首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Mouse pre-B cells synthesize and secrete mu heavy chains but not light chains   总被引:35,自引:0,他引:35  
D Levitt  M D Cooper 《Cell》1980,19(3):617-625
The immunoglobulins produced by the earliest recognizable B cell precursors (pre-B cells) were characterized in the mouse and human. Immunofluorescent analysis revealed no evidence of surface IgM components, and only mu heavy chains could be detected intracytoplasmically in pre-B cells. Surface IgM components could not be isolated from intact fetal liver cells that lacked sIgM+ B lymphocytes but possessed pre-B cells. Pre-B cells were shown to synthesize and secrete mu heavy chains but not light chains by immunochemical analysis. These mu chains constituted less than 0.01% of TCA precipitable protein synthesized and secreted by fetal liver cells during an 8 hr labelling period. Migration of both intracellular and secreted mu chains on SDS-PAGE suggested that they were smaller than mu chains secreted by mouse and human plasmacytomas. These data indicate that mu chain synthesis precedes light chain expression during B cell ontogeny and suggest a new role for pre-B cells in the generation and expression of a diverse immunoglobulin repertoire.  相似文献   

2.
The population dynamics of granulopoietic cells, B-lineage cells, and T lymphocytes were analyzed by immunofluorescence in mouse hemopoietic tissues as a function of age. Mac-1+ myeloid cells were present on day 11 of gestation in the liver, where they peaked shortly after birth and declined subsequently. Waves of myeloid population growth began in spleen and bone marrow by days 15 and 19, respectively. Mac-1+ cells increased in number to relatively low plateau levels in spleen by the 3rd wk after birth, whereas in the bone marrow higher plateau levels were reached around 3 mo of age. The 14.8 monoclonal antibody was utilized as one marker of B-lineage precursor cells. 14.8+ cells were detected in the liver on day 11 of gestation, reached peak numbers during the first week after birth and decreased thereafter. On day 15 and 19, 14.8+ cells were found in spleen and bone marrow, respectively, and progressively increased in numbers to reach plateau levels in both sites by 3 mo of age. Mu+ pre-B cells appeared in significant numbers in the 13-day fetal liver, reached a peak shortly after birth, and disappeared from the liver by the end of the second postnatal week. Pre-B cells were found in the spleen and bone marrow on days 15 and 19, respectively. In the spleen pre-B cells reached peak values at birth and disappeared 2 wk later. In spite of the sequential appearance of mu+ pre-B cells in fetal liver, spleen, and bone marrow, their sIgM+ B cell progeny appeared in all these hemopoietic tissues on day 17 of gestation. In the liver, sIgM+ B cells reached their peak at birth and declined thereafter. In the spleen and bone marrow, B cells increased to plateau levels between 1 and 4 mo of age. Thy-1.2+ T cells were relatively late acquisitions in all three hemopoietic tissues. Finally, the expression of the 14.8 antigen by mu+ cells was examined as a function of gestational age. While pre-B cells from day-13 fetuses had no detectable 14.8 antigen, the antigen was weakly expressed on the vast majority of the mu+ pre-B cells by day 17 of gestation. Newborn liver cells expressing 14.8 antigen were found to include a small proportion of cells with peroxidase+ granules. Thus, demonstration of rearrangement and expression of immunoglobulin genes may be required for precise identification of cells of B lineage early in ontogeny.  相似文献   

3.
To trace the development and distribution of B lineage cells in the domestic cat (Felis catus), we have produced monoclonal antibodies against mu-, gamma-, kappa-, and lambda-chains of feline immunoglobulins (Ig). Goat antibodies against human mu-, alpha-, and lambda-chains, which are reactive with shared determinants on their feline counterparts, were used in conjunction with the panel of mouse monoclonal antibodies. Cytoplasmic mu+ pre-B cells and surface IgM+ B lymphocytes were observed in 42 day fetal liver in which pre-B cells were more abundant than IgM+ B cells. Pre-B cells also were found in bone marrow in young cats, and continued to be generated in the marrow throughout life. In the spleen, adult levels of B cells were attained by 12 wk of age, at which time the frequencies of surface IgM+, IgG+, and lambda+ cells were 49, 3, and 40%, respectively. The distributions of Ig isotypes also were determined among plasma cells as a function of age and tissue localization. IgM plasma cells were predominant in the bone marrow of 1-wk-old cats, whereas IgG plasma cells were the prevalent isotype in adult bone marrow. In the mesenteric lymph nodes of adult animals, the frequency distributions of IgM, IgG, and IgA plasma cells were similar to the frequency distributions of IgM, IgG, and IgA isotypes among bone marrow plasma cells. IgA+ plasma cells predominated in the intestinal lamina propria, in which IgG+ and IgM+ plasma cells were relatively infrequent. In the tissues of both young and adult animals, the ratio of lambda:kappa expression was approximately 3:1. We conclude that the pattern of B cell development in the cat resembles that found in other mammals, except that the kappa to lambda ratio is reversed.  相似文献   

