首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
A 25-year-old female was referred for short stature and joint deformities. Except for previous corneal transplantation, her medical history was unremarkable. Initial physical examination revealed the presence of a coarse facies, short neck, kyphosis, restricted joint movements and deformities, and cardiac murmur besides a normal intellect. Urine glycosaminoglycan levels were high, and blood enzyme assay indicated significantly low alpha-L-iduronidase levels. Mucopolysaccharidosis I (MPS I) was diagnosed and prompted the onset of enzyme replacement therapy (ERT), which significantly improved articular complaints, while cardiac pathology remained stable. At the eighteenth month of ERT, sudden vision loss developed. She spontaneously recovered her vision in a month. MPS I is a progressive disease, in which tissue accummulation of heparan and dermatan sulphate result from defective activity or lack of alpha-L-iduronidase. ERT in MPS I usually presents favourable outcomes or at least stabilization of symptoms. This present case qualifies as the first report ofa MPS I patient developing sudden vision loss under ERT. We suggest that further research studies are warranted for defining the efficiency and possible limitations of ERT.  相似文献   

2.
alpha-L-Iduronidase activity is deficient in mucopolysaccharidosis type I (MPS I; Hurler syndrome, Scheie syndrome) patients and results in the disruption of the sequential degradation of the glycosaminoglycans dermatan sulfate and heparan sulfate. A monoclonal antibody-based immunoquantification assay has been developed for alpha-L-iduronidase, which enables the detection of at least 16 pg alpha-L-iduronidase protein. Cultured human skin fibroblasts from 12 normal controls contained 17-54 ng alpha-L-iduronidase protein/mg extracted cell protein. Fibroblasts from 23 MPS I patients were assayed for alpha-L-iduronidase protein content. Fibroblast extracts from one MPS I patient contained at least six times the level of alpha-L-iduronidase protein for normal controls--but contained no associated enzyme activity--and is proposed to represent a mutation affecting the active site of the enzyme. Fibroblast extracts from 11 MPS I patients contained 0.05-2.03 ng alpha-L-iduronidase protein/mg extracted cell protein, whereas immunodetectable protein could not be detected in the other 11 patients. Four fibroblast extracts with no immunodetectable alpha-L-iduronidase protein had residual alpha-L-iduronidase activity, suggesting that the mutant alpha-L-iduronidase in cultured cells from these MPS I patients has been modified to mask or remove the epitopes detected by two monoclonal antibodies used in the quantification assay. Both the absence of immunoreactivity in a mild MPS I patient and high protein level in a severe MPS I patient present limitations to the use of immunoquantification analysis as a sole measure of patient phenotype. Enzyme kinetic analysis of alpha-L-iduronidase from MPS I fibroblasts revealed a number of patients with either abnormal substrate binding or catalytic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Mucopolysaccharidosis type I (MPS I) is a rare lysosomal disorder caused by deficiency of alpha-L-iduronidase. Few clinical trials have assessed the effect of enzyme replacement therapy (ERT) for this condition. We conducted an exploratory, open-label, non-randomized, multicenter cohort study of patients with MPS I. Data were collected from questionnaires completed by attending physicians at the time of diagnosis (T1; n = 34) and at a median time of 2.5 years later (T2; n = 24/34). The 24 patients for whom data were available at T2 were allocated into groups: A, no ERT (9 patients; median age at T1 = 36 months; 6 with severe phenotype); B, on ERT (15 patients; median age at T1 = 33 months; 4 with severe phenotype). For all variables in which there was no between-group difference at baseline, a delta of ≥ ± 20% was considered clinically relevant. The following clinically relevant differences were identified in group B in T2: lower rates of mortality and reported hospitalization for respiratory infection; lower frequency of hepatosplenomegaly; increased reported rates of obstructive sleep apnea syndrome and hearing loss; and stabilization of gibbus deformity. These changes could be due to the effect of ERT or of other therapies which have also been found more frequently in group B. Our findings suggest MPS I patients on ERT also receive a better overall care. ERT may have a positive effect on respiratory morbidity and overall mortality in patients with MPS I. Additional studies focusing on these outcomes and on other therapies should be performed.  相似文献   

