首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smac/DIABLO在过氧化氢所致C2C12肌原细胞凋亡中的作用   总被引:2,自引:0,他引:2  
为探讨Smac/DIABLO在过氧化氢 (H2 O2 )所致C2 C12 肌原细胞凋亡中的作用 ,采用Hoechst 3 3 2 58染色 ,观察H2 O2 (0 5mmol/L)处理C2 C12 肌原细胞不同时间后 ,细胞核形态学改变并计算凋亡核百分率 ,DNA抽提及琼脂糖电泳观察凋亡特征性梯状带 ,利用细胞成分分离后蛋白质印迹分析H2 O2 是否导致Smac/DIABLO从线粒体释放 ,采用Caspase检测试剂盒及蛋白质印迹分析Caspase 3和Caspase 9的活化 ,转染Smac/DIABLO基因 ,观察Smac/DIABLO过表达对H2 O2 所致的C2 C12 肌原细胞凋亡的影响 .结果表明 :H2 O2 处理 1h后 ,Smac/DIABLO从C2 C12 肌原细胞线粒体释放入胞浆 ,2h更明显 ;H2 O2 处理 4h后 ,Caspase 3和Caspase 9活化 ,12h达高峰 ;H2 O2 处理 2 4h后 ,C2 C12 肌原细胞显示特征性的凋亡形态改变 ,凋亡核百分率明显升高 ,DNA电泳出现明显“梯状”条带 .与单纯过氧化氢损伤组相比 ,Smac/DIABLO高表达的C2 C12 肌原细胞经过氧化氢损伤组的Caspase 3和Caspase 9的活化、凋亡核百分率的升高、“梯状”条带的出现均更明显 .结果表明 ,H2 O2 可导致Smac/DIABLO从C2 C12 肌原细胞线粒体释放 ,促进Caspase 9和Caspase 3的活化而促进细胞凋亡的发生  相似文献   

2.
Oxidative stress may cause apoptosis of cardiomyocytes in ischemia-reperfused myocardium, and heat shock pretreatment is thought to be protective against ischemic injury when cardiac myocytes are subjected to ischemia or simulated ischemia. However, the detailed mechanisms responsible for the protective effect of heat shock pretreatment are currently unclear. The aim of this study was to determine whether heat shock pretreatment exerts a protective effect against hydrogen peroxide(H2O2)-induced apoptotic cell death in neonatal rat cardiomyocytes and C2C12 myogenic cells and whether such protection is associated with decreased release of second mitochondria-derived activator of caspase-direct IAP binding protein with low pl (where IAP is inhibitor of apoptosis protein) (Smac/DIABLO) from mitochondria and the activation of caspase-9 and caspase-3. After heat shock pretreatment (42 +/- 0.3 degrees C for 1 hour, recovery for 12 hours), cardiomyocytes and C2C12 myogenic cells were exposed to H2O2 (0.5 mmol/L) for 6, 12, 24, and 36 hours. Apoptosis was evaluated by Hoechst 33258 staining and DNA laddering. Caspase-9 and caspase-3 activities were assayed by caspase colorimetric assay kit and Western analysis. Inducible heat shock proteins (Hsp) were detected using Western analysis. The release of Smac/DIABLO from mitochondria to cytoplasm was observed by Western blot and indirect immunofluorescence analysis. (1) H2O2 (0.5 mmol/L) exposure induced apoptosis in neonatal rat cardiomyocytes and C2C12 myogenic cells, with a marked release of Smac/DIABLO from mitochondria into cytoplasm and activation of caspase-9 and caspase-3, (2) heat shock pretreatment induced expression of Hsp70, Hsp90, and alphaB-crystallin and inhibited H2O2-mediated Smac/DIABLO release from mitochondria, the activation of caspase-9, caspase-3, and subsequent apoptosis. H2O2 can induce the release of Smac/DIABLO from mitochondria and apoptosis in cardiomyocytes and C2C12 myogenic cells. Heat shock pretreatment protects the cells against H2O2-induced apoptosis, and its mechanism appears to involve the inhibition of Smac release from mitochondria.  相似文献   

