. To unravel the free energy contributions to binding and to determine the structural basis for this degeneracy, we present the results of a series of nanosecond molecular dynamics simulations, coupled to analysis via the recently developed MM-GB/SA approach (Srinivasan et al., J. Am. Chem. Soc. 1998, 120:9401-9409). These calculations indicate that the strength of key mannose-protein interactions at the monosaccharide site is preserved in both the oligosaccharides. Although distortion of the pentasaccharide is significant, the principal factor in reduced binding is incomplete offset of ligand and protein desolvation due to poorly matched polar interactions. This analysis implies that, although Concanavalin A tolerates the additional 6 arm GlcNAc present in the pentasaccharide, it does not serve as a key recognition determinant.  相似文献   

2.
The urine of a patient with Sandhoff's disease (GM2 gangliosidosis-variant O) contains 10--12 N-acetylglucosamine-rich oligosaccharides in high amounts. The structures of seven of these have been determined: beta-GlcNAc(1--2)-alpha-Man-(1--3)-beta-man-(1--4)-GlcNAc; beta-GlcNAc-(1--4)-alpha-Man-(1--3)-beta-Man-(1--4)-GlcNAc; beta-GlcNAc-(1--2)-alpha-Man-(1--6)-beta-Man-(1--4)-GlcNAc; beta-GlcNAc-(1--4)-alpha-Man-(1--6)-beta-Man-(1--4)-GlcNAc; beta-GlcNAc-(1--2)-alpha-Man-(1--3)-[beta-GlcNAc-(1--2)-alpha-Man-(1--6)]beta-Man-(1--4)-GlcNAc; beta-GlcNAc-(1--2)-alpha-Man-(1--3)[beta-GlcNAc-(1--2)-alpha-Man-(1--6)][beta-GlcNAc-(1--4)]beta-Man-(1--4)-GlcNAc; beta-GlcNAc-(1--2)-alpha-Man(1)-(1--3)[beta-GlcNAc-(1--2)-alpha-Man(2)-(1--6)]beta-Man-(1--4)-GlcNAc, with additional beta-GlcNAc, with additional beta-GlcNAc-(1--4) on mannose (1) or (2). An unusual oligosaccharide, with a tri-branched beta-mannose, has been characterized as the major component excreted in urine.  相似文献   

3.
Fucose is a major constituent of the protein- and lipid-linked glycans of the various life-cycle stages of schistosomes. These fucosylated glycans are highly antigenic and seem to play a role in the pathology of schistosomiasis. In this article we describe the identification and characterization of two fucosyltransferases (FucTs) in cercariae of the avian schistosome Trichobilharzia ocellata, a GDP-Fuc:[Galbeta1-- >4]GlcNAcbeta-R alpha1-->3-FucT and a novel GDP-Fuc:Fucalpha-R alpha1-- >2-FucT. Triton X-100 extracts of cercariae were assayed for FucT activity using a variety of acceptor substrates. Type 1 chain (Galbeta1- ->3GlcNAc) based compounds were poor acceptors, whereas those based on a type 2 chain (Galbeta1-->4GlcNAc), whether alpha2'-fucosylated, alpha3'-sialylated, or unsubstituted, and whether present as oligosaccharide or contained in a glycopeptide or glycoprotein, all served as acceptor substrates. In this respect the schistosomal alpha3- FucT resembles human FucT V and VI rather than other known FucTs. N- ethylmaleimide, an inhibitor of several human FucTs, had no effect on the activity of the schistosomal alpha3-FucT, whereas GDP-beta-S was strongly inhibitory. Large scale incubations were carried out with Galbeta1-->4GlcNAc, GalNAcbeta1-->4GlcNAcbeta-O -(CH2)8COOCH3 and Fucalpha1-->3GlcNAcbeta1-->2Man as acceptor substrates and the products of the incubations were isolated using a sequence of chromatographic techniques. By methylation analysis and 2D-TOCSY and ROESY1H-NMR spectroscopy the products formed were shown to be Galbeta1-- >4[Fucalpha1-->2Fucalpha1-->3]GlcNAc, GalNAcbeta1-->4[Fucalpha1-- >2Fucalpha1-->3]GlcNAcbe ta-O-(CH2)8COOCH3, and Fucalpha1-->2Fucalpha1-- >3GlcNAcbeta1-->2Man, respectively. It is concluded that the alpha2- FucT and alpha3-FucT are involved in the biosynthesis of the (oligomeric) Lewisx sequences and the Fucalpha1-->2Fucalpha1-->3GlcNAc structural element that have been described on schistosomal glycoconjugates.   相似文献   