4.
Mucopolysaccharidosis type I (MPS I: McKusick 25280) is a clinically heterogenous lysosomal storage disorder which is caused by a variable deficiency in alpha-L-iduronidase activity (alpha-L-iduronide iduronohydrolase, EC 3.2.1.76). Cultured fibroblasts from an MPS I patient (cell line 2827) with a severe clinical phenotype (Hurler syndrome) have been characterized using immunochemical and biochemical techniques. Using a specific immunoquantification assay, we have demonstrated that cell line 2827 had an alpha-L-iduronidase protein content (189 ng/mg of extracted cell protein) at least six times greater than the mean level found in normal control fibroblasts (30 ng/mg of extracted cell protein). This was the only MPS I cell line, from a group of 23 MPS I patients, that contained greater than 7% of the mean level of alpha-L-iduronidase protein detected in normal controls. Cell line 2827 had very low alpha-L-iduronidase activity toward the fluorogenic substrate 4-methylumbelliferyl-alpha-L-iduronide, and a radiolabeled disaccharide substrate derived from heparin. Maturation studies of alpha-L-iduronidase in cell line 2827 showed apparently normal levels of alpha-L-iduronidase synthesis with delayed processing to the mature form. Subcellular fractionation experiments demonstrated alpha-L-iduronidase protein in lysosomal-enriched fractions isolated from cell line 2827, suggesting a normal cell distribution and supporting the proposed delayed processing. It is proposed that the MPS I patient described has an alpha-L-iduronidase gene mutation which affects both the active site and post-translational processing of the enzyme. This mutation must be structurally conservative because it does not result in instability either during maturation or in the lysosome.  相似文献   

5.
Mucopolysaccharidosis type I (MPS I) is a progressive disorder caused by deficiency of α-L-iduronidase (IDUA), which leads to storage of heparan and dermatan sulphate. It is suggested that early enzyme replacement therapy (ERT) leads to better outcomes, although many patients are diagnosed late and don’t receive immediate treatment. This study aims to evaluate the effects of late onset ERT in a MPS I murine model. MPS I mice received treatment from 6 to 8 months of age (ERT 6–8mo) with 1.2mg laronidase/kg every 2 weeks and were compared to 8 months-old wild-type (Normal) and untreated animals (MPS I). ERT was effective in reducing urinary and visceral GAG to normal levels. Heart GAG levels and left ventricular (LV) shortening fraction were normalized but cardiac function was not completely improved. While no significant improvements were found on aortic wall width, treatment was able to significantly reduce heart valves thickening. High variability was found in behavior tests, with treated animals presenting intermediate results between normal and affected mice, without correlation with cerebral cortex GAG levels. Cathepsin D activity in cerebral cortex also did not correlate with behavior heterogeneity. All treated animals developed anti-laronidase antibodies but no correlation was found with any parameters analyzed. However, intermediary results from locomotion parameters analyzed are in accordance with intermediary levels of heart function, cathepsin D, activated glia and reduction of TNF-α expression in the cerebral cortex. In conclusion, even if started late, ERT can have beneficial effects on many aspects of the disease and should be considered whenever possible.  相似文献   

6.
alpha-L-Iduronidase is a lysosomal enzyme, the deficiency of which causes mucopolysaccharidosis I (MPS I); a canine MPS I colony has been bred to test therapeutic intervention. The enzyme was purified to apparent homogeneity from canine testis and found to consist of two electrophoretically separable proteins that had common internal peptides but differed at their amino termini. A 57-base oligonucleotide, corresponding to the most probable codons of the longest peptide, was used to screen a canine testis cDNA library. Three cDNAs were isolated, two of which lacked the 5'-end whereas the third was full-length except for a small internal deletion. The composite sequence encodes an open reading frame of 655 amino acids that includes all sequenced peptides. The amino terminus of the larger protein, glutamic acid 26, is at the predicted signal peptide cleavage site, whereas the amino terminus of the smaller protein is leucine 106. There are six potential N-glycosylation sites and a non-canonical polyadenylation signal, CTTAAA. A search of GenBank showed that the amino acid sequence of alpha-L-iduronidase has similarity to that of a bacterial beta-xylosidase. A full-length cDNA corresponding to the composite sequence was constructed (pcIdu) and inserted into the pSVL expression vector (pSVcIdu). Two days after Cos-1 cells were transfected with pSVcIdu, their intracellular and secreted level of alpha-L-iduronidase activity has increased 8- and 22-fold, respectively, over the endogenous activity. Fibroblasts of MPS I dogs, which have no alpha-L-iduronidase activity, lacked the normal alpha-L-iduronidase mRNA of 2.2 kilobases and contained instead a trace amount of a 2.8-kilobase species. Isolation and characterization of an expressible alpha-L-iduronidase cDNA represents the first step toward mutation analysis and replacement therapy.  相似文献   