3.
Smac/DIABLO在过氧化氢所致C2C12肌原细胞凋亡中的作用   总被引:4,自引:0,他引:4  
为探讨Smac/DIABLO在过氧化氢(H2O2)所致C2C12肌原细胞凋亡中的作用,采用Hoechst 33258染色,观察H2O2 (0.5 mmol/L)处理C2C12肌原细胞不同时间后,细胞核形态学改变并计算凋亡核百分率,DNA抽提及琼脂糖电泳观察凋亡特征性梯状带,利用细胞成分分离后蛋白质印迹分析H2O2是否导致Smac/DIABLO从线粒体释放,采用Caspase检测试剂盒及蛋白质印迹分析Caspase-3和Caspase-9的活化,转染Smac/DIABLO基因,观察Smac/DIABLO过表达对H2O2所致的C2C12肌原细胞凋亡的影响.结果表明:H2O2处理1 h后,Smac/DIABLO从C2C12肌原细胞线粒体释放入胞浆,2 h更明显;H2O2处理4 h后,Caspase-3和Caspase-9活化,12 h达高峰;H2O2处理24 h后,C2C12肌原细胞显示特征性的凋亡形态改变,凋亡核百分率明显升高,DNA电泳出现明显“梯状”条带.与单纯过氧化氢损伤组相比,Smac/DIABLO高表达的C2C12肌原细胞经过氧化氢损伤组的Caspase-3和Caspase-9的活化、凋亡核百分率的升高、“梯状”条带的出现均更明显.结果表明,H2O2可导致Smac/DIABLO从C2C12肌原细胞线粒体释放,促进Caspase-9和Caspase-3的活化而促进细胞凋亡的发生.  相似文献   

4.
To investigate the mechanism by which fibroblast growth factor 2 (FGF-2) inhibits apoptosis in the human small cell lung cancer cell line H446 subjected to serum starvation, apoptosis was evaluated by flow cytometry, Hoechst 33258 staining, caspase-3 activity, and DNA fragmentation. Survivin expression induced by FGF-2 and protein kinase Cα (PKCα) translocation was detected by subcellular frac-tionation and Western blot analysis. In addition, FGF-2-in-duced release of Smac from mitochondria to the cytoplasm was analyzed by Western blotting and immunofluorescence. FGF-2 reduced apoptosis induced by serum starvation and up-regulated survivin expression in H446 cells in a dose-dependent andtime-dependentmanner, andinhibitedcaspase-3 activity. FGF-2 also inhibited the release of Smac from mitochondria to the cytoplasm induced by serum starvation and increased PKCα translocation from the cytoplasm to the cell membrane. In addition, PKC inhibitor inhibited the expression of survivin. FGF-2 up-regulates the expression of survivin protein in H446 cells and blocks the release of Smac from mitochondria to the cytoplasm. PKCα regulated FGF-2-induced survivin expression. Thus, survivin, Smac, and PKCα might play important roles in the inhibition of apoptosis by FGF-2 in human small cell lung cancer cells.  相似文献   

5.
Apoptosis plays a critical role for the development of a variety of cardiac diseases. Cardiomyocytes are enriched in mitochondria, while mitochondrial fission can regulate apoptosis. The molecular mechanism governing cardiomyocyte apoptosis remain to be fully elucidated. Our results showed that Smac/DIABLO is necessary for apoptosis in cardiomyocytes, and it is released from mitochondria into cytosol in response to apoptotic stimulation. Smac/DIABLO release is a consequence of mitochondrial fission mediated by dynamin-related protein-1 (Drp1). Upon release Smac/DIABLO binds to X-linked inhibitor of apoptosis protein (XIAP), resulting in the activation of caspase-9 and caspase-3. Their activation is a prerequisite for the initiation of apoptosis because the administration of z-LEHD-fmk and z-DQMD-fmk, two relatively specific inhibitors for caspase-9, and caspase-3, respectively, could significantly attenuate apoptosis. Smac/DIABLO release could not be blocked by these caspase inhibitors, indicating that it is an event upstream of caspase activation. ARC (apoptosis repressor with caspase recruitment domain), an abundantly expressed apoptotic repressor in cardiomyocytes, could inhibit mitochondrial fission and Smac/DIABLO release. Our data reveal that Smac/DIABLO is a target of ARC in counteracting apoptosis.  相似文献   

