首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recombinant human tissue-type plasminogen activator derivative (r-PA), fused with thioredoxin (Trx), was expressed in Escherichia coli. The resultant fusion protein, Trx-r-PA, was almost completely in the form of inclusion bodies and without activity. Different refolding strategies were investigated including different post-treatment of solubilized Trx-r-PA inclusion bodies, on-column refolding by size-exclusion chromatography (SEC) using three gel types (Sephacryl S-200, S-300 and S-400), refolding by Sephacryl S-200 with a urea gradient and two-stage temperature control in refolding. An optimized on-column refolding process for Trx-r-PA inclusion bodies was established. The collected Trx-r-PA inclusion bodies were dissolved in 6 m guanidine hydrochloride (Gdm·HCl), and the denatured protein was separated from dithiothreitol (DTT) and Gdm·HCl with a G25 column and simultaneously dissolved in 8 m urea containing oxidized glutathione (GSSG). Finally a refolding of Trx-r-PA protein on Sephacryl S-200 column with a decreasing urea gradient combined with two-stage temperature control was employed, and the activity recovery of refolded protein was increased from 3.6 to 13.8% in comparison with the usual dilution refolding. Revisions requested 31 October 2005; Revisions received 20 December 2005  相似文献   

2.
High hydrostatic pressure (HHP)-mediated solubilization and refolding of five inclusion bodies (IBs) produced from bacteria, three gram-negative binding proteins (GNBP1, GNBP2, and GNBP3) from Drosophila, and two phosphatases from human were investigated in combination of a redox-shuffling agent (2 mM DTT and 6 mM GSSG) and various additives. HHP (200 MPa) combined with the redox-shuffling agent resulted in solubilization yields of approximately 42%-58% from 1 mg/mL of IBs. Addition of urea (1 and 2 M), 2.5 M glycerol, L-arginine (0.5 M), Tween 20 (0.1 mM), or Triton X-100 (0.5 mM) significantly enhanced the solubilization yield for all proteins. However, urea, glycerol, and nonionic surfactants populated more soluble oligomeric species than monomeric species, whereas arginine dominantly induced functional monomeric species (approximately 70%-100%) to achieve refolding yields of approximately 55%-78% from IBs (1 mg/mL). Our results suggest that the combination of HHP with arginine is most effective in enhancing the refolding yield by preventing aggregation of partially folded intermediates populated during the refolding. Using the refolded proteins, the binding specificity of GNBP2 and GNBP3 was newly identified the same as with that of GNBP1, and the enzymatic activities of the two phosphatases facilitates their further characterization.  相似文献   

3.

Background

Proteins in inclusion bodies (IBs) present native-like secondary structures. However, chaotropic agents at denaturing concentrations, which are widely used for IB solubilization and subsequent refolding, unfold these secondary structures. Removal of the chaotropes frequently causes reaggregation and poor recovery of bioactive proteins. High hydrostatic pressure (HHP) and alkaline pH are two conditions that, in the presence of low level of chaotropes, have been described as non-denaturing solubilization agents. In the present study we evaluated the strategy of combination of HHP and alkaline pH on the solubilization of IB using as a model an antigenic form of the zika virus (ZIKV) non-structural 1 (NS1) protein.

Results

Pressure-treatment (2.4?kbar) of NS1-IBs at a pH of 11.0 induced a low degree of NS1 unfolding and led to solubilization of the IBs, mainly into monomers. After dialysis at pH?8.5, NS1 was refolded and formed soluble oligomers. High (up to 68?mg/liter) NS1 concentrations were obtained by solubilization of NS1-IBs at pH?11 in the presence of arginine (Arg) with a final yield of approximately 80% of total protein content. The process proved to be efficient, quick and did not require further purification steps. Refolded NS1 preserved biological features regarding reactivity with antigen-specific antibodies, including sera of ZIKV-infected patients. The method resulted in an increase of approximately 30-fold over conventional IB solubilization-refolding methods.