4.
5.
The crystal structure of Pterocarpus angolensis lectin is determined in its ligand-free state, in complex with the fucosylated biantennary complex type decasaccharide NA2F, and in complex with a series of smaller oligosaccharide constituents of NA2F. These results together with thermodynamic binding data indicate that the complete oligosaccharide binding site of the lectin consists of five subsites allowing the specific recognition of the pentasaccharide GlcNAc beta(1-2)Man alpha(1-3)[GlcNAc beta(1-2)Man alpha(1-6)]Man. The mannose on the 1-6 arm occupies the monosaccharide binding site while the GlcNAc residue on this arm occupies a subsite that is almost identical to that of concanavalin A (con A). The core mannose and the GlcNAc beta(1-2)Man moiety on the 1-3 arm on the other hand occupy a series of subsites distinct from those of con A.  相似文献   

6.
4-methoxyphenyl glycosides of 2,3'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl tetraose (16), 3',2'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl hexaose (27), and a twentyose (42) consisting of beta-(1-->6)-linked D-galactopyranosyl pentadecaoligosaccharide backbone with alpha-L-arabinofuranosyl side chains alternately attached at C-2 and C-3 of the middle galactose residue of each consecutive beta-(1-->6)-linked galactotriose unit of the backbone, were synthesized with isopropyl 3-O-allyl-2,4-di-O-benzoyl-1-thio-beta-D-galactopyranoside (6), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (7), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (12), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (17), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (19), and 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (28) as the key synthons. Condensation of 6 with 7 gave the disaccharide donor 8, and subsequent condensation of 8 with 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->6)-2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (9) followed by selective deacetylation afforded the tetrasaccharide acceptor 11. Coupling of 11 with 12 gave the pentasaccharide 13, its deallylation followed by coupling with 12, and debenzoylation gave the hexasaccharide 16 with beta-(1-->6)-linked galactopyranose backbone and 2- and 3'-linked alpha-L-arabinofuranose side chains. The octasaccharide 27 was similarly synthesized, while the twentyoside 42 was synthesized with tetrasaccharides 33 or 24 as the donors and 23, 36, 38, and 40 as the acceptors by consecutive couplings followed by deacylation.  相似文献   

7.
R L Brockbank  H J Vogel 《Biochemistry》1990,29(23):5574-5583
The major form of the oligosaccharide of hen phosvitin was studied with two-dimensional 1H NMR of the intact glycoprotein. Its structure was determined from an analysis of the chemical shifts of the structural reporter groups, and it was further confirmed by comparison to several related model oligosaccharides. The oligosaccharide is N-linked and is present in a 1:1 stoichiometry to the protein. It has a complex type 1 triantennary structure with two NeuAc alpha 2,6Gal beta 1,4GlcNAc beta 1,2 arms linked to the Man-4 and Man-4' and a third Gal beta 1, 4GlcNAc beta 1,4 arm attached to the Man-4. The oligosaccharide contains the common core sequence which is present in all N-linked glycoproteins [Man alpha 1,3(Man alpha 1,6)-Man beta 1,4GlcNAc beta 1,4GlcNAc beta 1,N]. In the course of this study, we have found that unique spin systems for the GlcNAc and NeuAc are obtained for spectra recorded in 90% H2O. Their NH peaks were assigned at low pH, and these assignments proved useful for confirming the identity of cross-peaks in the anomeric region. In addition, the protons of GlcNAc-1 could be correlated to the NH of the asparagine link. The cross-peak patterns determined in phase-sensitive 2D experiments for the H1,H2 protons have a different appearance for each type of monosaccharide, and this information was also used for making first-order assignments. A comparison with model compounds suggests that the solution conformation of the oligosaccharide is not affected by its attachment to the protein.  相似文献   