6.
We have characterised the apoptotic defects in cells null for cytochrome c (cyt c-/-). Such cells treated with staurosporine (STS) exhibited translocation to the mitochondria and activation of the proapoptotic signalling molecule Bax but failed to release Smac/DIABLO from these organelles, judged by both confocal microscopy and Western blotting. While reference cells expressing cytochrome c released both it and Smac/DIABLO under a variety of conditions of apoptotic induction, we have never observed release of Smac/DIABLO from cyt c-/- cells. We eliminate the possibility that proteasomal degradation of cytosolically localised Smac/DIABLO is responsible for our failure to visualise the protein outside the mitochondria. Our findings indicate an unanticipated nexus between release of cytochrome c and Smac/DIABLO from mitochondria, previously thought to be a more or less synchronised event early in apoptosis. We suggest that the failure of cyt c-/- cells to release Smac/DIABLO after recruitment of Bax to mitochondria represents an extreme manifestation of some inherent difference in the regulation of release of these two proteins from mitochondria.  相似文献   

7.
8.
X-linked IAP (XIAP) suppresses apoptosis by binding to initiator caspase-9 and effector caspases-3 and -7. Smac/DIABLO that is released from mitochondria during apoptosis can relieve its inhibitory activity. Here we investigated the role of XIAP in the previously found obstruction of chemotherapy-induced caspase-9 activation in non-small cell lung cancer (NSCLC) cells. Endogenously expressed XIAP bound active forms of both caspase-9 and caspase-3. However, downregulation of XIAP using shRNA or disruption of XIAP/caspase-9 interaction using a small molecule Smac mimic were unable to significantly induce caspase-9 activity, indicating that despite a strong binding potential of XIAP to caspase-9 it is not a major determinant in blocking caspase-9 in NSCLC cells. Although unable to revert caspase-9 blockage, the Smac mimic was able to enhance cisplatin-induced apoptosis, which was accompanied by increased caspase-3 activity. Additionally, a more detailed analysis of caspase activation in response to cisplatin indicated a reverse order of activation, whereby caspase-3 cleaved caspase-9 yielding an inactive form. Our findings indicate that the use of small molecule Smac mimic, when combined with an apoptotic trigger, may have therapeutic potential for the treatment of NSCLC.  相似文献   

9.
Neutrophil apoptosis constitutes a way of managing neutrophil-mediated reactions. It allows coping with infections, but avoiding overt bystander tissue damage. Using digitonin-based subcellular fractionation and Western blotting, we found that spontaneous apoptosis of human neutrophils (after approximately 20 h of culture) was associated with translocation of two proapoptotic Bcl-2 homologues, Bid and Bax, to the mitochondria and truncation of Bid, with subsequent release of Omi/HtrA2 and Smac/DIABLO into the cytosol. These events were accompanied by processing and increased enzymatic activity of caspase-8, -9, and -3. A G-CSF-mediated reduction in apoptosis coincided with inhibition of all these reactions. The G-CSF-induced effects were differentially dependent on newly synthesized mediators. Whereas inhibition of Bax targeting to the mitochondria and inhibition of caspase activation by G-CSF were dependent on protein synthesis, Bid truncation and redistribution were prevented by G-CSF regardless of the presence of the protein synthesis inhibitor cycloheximide. Apparently, the observed Bid changes were dispensable for neutrophil apoptosis. Although the regulators of the inhibitor of apoptosis proteins (IAPs), Omi/HtrA2 and Smac/DIABLO, were released into the cytosol during apoptosis, we did not observe cleavage of X-linked IAP, which suggests that another mechanism of IAP deactivation is involved. Together our results support an integrative role of the mitochondria in induction and/or amplification of caspase activity and show that G-CSF may act by blocking Bid/Bax redistribution and inhibiting caspase activation.  相似文献   