Conclusions

The present results represent an innovative non-denaturing protein refolding process by means of the concomitant use of HHP and alkaline pH. Application of the reported method allowed the recovery of ZIKV NS1 at a condition that maintained the antigenic properties of the protein.
  相似文献   

4.
Inclusion bodies (IBs) are insoluble aggregates of misfolded protein in Escherichia coli. Against the outdated belief that the production of IBs should be avoided during recombinant protein production, quite a number of recombinant products are currently produced as IBs, which are then processed to give correctly folded and soluble product. However, this processing is quite cumbersome comprising IB wash, IB solubilization and refolding. To date, IB processing often happens rather uncontrolled and relies on empiricism rather than sound process understanding. In this mini review we describe current efforts to introduce more monitoring and control in IB processes, focusing on the refolding step, and thus generate process understanding and knowledge.  相似文献   

5.
Mature prion protein (PrP) is a 208-residue polypeptide that contains a single disulfide bond. We report an alternative method to purify recombinant mouse PrP produced in Escherichia coli. Bacterial inclusion bodies were solubilized in a buffer containing 2 M urea at pH 12.5. The solubilized protein was rapidly purified on a nickel affinity column without a chaotrope gradient, followed by ion-exchange chromatography. The yield and purity of PrP produced by this alternative approach was similar to that obtained using a conventional solubilization and on-column refolding protocol. Recombinant PrP produced using the non-reducing purification protocol is properly folded, as determined by circular dichroism, and a competent substrate for amyloid fibril formation, as determined by Thoflavin-T dye binding assays. In summary, this report describes a rapid method for producing properly folded recombinant PrP without reducing agents or a chaotrope gradient.  相似文献   

6.
Fusion ferritin (heavy chain ferritin, FH+light chain ferritin, FL), an iron-binding protein, was primarily purified from recombinantEscherichia coli by two-step sonications with urea [1]. Unfolded ferritin was refolded by gel filtration chromatography (GFC) with refolding enhancer, where 50 mM Na-phosphate (pH 7.4) buffer containing additives such as Tween 20, PEG, andl-arginine was used. Ferritin is a multimeric protein that contains approximately 20 monomeric units for full activity. Fusion ferritin was expressed in the form of inclussion bodies (Ibs). The IBs were initially solubilized in 4 M urea denaturant. The refolding process was then performed by decreasing the urea concentration on the GFC column to form protein multimers. The combination of the buffer-exchange effect of GFC and the refolding enhancers in refolding buffer resulted in an efficient route for producing properly folded fusion ferritin.  相似文献   

7.
A size exclusion chromatography (SEC) process, in the presence of denaturant in the refolding buffer was developed to refold recombinant human interferon-γ (rhIFN-γ) at a high concentration. The rhIFN-γ was overexpressed inE. coli, resulting in the formation of inactive inclusion bodies (IBs). The IBs were first solubilized in 8 M urea as the denaturant, and then the refolding process performed by decreasing the urea concentration on the SEC column to suppress protein aggregation. The effects of the urea concentration, protein loading mode and column height during the refolding step were investigated. The combination of the bufferexchange effect of SEC and a moderate urea concentration in the refolding buffer resulted in an efficient route for producing correctly folded rhIFN-γ, with protein recovery of 67.1% and specific activity up to 1.2×107 IU/mg.  相似文献   

8.
The renaturation efficiency of recombinant prochymosin depends on not only the renaturation condi-tions but also the solubilization (denaturation) conditions. Compared with pH 8, solubilization of prochymosin-contain-ing inclusion bodies at pH 11 (8 mol/L urea) results in onefold increase of renaturation efficiency ( ~ 40% vs. ~ 20 % ). Alkaline pH facilitates the solubilization of inclusion bodies via the breakage of intermolecular disulfide bonds. Moreover, alkaline pH renders prochymosin molecules to be in a more reduced and more unfolded state which undergoes refolding readily.  相似文献   

9.
The effects of several variables on the refolding of hen egg white lysozyme have been studied. Lysozyme was denatured in both urea, and guanidine hydrochloride (GuHCl), and batch refolded by dilution (100 to 1000 fold) into 0.1M Tris-HCl, pH 8.2, 1 mM EDTA, 3 mM reduced glutathione and 0.3 mM oxidised glutathione. Refolding was found to be sensitive to temperature, with the highest refolding yield obtained at 50°C. The apparent activation energy for lysozyme refolding was found to be 56 kJ/mol. Refolding by dilution results in low concentrations of both denaturant and reducing agent species. It was found that the residual concentrations obtained during dilution (100-fold dilution: [GuHCl]=0.06 mM, [DTT]=0.15 mM) were significant and could inhibit lysozyme refolding. This study has also shown that the initial protein concentration (1–10 mg/mL) that is refolded is an important parameter. In the presence of residual GuHCl and DTT, higher refolding yields were obtained when starting from higher initial lysozyme concentrations. This trend was reversed when residual denaturant components were removed from the refolding buffer.  相似文献   