8.
Sulfated sialyl-alpha-(2 --> 3)-neolactotetraose (IV3NeuAcnLcOse4) derivatives at C-6 of GlcNAc (6-O-sulfo), terminal Gal (6'-O-sulfo), and both GlcNAc and Gal (6,6'-di-O-sulfo) residues have systematically been synthesized. (Methyl 5-acetamido-4,7,8,9- tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosy lonate)-(2 --> 3)-2,4-di-O-benzoyl-6-O-levulinoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(trimethylsilyl)ethyl (2-acetamido-2-deoxy- 3-O-benzyl-6-O-p-methoxyphenyl-beta-D-glucopyranosyl)-(1 --> 3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)-(1 --> 4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside to give the suitably protected pentasaccharide which, upon selective removal of the p-methoxyphenyl and/or levulinoyl groups at C-6 of the GlcNAc and the terminal Gal residues, successive O-sulfation(s) and deprotection, afforded the desired three sulfated IV3NeuAcnLcOse4 derivatives. Acceptor specificity of the synthetic IV3NeuAcnLcOse4 probes for a human alpha-(1 --> 3)-fucosyltransferase (Fuc-TVII) was examined to study the biosynthetic pathway of L-selectin ligand. Only the 6-sulfated derivative at C-6 of GlcNAc was recognized by Fuc-TVII to give 6-O-sulfo sialyl LeX.  相似文献   

9.
Based on sequence homology with a previously cloned human GlcNAc 6-O-sulfotransferase, we have identified an open reading frame (ORF) encoding a novel member of the Gal/GalNAc/GlcNAc 6-O-sulfotransferase (GST) family termed GST-5 on the human X chromosome (band Xp11). GST-5 has recently been characterized as a novel GalNAc 6-O-sulfotransferase termed chondroitin 6-sulfotransferase-2 (Kitagawa, H., Fujita, M., Itio, N., and Sugahara K. (2000) J. Biol. Chem. 275, 21075-21080). We have coexpressed a human GST-5 cDNA with a GlyCAM-1/IgG fusion protein in COS-7 cells and observed four-fold enhanced [(35)S]sulfate incorporation into this mucin acceptor. All mucin-associated [(35)S]sulfate was incorporated as GlcNAc-6-sulfate or Galbeta1-->4GlcNAc-6-sulfate. GST-5 was also expressed in soluble epitope-tagged form and found to catalyze 6-O-sulfation of GlcNAc residues in synthetic acceptor structures. In particular, GST-5 was found to catalyze 6-O-sulfation of beta-benzyl GlcNAc but not alpha- or beta-benzyl GalNAc. In the mouse genome we have found a homologous ORF that predicts a novel murine GlcNAc 6-O-sulfotransferase with 88% identity to the human enzyme. This gene was mapped to mouse chromosome X at band XA3.1-3.2. GST-5 is the newest member of an emerging family of carbohydrate 6-O-sulfotransferases that includes chondroitin 6-sulfotransferase (GST-0), keratan-sulfate galactose 6-O-sulfotransferase (GST-1), the ubiquitously expressed GlcNAc 6-O-sulfotransferase (GST-2), high endothelial cell GlcNAc 6-O-sulfotransferase (GST-3), and intestinal GlcNAc 6-O-sulfotransferase (GST-4).  相似文献   

