首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse pre-B cells synthesize and secrete mu heavy chains but not light chains   总被引:35,自引:0,他引:35  
D Levitt  M D Cooper 《Cell》1980,19(3):617-625
The immunoglobulins produced by the earliest recognizable B cell precursors (pre-B cells) were characterized in the mouse and human. Immunofluorescent analysis revealed no evidence of surface IgM components, and only mu heavy chains could be detected intracytoplasmically in pre-B cells. Surface IgM components could not be isolated from intact fetal liver cells that lacked sIgM+ B lymphocytes but possessed pre-B cells. Pre-B cells were shown to synthesize and secrete mu heavy chains but not light chains by immunochemical analysis. These mu chains constituted less than 0.01% of TCA precipitable protein synthesized and secreted by fetal liver cells during an 8 hr labelling period. Migration of both intracellular and secreted mu chains on SDS-PAGE suggested that they were smaller than mu chains secreted by mouse and human plasmacytomas. These data indicate that mu chain synthesis precedes light chain expression during B cell ontogeny and suggest a new role for pre-B cells in the generation and expression of a diverse immunoglobulin repertoire.  相似文献   

2.
Immunoglobulin mu chains synthesized in murine pre-B cells are known to be associated with surrogate light chains designated as omega (omega), iota (iota) and B34. In addition to these molecules, we identified the complexes of polypeptides (50, 40, 27 and 15.5 kd) associated with surface or intracellular mu chains of pre-B cell lines. Most of these polypeptides were continuously synthesized and associated with mu chains in virgin B cells lines, although some of them scarcely bound to the mu kappa dimer or mu 2 kappa 2 tetramer concomitantly present in the same clone or population. However, in mature B cells they were no longer detectable except B34. Cross-linking of micron chains on the surface of pre-B cells resulted in an increase in intracellular free Ca2+, indicating that the micron chain complex on the surface of pre-B cell lines acted as a signal transduction molecule. However, the receptor cross-linkage of pre-B cell lines did not induce the increased inositol phospholipid metabolism usually observed in virgin and mature B cell lines. These results suggest that, during the differentiation from pre-B to mature B cells, the cells express two types of mu chain complexes which exhibit different structures as a whole and possess different signal transducing capacities.  相似文献   

3.
4.
Lymphoid cells transformed by Rauscher murine leukemia virus (R-MuLV) belonged to the B cell lineages. One group of cells exhibited Fc receptors but completely lacked immunoglobulin mu heavy and kappa light chains. The majority of the cells resemble pre-B type. They displayed mu chains but kappa chains were completely absent. Very rarely certain cells synthesized both mu and kappa chains. Based on the presence of Fc receptors and IgM synthesis the cells transformed by R-MuLV belonged to three B cell developmental stages. These cells were tested for immunoglobulin gene rearrangements using JH and CK probes. DNA from cell lines without any detectable levels of IgM mu exhibited embryonic as well as rearranged JH genes, whereas cells expressing IgM possess, in addition, productive and non-productive light chain gene rearrangements. The most terminally differentiated cell possesses JH and CK rearrangement associated with the synthesis of mu and kappa chains. Presumably the cells with rearranged JH and CK genes without immunoglobulin synthesis represent a developmental transition. We conclude that cells transformed by R-MuLV belonged to five step-wise compartments of B cell development. Our findings implicate definite sequential events of immunoglobulin gene rearrangement and expression during B cell development.  相似文献   

5.
During B cell differentiation rearrangement of immunoglobulin (Ig) genes is partially regulated by the Ig proteins. Rearrangement of heavy (H) chain genes is inhibited, whilst that of light (L) chain genes is induced by the membrane form of the mu H chain. In order to analyse additional structural requirements of mu induced L chain gene rearrangement we transfected wild-type mu and mutant mu constructs lacking functional exons encoding the first or second constant domains into Abelson murine leukemia virus (AMuLV) transformed pre-B cells. All mu chains are expressed on the surface of the pre-B cell and all associate with omega and iota, two proteins forming a surrogate light chain, necessary for mu membrane expression. Nevertheless, only wild-type mu and not the mutant mu proteins promote L gene rearrangement. A heterodimer of proteins with Mr of 33 kd and 36 kd was found associated with wild-type but not with the mutant mu proteins. Continuous presence of mu is required for L chain gene recombination since loss of mu stopped and readdition of mu started L gene rearrangement. We propose that the protein complex composed of mu and the 33 kd/36 kd protein heterodimer is responsible for the activation of the L chain gene locus and its rearrangement.  相似文献   

6.
Immunofluorescence techniques were used to trace the development of cells expressing mu heavy chains in humans and mice. IgM B cells were distinguished from pre-B cells by their additional expression of kappa or lambda light chains. Generation of pre-B and progeny B cells was evident in hemopoietic fetal liver and bone marrow, but not in thymus, heart, lung, spleen, kidney, and placental tissues. Pre-B and B cells, in a ratio of 2 to 1, were abundant in sections of hemopoietic liver and in bone marrow from 12- to 15-wk-old human fetuses, whereas these cells were rare in nonhemopoietic liver samples obtained beyond the 34th week. In mouse fetal liver mu+ cells appeared first around the 12th day of gestation and increased in frequency throughout the third trimester. On day 17 of gestation, kappa light chain expression by 1% of mu+ cells was noted, and the percentage of kappa+/mu+ cells increased progressively to more than 80% by 5 days after birth. Pre-B and B cells were interspersed among myeloid and more abundant erythropoietic cellular elements in the extrasinusoidal areas adjacent to hepatic cords. A loose clustering or "starburst" distribution pattern of pre-B cells became evident around day 17. These observations suggest a model for in situ generation of pre-B and progeny B cells in the hemopoietic fetal liver. In the midst of more numerous erythropoietic elements, immunoglobulin-negative precursors divide to generate a loose colony of mu+ pre-B cells that divide again before giving rise to a wave of IgM B cells.  相似文献   