10.
Li TF  Luo YM  Lu CZ 《生理学报》2004,56(2):172-177
应用红藻氨酸(kainic acid,KA)诱导的大鼠边缘叶癫痫发作模型,检测第二个线粒体源的半胱天冬蛋白酶激活物,直接与凋亡抑制蛋白结合的低等电点蛋白(second mitochondrial activator of caspases/direct inhibitor of apoptosis protein-binding protein of low isoelectric point[PI],Smac/DIABLO)和X染色体连锁的凋亡抑制蛋白(X-chromosome-linked inhibitor of apoptosis protein,XIAP)在癫痫大鼠海马神经元表达。单侧杏仁核内注射KA诱导癫痫发作,1h后用安定终止发作,然后分别用TUNEL染色和cresyl violet染色观察海马神经元存活和凋亡的变化,用免疫荧光和Western blot检测海马Smac/DIABLO、XIAP和半胱天冬蛋白酶-9(caspase-9)的表达。结果表明,发作终止2h时KA注射同侧海马CA3区细胞浆内Smac/DIABLO蛋白表达增加,4h时caspase-9出现裂解片断,8h时出现TUNEL阳性细胞,24h时达高峰。脑室内注射caspase-9抑制剂z-LEHD-fluoromethyl ketone(z-LEHD-fmk)可减少TUNEL阳性细胞,增加存活神经元。发作后KA注射同侧海马CA3区神经元caspase-9免疫反应性增强,Smac/DIABLO和XIAP弥散于整个神经元内。对侧海马未检测到TUNEL阳性细胞及Smac/DIABLO和XIAP蛋白的上述变化。以上结果提示,癫痫发作可诱导Smac/DIABLO蛋白从线粒体向细胞浆的移位、XIAP亚细胞分布改变和caspase-9的激活,Smac/DIABLO、XIAP和caspase-9可能参与了癫痫神经元损伤的病理生理机制,caspase-9可能是潜在的治疗靶点。  相似文献   

11.
We have constructed Ad CMV-Smac, a recombinant adenovirus encoding Smac/DIABLO, the recently described second mitochondrial activator of caspases. Transfection of ovarian carcinoma cells with Ad CMV-Smac at multiplicities of infection of 3-60 pfu/cell leads to increasing apoptosis in a dose-dependent manner. Western blot analysis confirms that Smac-induced apoptosis proceeds via a pathway mediated primarily by caspase-9 that can be inhibited by zLEHD-fmk and overexpression of the X-linked inhibitor of apoptosis protein (XIAP). In contrast, there is no cleavage of either caspase-8 or caspase-12. Ad CMV-Smac appears to induce apoptosis independently of cytochrome c release from mitochondria and is not inhibited by overexpression of Bcl-2. Ad CMV-Smac can combine with other proapoptotic factors, such as cisplatin, paclitaxel, and procaspase-3, to produce greater levels of apoptosis in transfected cells.  相似文献   