4.
Lymphoid cells transformed by Rauscher murine leukemia virus (R-MuLV) belonged to the B cell lineages. One group of cells exhibited Fc receptors but completely lacked immunoglobulin mu heavy and kappa light chains. The majority of the cells resemble pre-B type. They displayed mu chains but kappa chains were completely absent. Very rarely certain cells synthesized both mu and kappa chains. Based on the presence of Fc receptors and IgM synthesis the cells transformed by R-MuLV belonged to three B cell developmental stages. These cells were tested for immunoglobulin gene rearrangements using JH and CK probes. DNA from cell lines without any detectable levels of IgM mu exhibited embryonic as well as rearranged JH genes, whereas cells expressing IgM possess, in addition, productive and non-productive light chain gene rearrangements. The most terminally differentiated cell possesses JH and CK rearrangement associated with the synthesis of mu and kappa chains. Presumably the cells with rearranged JH and CK genes without immunoglobulin synthesis represent a developmental transition. We conclude that cells transformed by R-MuLV belonged to five step-wise compartments of B cell development. Our findings implicate definite sequential events of immunoglobulin gene rearrangement and expression during B cell development.  相似文献   

5.
Little is known about the role of signals transduced by cell surface IgM (sIgM) expressed during early B cell development. A subclone (1.6) of the late pre-B cell lymphoma 70Z/3.12 was used to study signal transduction by surface mu heavy (H) chain before and after transition to the early immature B cell stage, and the functional consequences thereof. Although kappa L chain expression can be induced on 1.6 cells by LPS or cytokines, immunoprecipitations indicated that the non-induced 1.6 cells expressed mu H chain with an alternative protein(s) which may be a surrogate light chain(s). Consistent with this, anti-mu but not anti-kappa or anti-lambda antibodies caused transient Ca2+ mobilization in noninduced 1.6 cells. The Ca2+ signal was derived from both intracellular stores and Ca2+ influx in either noninduced cells or in cells that had been preinduced to express kappa L chain. Thus, the ability of mu H chain to mobilize Ca2+ as a second messenger does not depend upon the expression of mature L chains. The immature B lymphomas, WEHI-231 and CH1, express mature forms of IgM and undergo growth arrest when stimulated by anti-mu antibody. In contrast, signals generated by mu H chain on either noninduced or preinduced 1.6 cells or in the sIgM+ pre-B cell transfectant 300-19 mu lambda 36/8 did not cause growth arrest. These results suggest that mu H chain expressed on pre-B cells is capable of mobilizing Ca2+, but that this signal alone is insufficient to induce growth arrest in the pre-B cell.  相似文献   

6.
Degradation of IgM mu heavy chains in light chain-negative pre-B cells is independent of vesicular transport, as is evident by its insensitivity to brefeldin A or cell permeabilization. Conversely, by the same criteria, degradation of the secretory mu heavy chain in light chain-expressing B cells depends on vesicular transport. To investigate whether the presence of conventional light chains or the developmental stage of the B-lymphocytes dictates the degradative route taken by mu, we express in 70Z/3 pre-B cells either lambda ectopically or kappa by lipopolysaccharides-stimulated differentiation into B cells and show their assembly with mu heavy chains. The resulting sensitivity of mu degradation to brefeldin A and cell permeabilization demonstrates that conventional light chains, a hallmark of B cell differentiation, are necessary and sufficient to divert mu from a vesicular transport-independent to a vesicular transport-dependent degradative route. Although both routes converge at the ubiquitin-proteasome degradation pathway, only in light chain-expressing cells is vesicular transport a prerequisite for mu ubiquitination.  相似文献   