7.
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is an X-linked, recessive, lysosomal storage disorder caused by deficiency of iduronate-2-sulfatase. Early bone involvement leads to decreased growth velocity and short stature in nearly all patients. Our analysis aimed to investigate the effects of enzyme replacement therapy (ERT) with idursulfase (Elaprase) on growth in young patients with mucopolysaccharidosis type II. Analysis of longitudinal anthropometric data of MPS II patients (group 1, n = 13) who started ERT before 6 years of age (range from 3 months to 6 years, mean 3.6 years, median 4 years) was performed and then compared with retrospective analysis of data for MPS II patients naïve to ERT (group 2, n = 50). Patients in group 1 received intravenous idursulfase at a standard dose of 0.58 mg/kg weekly for 52–288 weeks. The course of average growth curve for group 1 was very similar to growth pattern in group 2. The average value of body height in subsequent years in group 1 was a little greater than in group 2, however, the difference was not statistically significant. In studied patients with MPS II, idursulfase did not appear to alter the growth patterns.  相似文献   

8.
Genetic deficiency of acid alpha-glucosidase (GAA) results in glycogen storage disease type II. To investigate whether we could generate a functional recombinant human GAA protein for future enzyme replacement therapy, we subcloned the GAA cDNA into the bacterial expression plasmid pMaI and analyzed the recombinant protein produced. This nonglycosylated recombinant human GAA was found to be antigenic by reacting with polyclonal rabbit antibody to human placental GAA using ELISA and Western techniques. However, the protein was not enzymatically active, suggesting that glycosylation may play a role in enzymatic function.  相似文献   

9.
Mucopolysaccharidosis type I (MPS I; McKusick 25280) results from a deficiency in alpha-L-iduronidase activity. Using a bioinformatics approach, we have previously predicted the putative acid/base catalyst and nucleophile residues in the active site of this human lysosomal glycosidase to be Glu182 and Glu299, respectively. To obtain experimental evidence supporting these predictions, wild-type alpha-L-iduronidase and site-directed mutants E182A and E299A were individually expressed in Chinese hamster ovary-K1 cell lines. We have compared the synthesis, processing, and catalytic properties of the two mutant proteins with wild-type human alpha-L-iduronidase. Both E182A and E299A transfected cells produced catalytically inactive human alpha-L-iduronidase protein at levels comparable to the wild-type control. The E182A protein was synthesized, processed, targeted to the lysosome, and secreted in a similar fashion to wild-type alpha-L-iduronidase. The E299A mutant protein was also synthesized and secreted similarly to the wild-type enzyme, but there were alterations in its rate of traffic and proteolytic processing. These data indicate that the enzymatic inactivity of the E182A and E299A mutants is not due to problems of synthesis/folding, but to the removal of key catalytic residues. In addition, we have identified a MPS I patient with an E182K mutant allele. The E182K mutant protein was expressed in CHO-K1 cells and also found to be enzymatically inactive. Together, these results support the predicted role of E182 and E299 in the catalytic mechanism of alpha-L-iduronidase and we propose that the mutation of either of these residues would contribute to a very severe clinical phenotype in a MPS I patient.  相似文献   

10.
11.
Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients' clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers.  相似文献   