12.
X-linked inhibitor of apoptosis protein (XIAP), the most potent member of the inhibitor of apoptosis protein (IAP) family, plays a crucial role in the regulation of apoptosis. XIAP is structurally characterized by three baculovirus IAP repeat (BIR) domains that mediate binding to and inhibition of caspases and a RING domain that confers ubiquitin ligase activity. The caspase inhibitory activity of XIAP can be eliminated by the second mitochondria-derived activator of caspases (Smac)/direct IAP-binding protein with low pI (DIABLO) during apoptosis. Here we report the identification and characterization of a novel isoform of Smac/DIABLO named Smac3, which is generated by alternative splicing of exon 4. Smac3 contains an NH2-terminal mitochondrial targeting sequence required for mitochondrial targeting of Smac3 and an IAP-binding motif essential for Smac3 binding to XIAP. Smac3 is released from mitochondria into the cytosol in response to apoptotic stimuli, where it interacts with the second and third BIR domains of XIAP. Smac3 disrupts processed caspase-9 binding to XIAP, promotes caspase-3 activation, and potentiates apoptosis. Strikingly, Smac3, but not Smac/DIABLO, accelerates XIAP auto-ubiquitination and destruction. Smac3-stimulated XIAP ubiquitination is contingent upon the physical association of XIAP with Smac3 and an intact RING domain of XIAP. Smac3-accelerated XIAP destabilization is, at least in part, attributed to its ability to enhance XIAP ubiquitination. Our study demonstrates that Smac3 is functionally additive to, but independent of, Smac/DIABLO.  相似文献   

13.
Apoptotic response of keratinocytes to UVB irradiation has physiological significance on photocarcinogenesis. Here, we show that the sustained release of Smac/DIABLO from mitochondria is an important event for the onset of apoptosis in keratinocytes exposed to UVB irradiation. In human keratinocyte HaCaT cells, UVB irradiation at 500 J/m2, but not at 150 J/m2, induces apoptosis. Significant activations of caspases-9 and -3, and slight activation of caspase-7 were observed only in 500 J/m2 UVB irradiated HaCaT cells. Correspondingly, the cleavage of PARP, a substrate of caspases-3 and -7, was detected in cells irradiated at 500 J/m2 UVB, but not at 150 J/m2. However, with both 150 and 500 J/m2 UVB irradiation, cytochrome c, an activator of caspase-9 via the formation of apoptosome, was released from mitochondria to the cytosol at the same extent. In contrast, significant amounts of Smac/DIABLO are released from mitochondria to the cytosol only with 500 J/m2 UVB irradiation, and that the level of XIAP is decreased. These results suggest that the extent of Smac/DIABLO efflux from mitochondria is a determinant whether a cell will undergo apoptosis or survival.  相似文献   

14.
Studies have shown salutary effects of 17beta-estradiol following trauma-hemorrhage on different cell types. 17beta-Estradiol also induces improved circulation via relaxation of the aorta and has an anti-apoptotic effect on endothelial cells. Because mitochondria play a pivotal role in apoptosis, we hypothesized that 17beta-estradiol will maintain mitochondrial function and will have protective effects against H(2)O(2)-induced apoptosis in endothelial cells. Endothelial cells were isolated from rats' aorta and cultured in the presence or absence of H(2)O(2), a potent inducer of apoptosis. In additional studies, endothelial cells were pretreated with 17beta-estradiol. Flow cytometry analysis revealed H(2)O(2)-induced apoptosis in 80.9% of endothelial cells; however, prior treatment of endothelial cells with 17beta-estradiol resulted in an approximately 40% reduction in apoptosis. This protective effect of 17beta-estradiol was abrogated when endothelial cells were cultured in the presence ICI-182780, indicating the involvement of estrogen receptor (ER). Fluorescence microscopy revealed a 17beta-estradiol-mediated attenuation of H(2)O(2)-induced mitochondrial condensation. Western blot analysis demonstrated that H(2)O(2)-induced cytochrome c release from mitochondrion to cytosol and the activation of caspase-9 and -3 were decreased by 17beta-estradiol. These findings suggest that 17beta-estradiol attenuated H(2)O(2)-induced apoptosis via ER-dependent activation of caspase-9 and -3 in rat endothelial cells through mitochondria.  相似文献   