7.
In the present study the capacity of early fetal B cells to produce Ig was investigated. It is shown that B cells from fetal liver, spleen, and bone marrow (BM) can be induced to produce IgM, IgG, IgG4, and IgE, but not IgA, in response to IL-4 in the presence of anti-CD40 mAb or cloned CD4+ T cells. Even splenic B cells from a human fetus of only 12 wk of gestation produced these Ig isotypes. IFN-alpha, IFN-gamma, and transforming growth factor-beta inhibited IL-4-induced IgE production in fetal B cells, as described for mature B cells. The majority of B cells in fetal spleen expressed CD5 and CD10 and greater than 99% of B cells in fetal BM were CD10+. Highly purified CD10+, CD19+ immature B cells and CD5+, CD19+ B cells could be induced to produce Ig, including IgG4 and IgE, in similar amounts as unseparated CD19+ B cells. Virtually all CD19+ cells still expressed CD10 after 12 days of culture. However, the IgE-producing cells at the end of the culture period were found in the CD19-,CD10- cell population, suggesting differentiation of CD19+,CD10+ B cells into CD19-,CD10- plasma cells. Pre-B cells are characterized by their lack of expression of surface IgM (sIgM). Only 30 to 40% of BM B cells expressed sIgM. However, in contrast to sIgM+,CD10+,CD19+ immature B cells, sorted sIgM-,CD10+,CD19+ pre-B cells failed to differentiate into Ig-secreting cells under the present culture conditions. Addition of IL-6 to these cultures was ineffective. Taken together, these results indicate that fetal CD5+ and CD10+ B cells are mature in their capacity to be induced to Ig isotype switching in vitro as soon as they express sIgM.  相似文献   

8.
Morphologic analysis of hemopoietic tissue in mouse liver reveals the persistence of erythropoietic, granulopoietic, and lymphopoietic activity for approximately 2 wk after birth. Near the end of the first postnatal week, we noted a remarkable reorganization of the hemopoietic cells that was characterized by a transition from a diffuse distribution of mixed erythroid, myeloid, and lymphoid elements to a focal pattern of discrete hemopoietic colonies scattered among the cords of hepatic parenchymal cells. Each hemopoietic focus contained cells progressing along a single differentiation pathway (i.e., erythroid, myeloid, or lymphoid cells). Megakaryocytes were seen as solitary cells surrounded by hepatocytes. This pattern of colonization was observed in all strains of mice examined. In the livers of mice with known hemopoietic defects, however, differences were found in the duration of postnatal hemopoiesis. Accessory cells with macrophage-like features were consistently observed in erythropoietic foci, but were rarely seen in lymphoid foci. The latter were formed by pre-B cells identifiable by the presence of cytoplasmic mu-heavy chains and the absence of light chain expression. The occurrence of discrete colonies of erythroid, myeloid, and pre-B lymphoid cells in the postnatal liver suggests that each is derived from a single, committed precursor cell. This anatomical compartmentalization according to cell type offers a useful model system for analysis of hemopoietic differentiation and of the generation of clonal diversity among B lineage cells.  相似文献   

9.
Human fetal liver was examined during various stages of gestation for the presence of B cells by using immunoglobulin isotype markers and monoclonal B cell antibodies. Frozen sections were studied with the use of single and double staining methods. The B cell monoclonal antibodies used were BA1, which defines both mature and immature B cells; B1, which identifies mature B cells; and B532, which binds to activated mature B cells. The data indicate that both BA1 and mu+ cells are present at 12 wk gestation, and increase in frequency with age. Delta and B1-bearing cells are detected only later in fetal life. Phenotypically identifiable T cells are present at low frequencies in the fetal liver throughout the time period examined (12 to 21 wk). At 12 to 13 wk gestation, the numbers of kappa- and lambda-chain-positive cells are two to three times greater than the number of mu+ cells. Based on morphology and staining with OKM1, these light chain-bearing cells appear to be non-lymphoid, most likely cells of macrophage origin that have phagocytosed maternal IgG. Our results show that the monoclonal antibodies reacting with subsets of B cells in adults can also be used to define distinct subsets of B and pre-B cells in the fetal liver.  相似文献   