10.
Bradyrhizobium japonicum synthesizes periplasmic cyclic beta-(1-->3),beta-(1-->6)-D-glucans during growth in hypoosmotic environments, and evidence is growing that these molecules may have a specific function during plant-microbe interactions in addition to osmoregulation. Site-directed Tn5 mutagenesis of the DNA region upstream of ndvB resulted in identification of a new gene (ndvC) involved in beta-(1--> 3), beta-(1-->6)-glucan synthesis and in nodule development. The predicted translation product was a polypeptide (ca. 62 kDa) with several transmembrane domains. It contained a sequence characteristic of a conserved nucleoside-sugar-binding motif found in many bacterial enzymes and had 51% similarity with a beta-glucanosyltransferase from Candida albicans. B. japonicum carrying a Tn5 insertion in ndvC resulted in synthesis of altered cyclic beta-glucans composed almost entirely of beta-(1--> 3)-glycosyl linkages. The mutant strain was only slightly sensitive to hypoosmotic growth conditions compared with the ndvB mutant, but it was severely impaired in symbiotic interactions with soybean (Glycine max). Nodulation was delayed by 8 to 10 days, and many small nodule-like structures apparently devoid of viable bacteria were formed. This finding suggests that the structure of the beta-glucan molecule is important for a successful symbiotic interaction, and beta-glucans may have a specific function in addition to their role in hypoosmotic adaptation.  相似文献   

11.
The 2-aminoethyl glycoside of pentasaccharide 3-O-sulfo-GlcA(beta-1-->3)Gal(beta-1-->4)GlcNAc(beta-1-->3)Gal(beta-1--> 4)Glc(beta (1) and its conjugates with biotin and biotinylated polyacrylic acid were synthesized as molecular probes to investigate the recognition of the HNK-1 epitope containing carbohydrates by proteins. Key steps in the first of two investigated schemes for the preparation of the target compound 1 were (a) assembling of the pentasaccharide backbone (compound 10) by glycosylation of selectively substituted allyl glycoside of the trisaccharide GlcNAc(beta-1-->3)Gal(beta-1-->4)Glc(beta with glucuronyl-galactose glycosyl donor, (b) transformation of the allyl aglycon in 10 into 2-azidoethyl one (to give 11), (c) selective deprotection of the OH group at C-3 of the GlcA residue in 11 via saponification, intramolecular formation of 6,3-lacton (13) and its methanolysis, and (d) subsequent O-sulfation. The alternative scheme with the use of 2-azido-ethyl glycoside of the trisaccharide GlcNAc(beta-1-->3)Gal(beta-1-->4)Glc(beta instead of the allyl glycoside 6 was less effective due to smaller yield at the step of pentasaccharide synthesis. Additionally to 1 the 2-aminoethyl glycosides of the oligosaccharides GlcA(beta-1-->3)Gal(beta-1-->4)GlcNAc(beta-1-->3)Gal(beta-1-->4)Glc(beta, 3-O-sulfo-GlcA(beta-1-->3)Gal(beta, and GlcA(beta-1-->3)Gal(beta were also synthesized.  相似文献   

12.
Li A  Kong F 《Carbohydrate research》2004,339(11):1847-1856
Two arabinogalactosyl nonasaccharides, beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp and beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp, were synthesized as their 4-methoxyphenyl glycosides with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (1), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (14), 4-methoxyphenyl 3-O-allyl-2,4-di-O-benzoyl-beta-D-galactopyranoside (2), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (5), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (8), and 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl-(1-->5)-2,3-di-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (11), as the key synthons. The tetra- (10) and pentasaccharide donor (13), and the tetra- (20) and pentasaccharide acceptor (22) were synthesized based on these synthons through simple transformations. Coupling of 22 with 10, and coupling of 20 with 13 and subsequent deacylation gave nonasaccharides 24 and 26, respectively, consisting of beta-(1-->6)-linked glactopyranosyl backbone and alpha-(1-->3)-linked arabinofuranosyl side chains of different size.  相似文献   