15.
Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding proteinwith low PI) is a 29 kDa mitochondrial precursor protein,which is proteolytically processed in mitochondriainto a 23 kDa mature protein.It is released from the mitochondrial intermembrane space to cytosol after anapoptotic trigger.Smac/DIABLO acts as a dimer and it contributes to caspase activation by sequestering theinhibitor of apoptosis proteins (IAPs).In order to further investigate the mechanism of Smac/DIABLOaction,we used the mature form of Smac/DIABLO as a bait and screened proteins that interact with matureSmac/DIABLO in human liver cDNA library using the yeast two-hybrid system.Forty-two colonies wereobtained after 5.8x 10~6 colonies were screened by nutrition limitation and X-galactosidase assay.After DNAsequence analysis and homology retrieval,one of the candidate proteins was identified as TRAF domain ofthe TNF receptor associated factor 3 (TRAF3).The interaction site between TRAF3 and Smac/DIABLOwas identified by β-galactosidase test. The interaction between TRAF3 and Smac/DIABLO via TRAF domainwas identified in vivo by co-immunoprecipitation in HepG2 cells,and the direct interaction between TRAF3and Smac/DIABLO in vitro was identified by GST-pull down assay.Co-expression of TRAF3 and matureSmac/DIABLO in 293 cells could enhance the Smac/DIABLO-mediated apoptosis.These results suggestedthat TRAF3 interacted with Smac/DIABLO via TRAF domain,leading to an increased proapoptotic effectof Smac/DIABLO in cytoplasm.  相似文献   

16.
目的:观察大鼠供心不同时程低温保存后线粒体Smac/DIABLO蛋白表达的差异。方法:根据不同的低温保存时程,SD大鼠随机分5组(n=8)。采用Langendorff离体鼠心灌注法停搏大鼠心脏,检测心脏在4℃条件下celsior保存液中分别保存0、3、6、9、12h后,心肌细胞线粒体内超氧化物岐化酶(SOD)活性和丙二醛(MDA)含量的变化。并采用Westom blotting蛋白印迹分析法观察心肌细胞Smac/DIABLO蛋白表达情况,原位末端标记(TUNEL)染色法检测心肌细胞凋亡。结果:①随着低温保存时间的延长,心肌细胞线粒体内SOD活性随之降低,MDA含量随之升高,心肌细胞凋亡指数也逐渐增高。②随着低温保存时间的延长,Smac/DIABLO蛋白表达逐渐增多,至低温保存6h后最为显著,随后又逐渐减弱。结论:随着低温保存时间的延长,可能由于心肌细胞抗氧自由基的能力逐步减弱,致使诱导细胞凋亡的心肌线粒体Smac/DIABLO蛋白表达逐渐增强,心肌细胞凋亡逐渐增多。  相似文献   

17.
Many viruses belonging to diverse viral families with differing structure and replication strategies induce apoptosis both in cultured cells in vitro and in tissues in vivo. Despite this fact, little is known about the specific cellular apoptotic pathways induced during viral infection. We have previously shown that reovirus-induced apoptosis of HEK cells is initiated by death receptor activation but requires augmentation by mitochondrial apoptotic pathways for its maximal expression. We now show that reovirus infection of HEK cells is associated with selective cytosolic release of the mitochondrial proapoptotic factors cytochrome c and Smac/DIABLO, but not the release of apoptosis-inducing factor. Release of these factors is not associated with loss of mitochondrial transmembrane potential and is blocked by overexpression of Bcl-2. Stable expression of caspase-9b, a dominant-negative form of caspase-9, blocks reovirus-induced caspase-9 activation but fails to significantly reduce activation of the key effector caspase, caspase-3. Smac/DIABLO enhances apoptosis through its action on cellular inhibitor of apoptosis proteins (IAPs). Reovirus infection is associated with selective down-regulation of cellular IAPs, including c-IAP1, XIAP, and survivin, effects that are blocked by Bcl-2 expression, establishing the dependence of IAP down-regulation on mitochondrial events. Taken together, these results are consistent with a model in which Smac/DIABLO-mediated inhibition of IAPs, rather than cytochrome c-mediated activation of caspase-9, is the key event responsible for mitochondrial augmentation of reovirus-induced apoptosis. These studies provide the first evidence for the association of Smac/DIABLO with virus-induced apoptosis.  相似文献   