10.
Immunoglobulin mu chains synthesized in murine pre-B cells are known to be associated with surrogate light chains designated as omega (omega), iota (iota) and B34. In addition to these molecules, we identified the complexes of polypeptides (50, 40, 27 and 15.5 kd) associated with surface or intracellular mu chains of pre-B cell lines. Most of these polypeptides were continuously synthesized and associated with mu chains in virgin B cells lines, although some of them scarcely bound to the mu kappa dimer or mu 2 kappa 2 tetramer concomitantly present in the same clone or population. However, in mature B cells they were no longer detectable except B34. Cross-linking of micron chains on the surface of pre-B cells resulted in an increase in intracellular free Ca2+, indicating that the micron chain complex on the surface of pre-B cell lines acted as a signal transduction molecule. However, the receptor cross-linkage of pre-B cell lines did not induce the increased inositol phospholipid metabolism usually observed in virgin and mature B cell lines. These results suggest that, during the differentiation from pre-B to mature B cells, the cells express two types of mu chain complexes which exhibit different structures as a whole and possess different signal transducing capacities.  相似文献   

11.
Urine from a patient with cyclic neutropenia was found to contain a lymphopoietic activity that acts as a growth factor for human pre-B cells. This biologic activity was detectable during the week preceding, but not during, the period of neutropenia. This corresponded with a periodic excessive accumulation of pre-B cells in the marrow of this patient. Urine preparations were added to cultures of normal human bone marrow that had been depleted of B cells. Pre-B cells were generated in these cultures but not in cultures containing urine preparations from normal donors. Pre-B cells were also generated from bone marrow that had been depleted of 177.17+ cells and the majority of pre-B cells. This is the first report of a hemopoietic activity which affects human pre-B cells. This activity may represent a normal regulatory molecule that is periodically produced in excess in this patient.  相似文献   

12.
Murine fetal liver and adult bone marrow cells identified by monoclonal 14.8 antibody were enriched on antibody-coated polystyrene petri dishes. Cell surface immunoglobulin (sig)-bearing cells were depleted before this enrichment procedure, and the resulting preparations of 14.8+, slg- cells were characterized as to morphology, immunoglobulin gene expression, and functional potential in vivo and in vitro. All cells with detectable mu chains of IgM in the cytoplasm (cmu) were found to be included in the 14.8+ population. The enriched cells did not contain significant numbers of committed granulocyte-macrophage progenitor cells or putative hemopoietic stem cells. Selected cells from 16-day fetal liver were large, a majority of the cells had a lobulated rather than a spherical nuclear outline, and less than 1% had detectable cmu. Enriched cells from 19-day fetal liver were on the average smaller than those from 16-day-gestation liver and had a more typical lymphoid morphology; 30% were cmu+. Adult bone marrow 14.8+, slg- cells were similar to 19-day fetal liver cells in morphology, and approximately half were cmu+. These selected precursor cells retained the capacity to mature in vivo and in vitro. Fetal and adult 14.8+, slg- cells were efficient in generating newly formed B cells in vivo, and this maturation step appeared to be dependent on the presence of microenvironmental accessory cells. However, the ability of positively selected cells to mature in vitro was markedly decreased, and this potential was not rescued by providing known sources of accessory cells. Possible reasons for this difference are considered. This technique for positively selecting cells has allowed us to directly compare for the first time B cell precursors from fetal and adult tissues and will be invaluable for resolution of the cell compartments in the differentiation of B lymphocyte precursors, in the study of accessory cells known to facilitate this process, in the definition of humoral factors which may act on pre-B cells, in the study of immunoglobulin gene rearrangements which take place during normal differentiation, and for further comparative studies of fetal and adult lymphopoiesis.  相似文献   

13.
In rat bone marrow (BM), the B lineage surface antigen HIS24 is expressed by all surface mu chain-bearing (s mu+) B cells, by cytoplasmic mu chain-containing (c mu+s mu-) pre-B cells and TdT+ cells, and by lymphoid cells lacking both mu and TdT. Because TdT+ and HIS24+TdT-mu- cells may represent stages in B lymphocytopoiesis before mu chain expression, we investigated their kinetics. The metaphase arrest method was combined with immunofluorescence staining to detect proliferation and to quantitate cell production in the BM pre-B, TdT+, and HIS24+TdT-mu- compartments. Their apparent cell cycle times (tC(a)) were 38, 36, and 19 hr, and the number of cells produced per hour per femur were 58, 9, and 41 X 10(4), respectively. The HIS24+ compartments showed further phenotypic heterogeneity. Six percent of TdT+ cells expressed mu chains and were therefore pre-B cells. Twenty percent of HIS24+TdT-mu- cells expressed Ig other than mu chains, with size distribution and kinetics similar to HIS24+TdT-Ig- cells. Thus, the rate of production in the truly Ig-HIS24+ compartment was about 40 X 10(4)/hr/femur (8.5 by TdT+mu- and 33 by TdT-Ig-). In each phenotypic compartment, mitoses were confined to subsets of large (greater than 11 to 12 micron) cells with tC(a) of 13 to 15 hr. Surface mu+ B cells were essentially non-cycling. To quantitate whole body BM cell production, the recovery of marrow from bone and the distribution of BM were measured in 59Fe distribution experiments. The number of cells produced by whole body BM was estimated as follows: for pre-B cells, 4.5 X 10(8)/day; for TdT+mu-, 0.7 X 10(8)/day; and for HIS24+TdT-Ig- 2.6 X 10(8)/day. From the derived cell flux in these compartments we suggest that 1) many more pre-B cells are produced than needed by the peripheral B cell pool; 2) if TdT is an obligatory stage in B cell genesis, there must be at least two cell cycles in the pre-B cell compartment; 3) if it is not, the TdT+ stage may be bypassed, with HIS24+TdT-Ig- cells perhaps feeding directly into the pre-B cell compartment.  相似文献   