12.
Mucopolysaccharidosis type I (MPS I; McKusick 25280; Hurler syndrome, Hurler-Scheie syndrome and Scheie syndrome) is caused by a deficiency in the lysosomal hydrolase, alpha-L-iduronidase (EC 3.2.1.76). MPS I patients present within a clinical spectrum bounded by the extremes of Hurler and Scheie syndromes. The alpha-L-iduronidase missense mutations R89Q and R89W were investigated and altered an important arginine residue proposed to be a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. The R89Q alpha-L-iduronidase mutation was shown to result in a reduced level of alpha-L-iduronidase protein (< or =10% of normal control) compared to a normal control level of alpha-L-iduronidase protein that was detected for the R89W alpha-L-iduronidase mutation. When taking into account alpha-L-iduronidase specific activity, the R89W mutation had a greater effect on alpha-L-iduronidase activity than the R89Q mutation. However, overall the R89W mutation produced more residual alpha-L-iduronidase activity than the R89Q mutation. This was consistent with MPS I patients, with an R89W allele, having a less severe clinical presentation compared to MPS I patients with either a double or single allelic R89Q mutation. The effects of the R89Q and R89W mutations on enzyme activity supported the proposed role of R89 as a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase.  相似文献   

13.
Enzyme replacement therapy (ERT) has been shown to be effective at reducing the accumulation of undegraded substrates in lysosomal storage diseases. Most ERT studies have been performed with recombinant proteins that are mixtures of phosphorylated and non-phosphorylated enzyme. Because different cell types use different receptors to take up phosphorylated or non-phosphorylated enzyme, it is difficult to determine which form of enzyme contributed to the clinical response. Here we compare the uptake, distribution, and efficacy of highly phosphorylated and non-phosphorylated beta-glucuronidase (GUSB) in the MPS VII mouse. Highly phosphorylated murine GUSB was efficiently taken up by a wide range of tissues. In contrast, non-phosphorylated murine GUSB was taken up primarily by tissues of the reticuloendothelial (RE) system. Although the tissue distribution was different, the half-lives of both enzymes in any particular tissue were similar. Both preparations of enzyme were capable of preventing the accumulation of lysosomal storage in cell types they targeted. An important difference in clinical efficacy emerged in that phosphorylated GUSB was more efficient than non-phosphorylated enzyme at preventing the hearing loss associated with this disease. These data suggest that both forms of enzyme contribute to the clinical responses of ERT in MPS VII mice but that enzyme preparations containing phosphorylated GUSB are more broadly effective than non-phosphorylated enzyme.  相似文献   

14.
Mucopolysaccharidoses (MPS) are rare genetic diseases caused by the deficiency of one of the lysosomal enzymes involved in the glycosaminoglycan (GAG) breakdown pathway. This metabolic block leads to the accumulation of GAG in various organs and tissues of the affected patients, resulting in a multisystemic clinical picture, sometimes including cognitive impairment. Until the beginning of the XXI century, treatment was mainly supportive. Bone marrow transplantation improved the natural course of the disease in some types of MPS, but the morbidity and mortality restricted its use to selected cases. The identification of the genes involved, the new molecular biology tools and the availability of animal models made it possible to develop specific enzyme replacement therapies (ERT) for these diseases. At present, a great number of Brazilian medical centers from all regions of the country have experience with ERT for MPS I, II, and VI, acquired not only through patient treatment but also in clinical trials. Taking the three types of MPS together, over 200 patients have been treated with ERT in our country. This document summarizes the experience of the professionals involved, along with the data available in the international literature, bringing together and harmonizing the information available on the management of these severe and progressive diseases, thus disclosing new prospects for Brazilian patients affected by these conditions.  相似文献   