10.
We have investigated the effect of changing the column diameter and length on the size exclusion chromatography (SEC) refolding of beta-lactamase from Escherichia coli-derived inclusion bodies (IBs). Inclusion bodies were recovered and solubilised in 6 M GdnHCl and 5 mM DTT. Up to 16 mg of denatured, solubilised beta-lactamase was loaded onto size exclusion columns packed with Sephacryl S-300 media (fractionation range: 10(4)-1.5 x 10(6) Da). beta-Lactamase was refolded by eluting the loaded sample with 1 M urea in 0.05 M phosphate buffer, pH 7 at 23 degrees C. The following columns were studied: 26 x 400, 16 x 400 and 26 x 200 mm, with a range of mobile phase flow rates from 0.33 to 4.00 ml/min. beta-Lactamase was successfully refolded in all three columns and at all flow rates studied. The beta-lactamase activity peak coincided with the major protein peak. Reducing the column diameter had little effect on refolding performance. The enzyme activity recovered was relatively independent of the mobile phase linear velocity. Reducing the column length gave a poorer resolution of the protein peaks, but the enzyme activity peaks were well resolved. Calculation of the partition coefficients for beta-lactamase activity showed that the 26 x 400 column gave the greatest refolding performance.  相似文献   

11.
Inclusion bodies (IBs) are commonly formed in Escherichiacoli due to over expression of recombinant proteins in non-native state. Isolation, denaturation and refolding of these IBs is generally performed to obtain functional protein. However, during this process IBs tend to form non-specific interactions with sheared nucleic acids from the genome, thus getting carried over into downstream processes. This may hinder the refolding of IBs into their native state. To circumvent this, we demonstrate a methodology termed soni-removal which involves disruption of nucleic acid–inclusion body interaction using sonication; followed by solvent based separation. As opposed to conventional techniques that use enzymes and column-based separations, soni-removal is a cost effective alternative for complete elimination of buried and/or strongly bound short nucleic acid contaminants from IBs.  相似文献   

12.
Aggregation is a serious obstacle for recovery of biologically active heterologous proteins from inclusion bodies (IBs) produced by recombinant bacteria. E. coli transformed with a vector containing the cDNA for Bothropstoxin-1 (BthTx-1) expressed the recombinant product as IBs. In order to obtain the native toxin, insoluble and aggregated protein was refolded using high hydrostatic pressure (HHP). IBs were dissolved and refolded (2 kbar, 16 h), and the effects of protein concentration, as well as changes in ratio and concentration of oxido-shuffling reagents, guanidine hydrochloride (GdnHCl), and pH in the refolding buffer, were assayed. A 32% yield (7.6 mg per liter of bacterial culture) in refolding of the native BthTx-1 was obtained using optimal conditions of the refolding buffer (Tris–HCl buffer, pH 7.5, containing 3 mM of a 2:3 ratio of GSH/GSSG, and 1 M GdnHCl). Scanning electron microscopy (SEM) showed that that disaggregation of part of IBs particles occurred upon compression and that the morphology of the remaining IBs, spherical particles, was not substantially altered. Dose-dependent cytotoxic activity of high-pressure refolded BthTx-1 was shown in C2C12 muscle cells.  相似文献   