13.
Chen L  Zhu Y  Kong F 《Carbohydrate research》2002,337(5):383-390
The tetrasaccharide repeating unit of Escherichia coli O9a, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-D-Manp, and the pentasaccharide repeating unit of E. coli O9 and Klebsiella O3, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-D-Manp, were synthesized as their methyl glycosides. Thus, selective 3-O-allylation of p-methoxyphenyl alpha-D-mannopyranoside via a dibutyltin intermediate gave p-methoxyphenyl 3-O-allyl-alpha-D-mannopyranoside (2) in good yield. Benzoylation (-->3), then removal of 1-O-methoxyphenyl (right arrow4), and subsequent trichloroacetimidation afforded the 3-O-allyl-2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (5). Condensation of 5 with methyl 4,6-O-benzylidene-alpha-D-mannopyranoside (6) selectively afforded the (1-->3)-linked disaccharide 7. Benzoylation of 7, debenzylidenation, benzoylation, and deallylation gave methyl 2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-mannopyranoside (11) as the disaccharide acceptor. Coupling of 11 with (1-->2)-linked mannose disaccharide donor 17 or trisaccharide donor 21, followed by deacylation, furnished the target tetrasaccharide and pentasaccharide, respectively.  相似文献   

14.
We have identified a novel N -acetylgalactosaminyltransferase activity in lactating bovine mammary gland membranes. Acceptor specificity studies and analysis of products obtained in vitro by 400 MHz1H-NMR spectroscopy revealed that the enzyme catalyses the transfer of N - acetylgalactosamine (GalNAc) from UDP-GalNAc to acceptor substrates carrying a terminal, beta-linked N -acetylglucosamine (GlcNAc) residue and establishes a beta1-->4-linkage forming a GalNAcbeta1-->4GlcNAc ( N, N '-diacetyllactosediamine, lacdiNAc) unit. Therefore, the enzyme can be identified as a UDP-GalNAc:GlcNAcbeta-R beta1-->4-N- acetylgalactosaminyltransferase (beta4-GalNAcT). This enzyme resembles invertebrate beta4-GalNAcT as well as mammalian beta4- galactosyltransferase (beta4-GalT) in acceptor specificity. It can, however, be clearly distinguished from the pituitary hormone-specific beta4-GalNAcT by its incapability of acting with an elevated activity on a glycoprotein substrate carrying a hormone-specific peptide motif. Furthermore, the GalNAcT activity appeared not to be due to a promiscuous action of a beta4-GalT as could be demonstrated by comparing the beta4-GalNAcT and beta4-GalT activities of the mammary gland, bovine colostrum, and purified beta4-GalT, by competition studies with UDP-GalNAc and UDP-Gal, and by use of an anti-beta4-GalT polyclonal inhibiting antibody. Interestingly, under conditions where mammalian beta4-GalT forms with alpha-lactalbumin (alpha-LA) the lactose synthase complex, the mammary gland beta4-GalNAcT was similarly induced by alpha-LA to act on Glc with an increased efficiency yielding the lactose analog GalNAcbeta1-->4Glc. This enzyme thus forms the second example of a mammalian glycosyltransferase the specificity of which can be modified by this milk protein. It is proposed that the mammary gland beta4-GalNAcT functions in the synthesis of lacdiNAc- based, complex-type glycans frequently occurring on bovine milk glycoproteins. The action of this enzyme is to be considered when aiming at the production of properly glycosylated protein biopharmaceuticals in the milk of transgenic dairy animals.   相似文献   