14.
Chronic treatment of mice from birth with anti-mu antibodies aborts development of B lymphocytes and plasma cells. In these studies we show that bone marrow from anti-mu-treated mice contains a population of cells with cytoplasmic IgM, but which lack detectable cell-surface IgM. These cells are analogous to pre-B cells, defined in ontogenetic studies as the immediate precursors of B lymphocytes. Pre-B cells from bone marrow of anti-mu treated mice retain their functional integrity, as evidenced by their ability to give rise to sIgM+, LPS-responsive lymphocytes in culture. We also show that cyclophosphamide treatment destroys pre-B cells and that recovery of pre-B cells in bone marrow precedes the regeneration of sIgM+ B lymphocytes. Generation of B lymphocytes in adult mice apparently occurs exclusively in the bone marrow because induction of extramedullary hemopoiesis in spleen was not accompanied by the appearance of pre-B cells in that organ.  相似文献   

15.
The combined expression of the M167 mu/kappa anstiphosphocholine (PC) transgenes with the x-linked immunodeficiency gene, xid, results in an almost total failure to develop B cells in the peripheral lymphoid organs of such mice. Although there is no significant difference between the normal transgene positive (TG+) female offspring and the immunodeficient TG+ xid males with respect to the number of B220+ pre-B cells and IgM+B220+B cells that develop in their bone marrow, the hemizygous xid males have 85% fewer B cells in their spleens than the phenotypically normal heterozygous F1 females. In xid M167-mu-transgenic mice, PC-specific B cells also fail to develop in the spleen; however, numerous B cells bearing the mua+VH1(+)-transgene product associated with endogenous kappa L chains that do not give rise PC-specific antibodies are present. In the phenotypically normal TG+ (B6.CBA/N x mu 243-4)F1 female mice, PC-specific B cells represent almost 10% of the total B cell population, and these B cells express an M167-Id that has been produced by association of the VH1 transgene product with an endogenous V kappa 24L chain. B cells expressing the normally dominant T15-Id are not detectable in the spleens of these M167 mu-transgenic mice. Furthermore, M167-Id+ B cells are present at a fivefold lower level in the bone marrow of mu-TG+ normal mice than in their spleens. These data suggest that the PC-specific B cells that develop in TG+ xid mice are either clonally deleted via some "IgR-directed" mechanism or they fail to receive the appropriate signals to exit the bone marrow or to enter the peripheral lymphoid tissues. This hypothesis is supported by the finding that TNP-specific B cells develop normally and do not undergo clonal deletion in xid mice carrying the Sp6 mu/kappa anti-TNP transgenes.  相似文献   