13.
Japanese encephalitis virus (JEV) is the most important cause of encephalitis in most Asian regions. JEV envelope domain III (JEV EDIII) protein is involved in binding to host receptors, and it contains specific epitopes that elicit virus-neutralizing antibodies. A highly immunogenic, recombinant JEV EDIII protein was expressed in Escherichia coli. In order to take this vaccine candidate for further studies, recombinant JEV EDIII protein was produced employing a pilot-scale fermentation process. Recombinant JEV EDIII protein expressed as inclusion bodies (IBs) was solubilized in 8?M urea and renatured by on-column refolding protocol in the presence of glycerol. A three-step purification process comprising of affinity chromatography, ion-exchange chromatography (IEX) based on salt, and IEX based on pH was developed. About ~124?mg of highly purified and biologically active EDIII protein was obtained from 100?g of biomass. Biological function of the purified EDIII protein was confirmed by their ability to generate EDIII-specific antibodies in mice that could neutralize the virus. These findings suggest that recombinant JEV EDIII protein in combination with compatible adjuvant is highly immunogenic and elicit high-titer neutralizing antibodies. Thus, recombinant JEV EDIII protein produced at large scale can be a potential vaccine candidate.  相似文献   

14.
The overexpression of recombinant proteins in Escherichia coli leads in most cases to their accumulation in the form of insoluble aggregates referred to as inclusion bodies (IBs). To obtain an active product, the IBs must be solubilized and thereafter the soluble monomeric protein needs to be refolded. In this work we studied the solubilization behavior of a model-protein expressed as IBs at high protein concentrations, using a statistically designed experiment to determine which of the process parameters, or their interaction, have the greatest impact on the amount of soluble protein and the fraction of soluble monomer. The experimental methodology employed pointed out an optimum balance between maximum protein solubility and minimum fraction of soluble aggregates. The optimized conditions solubilized the IBs without the formation of insoluble aggregates; moreover, the fraction of soluble monomer was approximately 75% while the fraction of soluble aggregates was approximately 5%. Overall this approach guarantees a better use of the solubilization reagents, which brings an economical and technical benefit, at both large and lab scale and may be broadly applicable for the production of recombinant proteins.  相似文献   

15.
TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) was produced mainly as inclusion bodies (IBs) by recombinant Escherichia coli with a temperature-inducible expression system. The yield of TRAIL type 2 IBs at higher preinduction specific growth rate (mu = 0.15 h-1) was higher than that of TRAIL type 1 IBs at lower preinduction specific growth rate (mu = 0.05 h-1). With the same optimized refolding protocols, two types of IBs exhibited different refolding features. Refolded type 1 IBs had higher recovery of more than 80% compared with type 2 IBs (57-63%). By the measurements of fluorescence and CD spectroscopy, type 1 TRAIL IBs dissolved by urea appeared to be a closer secondary structure to the native TRAIL than type 2. Furthermore, with trypsin treatment, the striking decrease in stability of type 1 IBs against protease digestion cannot be attributed to their small size particles observed by scanning electron microscope and probably depend on different protein structure properties between the two IBs. Different properties of inclusion bodies were mainly influenced by different physiological states of the cells just prior to the induction.  相似文献   

16.
Protein refolding is still a puzzle in the production of recombinant proteins expressed as inclusion bodies (IBs) in Escherichia coli. Gradient size exclusion chromatography (SEC) is a recently developed method for refolding of recombinant proteins in IBs. In this study, we used a decreasing urea gradient SEC for the refolding of recombinant human interferon ??-2a (rhIFN??-2a) which was overexpressed as IBs in E. coli. In chromatographic process, the denatured rhIFN??-2a would pass along the 8.0?C3.0 M urea gradient and refold gradually. Several operating conditions, such as final concentration of urea along the column, gradient length, the ratio of reduced to oxidized glutathione and flow rate were investigated, respectively. Under the optimum conditions, 1.2 × 108 IU/mg of specific activity and 82% mass recovery were obtained from the loaded 10 ml of 1.75 mg/ml denatured protein, and rhIFN??-2a was also purified during this process with the purity of higher than 92%. Compared with dilution method, urea gradient SEC was more efficient for the rhIFN??-2a refolding in terms of specific activity and mass recovery.  相似文献   