15.
We have prepared a series of oligosaccharides to assess the substrate specificity of exo sulfatase activity in cultured human skin fibroblasts toward N-acetylglucosamine-6-sulfate residues present in keratan sulfate (KS) and heparan sulfate (HS). Non-reducing end alpha-GlcNAc-6-SO4 residues (derived from HS) were desulfated by a specific sulfatase that when deficient leads to the accumulation of HS and the expression of mucopolysaccharidosis type IIID (Sanfilippo D). Under the in vitro conditions studied there are two pathways for the degradation of oligosaccharides containing non-reducing end beta-GlcNAc-6-SO4 residues (derived from KS). In one pathway beta-N-acetylglucosaminidase produces GlcNAc-6-SO4 which is then desulfated. In the other pathway the beta-GlcNAc-6-SO4 residue is desulfated and then cleaved by the action of an beta-N-acetylglucosaminidase activity. There was no detectable beta-N-acetylglucosaminidase activity in fibroblasts from a Tay-Sachs patient to produce GlcNAc-6-SO4 from beta-GlcNAc-6-SO4 residues in KS of oligosaccharides. There was approximately 10% of this normal beta-N-acetylglucosaminidase activity in fibroblasts from a Sandhoff patient, suggesting the A and S forms may be involved in this reaction. Desulfation of GlcNAc-6-SO4 residues in KS, HS and the monosaccharide GlcNAc-6-SO4 was considerably reduced or not detected in fibroblasts from a Sanfilippo D patient. As KS was not detected in the urine of a Sanfilippo D patient we propose that KS degradation in these patients proceeds by the action of a beta-N-acetylglucosaminidase activity to produce GlcNAc-6-SO4 which is not further degraded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

17.
The cyanobacterial protein MVL inhibits HIV-1 envelope-mediated cell fusion at nanomolar concentrations by binding to high mannose N-linked carbohydrate on the surface of the envelope glycoprotein gp120. Although a number of other carbohydrate-binding proteins have been shown to inhibit HIV-1 envelope-mediated cell fusion, the specificity of MVL is unique in that its minimal target comprises the Man(alpha)(1-->6)Man(beta)(1-->4)GlcNAc(beta)(1-->4)GlcNAc tetrasaccharide core of oligomannosides. We have solved the crystal structures of MVL free and bound to the pentasaccharide Man3GlcNAc2 at 1.9- and 1.8-A resolution, respectively. MVL is a homodimer stabilized by an extensive intermolecular interface between monomers. Each monomer contains two structurally homologous domains with high sequence similarity connected by a short five-amino acid residue linker. Intriguingly, a water-filled channel is observed between the two monomers. Residual dipolar coupling measurements indicate that the structure of the MVL dimer in solution is identical to that in the crystal. Man3GlcNAc2 binds to a preformed cleft at the distal end of each domain such that a total of four independent carbohydrate molecules associate with each homodimer. The binding cleft provides shape complementarity, including the presence of a deep hydrophobic hole that accommodates the N-acetyl methyl at the reducing end of the carbohydrate, and specificity arises from 7-8 intermolecular hydrogen bonds. The structures of MVL and the MVL-Man3GlcNAc2 complex further our understanding of the molecular basis of high affinity and specificity in protein-carbohydrate recognition.  相似文献   

18.
Kim H  Jeong K  Cho KW  Paik SR  Jung S 《Carbohydrate research》2006,341(8):1011-1019
The conformational preferences of a cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum (OPGR), which is composed of 13 glucose units and linked entirely via beta-(1-->2) linkages excluding one alpha-(1-->6) linkage, were characterized by molecular dynamics simulations. Of the three force fields modified for carbohydrates that were applied to select a suitable one for the cyclic glucan, the carbohydrate solution force field (CSFF) was found to most accurately simulate the cyclic molecule. To determine the conformational characteristics of OPGR, we investigated the glycosidic dihedral angle distribution, fluctuation, and the potential energy of the glucan and constructed hypothetical cyclic (CYS13) and linear (LINEAR) glucans. All beta-(1-->2)-glycosidic linkages of OPGR adopted stable conformations, and the dihedral angles fluctuated in this energy region with some flexibility. However, despite the inherent flexibility of the alpha-(1-->6) linkage, the dihedral angles have no transition and are more rigid than that in a linear glucan. CYS13, which consists of only beta-(1-->2) linkages, is somewhat less flexible than other glycans, and one of its linkages adopts a higher energy conformation. In addition, the root-mean-square fluctuation of this linkage is lower than that of other linkages. Furthermore, the potential energy of glucans increases in the order of LINEAR, OPGR, and CYS13. These results provide evidence of the existence of conformational constraints in the cyclic glucan. The alpha-(1-->6)-glycosidic linkage can relieve this constraint more efficiently than the beta-(1-->2) linkage. The conformation of OPGR can reconcile the tendency for individual glycosidic bonds to adopt energetically favorable conformations with the requirement for closure of the macrocyclic ring by losing the inherent flexibility of the alpha-(1-->6)-glycosidic linkage.  相似文献   