18.
During rat estrous cycle, the endometrium proliferates in response to sex steroids and specific endometrial epithelial cells undergo apoptosis in absence of embryonic factors. The central executioner of apoptosis is a family of aspartic acid-specific cysteine proteases known as caspases. Smac/DIABLO is released from the mitochondria during apoptosis and its stimulation promotes caspases activation by neutralizing members of the inhibitor of apoptosis proteins (IAPs) family, such as X-linked inhibitor of apoptosis protein (XIAP). The aim of this study was to investigate the involvement of Smac/DIABLO and XIAP in the control of caspases activation in endometrium of cycling rats. Polyoestrus female rats were sacrificed at each stage of estrous cycle (diestrus, proestrus, estrus, and metestrus). Endometrial protein extracts were collected to perform Western Blot analysis. Alternatively, uterine horns were sectioned for immunohistochemistry (IHC). We and others showed previously the presence of apoptosis at estrus in rat uterine epithelium. In the present study, cleaved caspase-3, -6, and -7 fragments were detected at estrus. IHC confirmed that caspase-3 was present only in luminal and glandular epithelium at estrus. XIAP was highly expressed at estrus in both epithelial and stromal cells. In contrast, expression of Smac/DIABLO was elevated at diestrus, proestrus and metestrus but was minimal at estrus. Treatment of ovariectomized rats with 17β-estradiol induced XIAP expression and inhibited Smac/DIABLO protein expression in the endometrium. Cleaved caspase-3, -6, and -7 fragments increased in endometrial protein extracts following 17β-estradiol treatment. Expression of NF-κB and IκB proteins, and IκB phosphorylation status were detected in the endometrium but were not influenced by the estrous cycle. These findings suggest that Smac/DIABLO and XIAP are regulated differently and may play important roles in the regulation of endometrial cell fate. Moreover, this study confirms a key role for executioner caspases in the control of apoptotic processes at estrus in the rat uterus.  相似文献   

19.
Hyperosmotic shock induces cytochrome c release and capase-3 activation in Xenopus oocytes, but the regulators and signaling pathways involved are not well characterized. Here we show that hyperosmotic shock induces rapid calpain activation and high levels of Smac/DIABLO release from the mitochondria before significant amounts of cytochrome c are released to promote caspase-3 activation. Calpain inhibitors or EGTA microinjection delays osmostress-induced apoptosis, and blockage of Smac/DIABLO with antibodies markedly reduces cytochrome c release and caspase-3 activation. Hyperosmotic shock also activates the p38 and JNK signaling pathways very quickly. Simultaneous inhibition of both p38 and JNK pathways reduces osmostress-induced apoptosis, while sustained activation of these kinases accelerates the release of cytochrome c and caspase-3 activation. Therefore, at least four different pathways early induced by osmostress converge on the mitochondria to trigger apoptosis. Deciphering the mechanisms of hyperosmotic shock-induced apoptosis gives insight for potential treatments of human diseases that are caused by perturbations in fluid osmolarity.  相似文献   

20.
We used a rat pheochromocytoma (PC12) cell line to study the effects of salidroside on hydrogen peroxide (H(2)O(2))-induced apoptosis. In PC12 cells, H(2)O(2)-induced apoptosis was accompanied by the down-regulation of Bcl-2, the up-regulation of Bax, the release of mitochondrial cytochrome c to cytosol, and the activation of caspase-3, -8 and -9. However, salidroside suppressed the down-regulation of Bcl-2, the up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol. Moreover, salidroside attenuated caspase-3, -8 and -9 activation, and eventually protected cells against H(2)O(2)-induced apoptosis. Taken together, these results suggest that treatment of PC12 cells with salidroside can block H(2)O(2)-induced apoptosis by regulating Bcl-2 family members and by suppressing cytochrome c release and caspase cascade activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号