17.
Introduction and expression of foreign genes in bacteria often results accumulation of the foreign protein(s) in inclusion bodies (IBs). The subsequent processes of refolding are slow, difficult and often fail to yield significant amounts of folded protein. RHG1 encoded by rhg1 was a soybean (Glycine max L. Merr.) transmembrane receptor-like kinase (EC 2.7.11.1) with an extracellular leucine-rich repeat domain. The LRR of RHG1 was believed to be involved in elicitor recognition and interaction with other plant proteins. The aim, here, was to express the LRR domain in Escherichia coli (RHG1-LRR) and produce refolded protein. Urea titration experiments showed that the IBs formed in E. coli by the extracellular domain of the RHG1 protein could be solubilized at different urea concentrations. The RHG1 proteins were eluted with 1.0-7.0M urea in 0.5M increments. Purified RHG1 protein obtained from the 1.5 and 7.0M elutions was analyzed for secondary structure through circular dichroism (CD) spectroscopy. Considerable secondary structure could be seen in the former, whereas the latter yielded CD curves characteristic of denatured proteins. Both elutions were subjected to refolding by slowly removing urea in the presence of arginine and reduced/oxidized glutathione. Detectable amounts of refolded protein could not be recovered from the 7.0M urea sample, whereas refolding from the 1.5M urea sample yielded 0.2mg/ml protein. The 7.0M treatment resulted in the formation of a homogenous denatured state with no apparent secondary structure. Refolding from this fully denatured state may confer kinetic and/or thermodynamic constraints on the refolding process, whereas the kinetic and/or thermodynamic barriers to attain the folded conformation appeared to be lesser, when refolding from a partially folded state.  相似文献   

18.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine, the major methyl donor for transmethylation reactions. Attempts to perform structural studies using rat liver MAT have met with problems because the protein purified from cellular extracts is heterogeneous. Overexpression of the enzyme in Escherichia coli rendered most of the protein as inclusion bodies. These aggregates were purified by specific washes using urea and Triton X-100 and used for refolding. Maximal activity was obtained when chaotropic solubilization included the structural cation Mg(2+), the protein concentration was kept below 0.1 mg/ml, and denaturant removal was carried out in a two-step process, namely, a fast dilution followed by dialysis in the presence of 10 mM DTT or GSH/GSSG redox buffers. Refolding by this procedure generated the oligomeric forms, MAT I and III, which were basically indistinguishable from the purified rat liver forms in secondary structure and catalytic properties.  相似文献   

19.
Process intensification is necessary to create economical processes. Cleavage reaction is one of the critical unit operations in peptide manufacturing processes as it involves cutting of concatemer expressed to obtain monomer. In this paper, solubilization and cleavage reaction have been merged into a single unit operation so as to allow for simultaneous solubilization and cleavage. Critical variables such as urea concentration, calcium chloride concentration, pH, and enzyme loading were optimized using quality by design (QbD) principles. The subsequent RP-HPLC unit operation was also intensified with respect to elution gradient and product stability in elution buffer so as to facilitate direct freeze-drying and storage. The proposed three-step process was analysed for its economics and compared with the previous generation process, showing significant improvements including a 21% reduction in batch time, 27% increase in productivity, and 30% reduction in manufacturing cost. The work illustrates the effectiveness of applying QbD principles and process intensification for creation of a more efficient manufacturing bioprocess.  相似文献   

20.
A single-chain Fv (scFv) antibody fragment against the hepatitis B surface antigen (HBsAg) was expressed in Escherichia coli in the form of two independent fusion proteins, with either 60 ('long') or 27 ('short') amino acid N-terminal encoding sequences related to human interleukin-2. Both fusion proteins were expressed insolubly and at high levels in the bacterial cytoplasm (approximately 30% of total bacterial protein in MM294 cells at a laboratory scale). When recombinant cells were cultured in 5-1 fermentors, expression and optical density increased 2- and 4-fold, respectively, compared to a previous periplasmic insoluble version of the same anti HBsAg scFv. After extraction and solubilization in urea, the cytoplasmic scFvs were purified using immobilized metal ion affinity chromatography, followed by DTT treatment, and refolding by dialysis against a basic pH buffer containing EDTA. The refolded scFvs recognized the recombinant HBsAg in ELISA. Results of an ELISA where antigen affinity chromatography repurified scFvs were used as standards, indicated that refolding efficiencies were high: 56.2% for the 'short' fusion scFv, and 50.6% for the 'long' fusion scFv. Corrected final yields of active scFv were 30.3 and 27.3 mg l-1, respectively, for the aforementioned fusion proteins, 5-6 times better than those reported for the periplasmic scFv variant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号