19.
A study of bacterial surface oligosaccharides were investigated among different strains of Neisseria gonorrhoeae to correlate structural features essential for binding to the MAb 2C7. This epitope is widely expressed and conserved in gonococcal isolates, characteristics essential to an effective candidate vaccine antigen. Sample lipooligosaccharides (LOS), was prepared by a modification of the hot phenol-water method from which de-O-acetylated LOS and oligosaccharide (OS) components were analyzed by ES-MS-CID-MS and ES-MSnin a triple quadrupole and an ion trap mass spectrometer, respectively. Previously documented natural heterogeneity was apparent from both LOS and OS preparations which was admixed with fragments induced by hydrazine and mild acid treatment. Natural heterogeneity was limited to phosphorylation and antenni extensions to the alpha-chain. Mild acid hydrolysis to release OS also hydrolyzed the beta(1-->6) glycosidic linkage of lipid A. OS structures were determined by collisional and resonance excitation combined with MS and multistep MSn which provided sequence information from both neutral loss, and nonreducing terminal fragments. A comparison of OS structures, with earlier knowledge of MAb binding, enzyme treatment, and partial acid hydrolysis indicates a generic overlapping domain for 2C7 binding. Reoccurring structural features include a Hepalpha(1-->3)Hepbeta(1-->5)KDO trisaccharide core branched on the nonreducing terminus (Hep-2) with an alpha(1-->2) linked GlcNAc (gamma-chain), and an alpha-linked lactose (beta-chain) residue. From the central heptose (Hep-1), a beta(1-->4) linked lactose (alpha-chain), moiety is required although extensions to this residue appear unnecessary.   相似文献   

20.
Crystal structures of four complexes of sheep secretory glycoprotein (SPS-40) with N-acetylglucosamine oligosaccharides (GlcNAc(n), (n=3-6)) have been determined at moderate resolutions. The binding studies of SPS-40 have been carried out using fluorescence spectroscopy and Surface Plasmon Resonance (SPR). Structure determinations of four complexes have shown a novel binding pattern of GlcNAc(n) molecules to SPS-40. The results indicate that the most preferred recognition region in the carbohydrate binding groove in SPS-40 is at subsites -4 to -2 among which subsite -2 provides the maximum interactions with carbohydrate residues. These structures have also shown that the interactions of GlcNAc3 and GlcNAc4 do not perturb the protein structure and those of GlcNAc5 induce partial conformational changes while in the case of GlcNAc6 the partially closed binding groove opened up completely. As in other SPX-40 structures, SPS-40 structure contains three overlapping flexible surface segments, His188-His197, Phe202-Arg212 and Phe244-Pro260 with several charged residues protruding outwardly. It creates a cluster of positive charges with a flexible base thus indicating a good scope of promoting the intermolecular interactions. This protein is glycosylated at Asn39 and may recognize other receptors having sugar binding sites. It appears that SPS-40 may involve both carbohydrate and protein bindings. The systematic carbohydrate-binding studies and the detailed structural results of four protein-carbohydrate complexes provide an excellent insight into the mechanism of carbohydrate binding. These are the first studies of this kind on secretory glycoproteins and their interactions with carbohydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号