15.
Deswal R  Singh R  Lynn AM  Frank R 《Peptides》2005,26(3):395-404
Glyoxalase I activity has been shown to be directly related to cancer and its inhibitors have been used as anti-cancer drugs. Immunochemical studies have shown immunochemical relatedness among animal and plant glyoxalase I, but its potential application for biomedical research has not been investigated. In order to understand the conserved immunochemical regions of the protein and to determine probable immunomodulation targets, a cellulose-bound scanning peptide library for Brassica juncea glyoxalase I was made using the spot synthesis method. Immuno-probing of the library, using B. juncea anti-glyoxalase I monospecific polyclonal antibodies, revealed three immunodominant regions, epitope I, II, and III. In the homology model of B. juncea glyoxalase I generated by threading its sequence onto the human glyoxalase I, the high accessible surface area and the hydrophilic nature of the epitopes confirmed their surface localization and hence their accessibility for antigen-antibody interaction. Epitopes I and II were specific to B. juncea glyoxalase I. Localizing the epitopes on available glyoxalase I sequences showed that epitope III containing the active site region was conserved across phyla. Therefore, this could be used as a potential immunomodulation target for cancer therapy. Moreover, as the most immunogenic epitopes were mapped on the surface of the protein, this method could be used to discover potential therapeutic targets. It is a simple and fast approach for such investigations. This study, to our knowledge, is the first in epitope mapping of glyoxalase I and has great biomedical potential.  相似文献   

16.

Background

Although enzyme replacement therapy (ERT) is available for several lysosomal storage disorders, the benefit of this treatment to the skeletal system is very limited. Our previous work has shown the importance of the Toll-like receptor 4/TNF-alpha inflammatory pathway in the skeletal pathology of the mucopolysaccharidoses (MPS), and we therefore undertook a study to examine the additive benefit of combining anti-TNF-alpha therapy with ERT in a rat model of MPS type VI.

Methodology/Principal Findings

MPS VI rats were treated for 8 months with Naglazyme® (recombinant human N-acetyl-galactosamine-4-sulfatase), or by a combined protocol using Naglazyme® and the rat-specific anti-TNF-alpha drug, CNTO1081. Both protocols led to markedly reduced serum levels of TNF-alpha and RANKL, although only the combined treatment reduced TNF-alpha in the articular cartilage. Analysis of cultured articular chondrocytes showed that the combination therapy also restored collagen IIA1 expression, and reduced expression of the apoptotic marker, PARP. Motor activity and mobility were improved by ERT, and these were significantly enhanced by combination treatment. Tracheal deformities in the MPS VI animals were only improved by combination therapy, and there was a modest improvement in bone length. Ceramide levels in the trachea also were markedly reduced. MicroCT analysis did not demonstrate any significant positive effects on bone microarchitecture from either treatment, nor was there histological improvement in the bone growth plates.

Conclusions/Significance

The results demonstrate that combining ERT with anti-TNF- alpha therapy improved the treatment outcome and led to significant clinical benefit. They also further validate the usefulness of TNF-alpha, RANKL and other inflammatory molecules as biomarkers for the MPS disorders. Further evaluation of this combination approach in other MPS animal models and patients is warranted.  相似文献   

17.
The Eastern equine encephalitis virus (EEEV) E2 protein is one of the main targets of the protective immune response against EEEV. Although some efforts have done to elaborate the structure and immune molecular basis of Alphaviruses E2 protein, the published data of EEEV E2 are limited. Preparation of EEEV E2 protein-specific antibodies and define MAbs-binding epitopes on E2 protein will be conductive to the antibody-based prophylactic and therapeutic and to the study on structure and function of EEEV E2 protein. In this study, 51 EEEV E2 protein-reactive monoclonal antibodies (MAbs) and antisera (polyclonal antibodies, PAbs) were prepared and characterized. By pepscan with MAbs and PAbs using enzyme-linked immunosorbent assay, we defined 18 murine linear B-cell epitopes. Seven peptide epitopes were recognized by both MAbs and PAbs, nine epitopes were only recognized by PAbs, and two epitopes were only recognized by MAbs. Among the epitopes recognized by MAbs, seven epitopes were found only in EEEV and two epitopes were found both in EEEV and Venezuelan equine encephalitis virus (VEEV). Four of the EEEV antigenic complex-specific epitopes were commonly held by EEEV subtypes I/II/III/IV (1-16aa, 248-259aa, 271-286aa, 321-336aa probably located in E2 domain A, domain B, domain C, domain C, respectively). The remaining three epitopes were EEEV type-specific epitopes: a subtype I-specific epitope at amino acids 108–119 (domain A), a subtype I/IV-specific epitope at amino acids 211–226 (domain B) and a subtype I/II/III-specific epitope at amino acids 231–246 (domain B). The two common epitopes of EEEV and VEEV were located at amino acids 131–146 and 241–256 (domain B). The generation of EEEV E2-specific MAbs with defined specificities and binding epitopes will inform the development of differential diagnostic approaches and structure study for EEEV and associated alphaviruses.  相似文献   