16.
Cell surface antigens expressed by subsets of pre-B cells and B cells   总被引:9,自引:0,他引:9  
A large number of monoclonal antibodies, produced by immunizing rats with mouse pre-B cell lines, have been analyzed for their ability to define cell surface antigens expressed by B cells at early stages of differentiation. Whereas many antibodies recognized antigens on pre-B cell lines, only two clones detected cell surface antigens that were distinguished by their restricted distribution among a panel of continuous cell lines and cells from various tissues. Monoclonal antibody clone AA4.1 recognized a cell surface antigen found on all pre-B lymphomas and on one of three B lymphomas tested. This antigen was found on cells at highest frequency in the bone marrow. Adult spleen and fetal liver also have detectable numbers of AA4.1+ cells. Cells that did not express this antigen include plasmacytomas, two of three B lymphomas, T lymphomas, a stem cell line, adult liver, brain, thymus, and lymph node cells. Clone GF1.2 detected an antigen on some pre-B cell lines, one of three B lymphomas tested, and a small fraction of cells from adult bone marrow, spleen, lymph node, and fetal liver. Plasmacytomas, some pre-B lymphomas, two B lymphomas, T lymphomas, adult liver, brain, and thymus cells were negative. In adult bone marrow, AA4.1 bound to all cytoplasmic IgM+ pre-B cells, whereas GF1.2 detected one-half of these cells. Both antibodies recognized approximately 50% of surface IgM+ (sIgM+) bone marrow cells. A small population of bone marrow cells lacking any detectable Ig (surface or cytoplasmic) also reacted with these antibodies. Depletion of AA4.1 or GF1.2 antigen-bearing cells from bone marrow reduced the ability of bone marrow B cells to respond to LPS by 50 to 65%. Experiments with a cloned pre-B lymphoma demonstrate that AA4.1+ pre-B cells become sIgM+ GF1.2+ B cells after activation with LPS. These antibodies recognize cell surface determinants with restricted distribution among the B lymphocyte lineage because they detect antigens displayed by normal and transformed immature B lymphocytes.  相似文献   

17.
18.
19.
To investigate early stages of B lymphocytopoiesis in rat bone marrow (BM) before the expression of surface IgM (s mu), the populations of cytoplasmic mu-chain-positive (c mu+) pre-B cells and terminal deoxynucleotidyl transferase-positive (TdT+) cells were studied by double immunofluorescence microscopy. B lymphocytes that were s mu+ constituted 5%, c mu+s mu- pre-B cells 23%, and TdT+ cells 4% of nucleated cells in the BM of juvenile rats. TdT+ and pre-B cells ranged between 7 and 17 microns in diameter. TdT+ cells were slightly larger, with a modal diameter of 10.5 microns against 9 microns for pre-B cells. mu-Chains were absent from nearly all TdT+ cells. Their surface antigenic phenotype was studied by using a panel of mouse monoclonal antibodies (MAb) to rat B lymphocyte-associated antigens (Ig, Ia, and others) and T lymphocyte-associated antigens. Both pre-B cells and TdT+ lacked surface Ig and Ia but carried most of the other B lymphocyte-associated antigens analyzed. TdT+ and pre-B cells lacked those antigens found only on the T lineage. By using MAb HIS24 (detecting a non-Ig/Ia B lymphocyte-associated antigen) and fluorescence-activated cell sorting, TdT+ and pre-B cells were highly enriched. The results show that most TdT+ cells in rat BM are mu- but demonstrate strong similarity with pre-B cells in surface antigenic phenotype. Therefore, as suggested for man, a major proportion of rat BM TdT+ cells may be B lineage-cells before mu heavy chain gene expression.  相似文献   

20.
The development and differentiation of B cells expressing different immunoglobulin (Ig) isotypes was studied in cultures of murine neonatal liver cells. Before culture, 5 to 15% of the liver cells were mu + pre-B cells; 1 to 3% had surface IgM and less than 0.1% had slgG. During 4 days in culture the number of pre-B cells declined, whereas the number of IgM B cells increased greater than 20-fold; IgG B cells also increased in number. Of the four subclasses, IgG3+ and IgG2b+ cells predominated, each representing 3 to 10% of the total B cells at day 4. IgG1+ and IgG2a+ cells were present in lower numbers, representing 1 to 5% and 0.3 to 2.5% of B cells, respectively. Most IgG+ cells also expressed sIgM. Only a minority (less than 10%) of the sIgM+ cells were sIgD+, and most sIgG+ cells were sIgD-. Few T cells were present in these cultures (less than 0.5% in newborn liver), and sIgG+ cells were generated in normal frequencies in cultures of cells from nude mice. The numbers of B cells expressing each IgG subclass were similar in cultures from athymic nu/nu mice, nu/+ heterozygous littermates, and normal BALB/c mice. Plasmablasts and plasma cells appeared over a 14-day culture interval, and these expressed cytoplasmic IgM, IgG3, IgG1, IgG2b, IgG2a, and IgA. Measurable amounts of the first four isotypes were detected in the culture supernatants by radioimmunoassay. These results indicate that neonatal B cells can undergo isotype switching in the absence of T cell help, and that the expression of sIgD may not be a prerequisite for cells to switch Ig isotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号