18.
Anti-idiotype (Id) antibodies can be used to induce specific cellular immune responses against tumor antigens, but the mechanism of antigenicity is not always clear. We previously reported an anti-Id antibody, 6B11, which mimics human ovarian cancer associated antigen OC166-9. To explore the molecular basis of cellular immune response induced by 6B11, a panel of peptides derived from complementarity determining region (CDR) of 6B11 were synthesized. After a series of immunologic experiments, we found that the light chain CDR3 peptide and heavy chain CDR3 peptide were the MHC class I and class II epitopes of 6B11, respectively. The combination of MHC class I and class II epitopes is more effective than 6B11 in inducing specific cellular immune response against ovarian cancer. Our study provided the structural basis of antigenicity of 6B11. The identification of antigen-specific T cell eptitopes in 6B11 should facilitate the design of epitope-based vaccine against human ovarian cancer.  相似文献   

19.
Location of epitopes on Campylobacter jejuni flagella.   总被引:18,自引:9,他引:9       下载免费PDF全文
Flagella were isolated from strains of Campylobacter jejuni belonging to different heat-labile serogroups and from a strain of Campylobacter fetus, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the flagellin molecular weights (Mr) were approximately 62,000. The flagellins were cleaved by hydrolysis with cyanogen bromide, and sodium dodecyl sulfate-urea peptide gel electrophoresis showed that the C. jejuni flagellins were structurally similar, and differed from C. fetus flagellin. Immunochemical analysis by Western blotting, enzyme-linked immunosorbent assay, immune electron microscopy, and immunoprecipitation with polyclonal and monoclonal antibodies revealed the presence of both internal and surface-exposed epitopes. The internal epitopes were antigenically cross-reactive and linear, and in the case of C. jejuni flagellin were located on cyanogen bromide peptides of apparent Mr 22,400 and 11,000. Antigenically cross-reactive epitopes were also present on an Mr 43,000 cyanogen bromide peptide of C. fetus flagellin. The Mr 22,400 peptide of C. jejuni VC74 flagellin also carried closely positioned internal linear epitopes for two monoclonal antibodies. One epitope was strain specific, while the other was shared by some but not all Campylobacter flagellins. The flagella of C. jejuni VC74 also displayed both surface-exposed antigenically cross-reactive and surface-exposed serospecific epitopes. Both linear and conformational epitopes contributed to the serospecificity of C. jejuni VC74 flagella, and a linear serospecific epitope was located on a cyanogen bromide peptide of apparent Mr 4,000.  相似文献   

20.
Cellulases from Trichoderma reesei form an enzyme group with a common structural organization. Each cellulase enzyme is composed of two functional domains, the core region containing the active site and the cellulose-binding domain (CBD). To facilitate the specific detection of each domain, monoclonal antibodies (mAb) against cellobiohydrolase I (CBHI), cellobiohydrolase II (CBHII) and endoglucanase I (EGI) were produced. Five mAb were obtained against CBHI, ten against CBHII and eight against EGI. The location of the antigenic epitope for each antibody was mapped by allowing the antibodies to react with truncated cellulases, synthesized from deleted cDNA in Saccharomyces cerevisiae. Proteolytic fragments of Trichoderma cellulases, obtained by papain digestion, were used to confirm the results. Specific antibodies were detected against the core and the CBD epitopes for all three cellulases. Using the truncated enzymes, it was possible to locate the epitopes to a reasonably short region within the protein. To obtain a quantitative assay for each enzyme, a specific mAb against each antigen was chosen, based on the affinity to the corresponding antigen on Western-blot staining and on filter blots of the cellulolytic yeasts. The mAb were used to quantitative the corresponding enzymes in T. reesei culture medium. Specific quantitation of each cellulase enzyme has not been possible by biochemical assays or using polyclonal antibodies, due to their cross-reactions. Now, these mAb can be specifically used to recognize and quantitate different domains of these three important cellulolytic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号