7.
Little is known about the role of signals transduced by cell surface IgM (sIgM) expressed during early B cell development. A subclone (1.6) of the late pre-B cell lymphoma 70Z/3.12 was used to study signal transduction by surface mu heavy (H) chain before and after transition to the early immature B cell stage, and the functional consequences thereof. Although kappa L chain expression can be induced on 1.6 cells by LPS or cytokines, immunoprecipitations indicated that the non-induced 1.6 cells expressed mu H chain with an alternative protein(s) which may be a surrogate light chain(s). Consistent with this, anti-mu but not anti-kappa or anti-lambda antibodies caused transient Ca2+ mobilization in noninduced 1.6 cells. The Ca2+ signal was derived from both intracellular stores and Ca2+ influx in either noninduced cells or in cells that had been preinduced to express kappa L chain. Thus, the ability of mu H chain to mobilize Ca2+ as a second messenger does not depend upon the expression of mature L chains. The immature B lymphomas, WEHI-231 and CH1, express mature forms of IgM and undergo growth arrest when stimulated by anti-mu antibody. In contrast, signals generated by mu H chain on either noninduced or preinduced 1.6 cells or in the sIgM+ pre-B cell transfectant 300-19 mu lambda 36/8 did not cause growth arrest. These results suggest that mu H chain expressed on pre-B cells is capable of mobilizing Ca2+, but that this signal alone is insufficient to induce growth arrest in the pre-B cell.  相似文献   

8.
Pre-B cell receptor (pre-BCR) signals are essential for pro-B cells to mature efficiently into pre-B cells. The pre-BCR is an Ig-like transmembrane complex that is assembled from two mu H chains (mu HC) and two surrogate L chains consisting of the non-covalently associated polypeptides VpreB and lambda5. In lambda5(-/-) mice, pro-B cell maturation is impaired, but not completely blocked, implying that a mu HC induces differentiation signals in the absence of lambda5. Using a mouse model, in which transgenic mu HC expression can be controlled by tetracycline, we show that in the absence of lambda5, the transgenic mu HC promotes in vivo differentiation of pro-B cells, induces IL-7-dependent cell growth, and is expressed on the surface of pre-B cells. Our findings not only show that an incomplete pre-BCR can initiate signals, but also challenge the paradigm that an IgHC must associate with an IgLC or a SLC to gain transport and signaling competency.  相似文献   

9.
Consistent with an ordered immunoglobulin (Ig) gene assembly process during precursor (pre-) B cell differentiation, we find that most Abelson murine leukemia virus (A-MuLV)-transformed pre-B cells derived from scid (severe combined immune deficient) mice actively form aberrant rearrangements of their Ig heavy chain locus but do not rearrange endogenous kappa light chain variable region gene segments. However, we have identified several scid A-MuLV transformants that transcribe the germline Ig kappa light chain constant region and actively rearrange the kappa variable region gene locus. In one case progression to the stage of kappa light chain gene rearrangement did not require expression of Ig mu heavy chains; furthermore, this progression could not be efficiently induced following expression of mu heavy chains from an introduced vector. As observed in pre-B cell lines from normal mice, attempted V kappa-to-J kappa rearrangements in scid transformants occur by inversion at least as frequently as by deletion. The inverted rearrangements result in retention of both products of the recombination event in the chromosome, thus allowing their examination. scid kappa coding sequence joins are aberrant and analogous in structure to previously described scid heavy chain coding joins. In contrast, the recognition signals that flank involved coding segments frequently are joined precisely back-to-back in normal fashion. The scid VDJ recombinase defect therefore does not significantly impair recognition of, site-specific cutting at, or juxtaposition and appropriate ligation of signal sequences. Our finding that the scid defect prevents formation of correct coding but not signal joins distinguishes these events mechanistically.  相似文献   

10.
The nature of the target cell for Abelson virus transformation and the effect of transformation on B cell differentiation were studied with six cloned lines of nontransformed immature B lymphocytes. Three clones were at the pre-B cell stage of maturation prior to A-MuLV infection; two were at the B cell stage, and one appeared to represent a stage prior to rearrangement of the mu heavy chain gene. All six cloned lines could be transformed by Abelson virus. Many of the transformants of the pre-B cell clones underwent kappa light chain gene rearrangement and expression following viral infection. Distinct light chain gene rearrangements were segregated by further subcloning these transformed lines. Abelson virus infection of one cloned cell line believed to represent a stage of maturation prior to the pre-B cell stage produced pre-B cell transformants with a variety of heavy chain gene rearrangements. Thus B lymphoid target cells for Abelson virus are not restricted to a single developmental stage, and some transformed subclones can undergo extensive immunoglobulin gene rearrangements shortly after viral infection.  相似文献   

11.
A radioautographic immunolabeling technique has been developed to detect pre-B cells bearing cytoplasmic mu chains among populations of bone marrow lymphoid cells identified by conventional hematologic stains. 125I-Anti-mu antibody was applied either to fixed marrow smears, labeling total mu chains both in the cytoplasm (c mu) and at the cell surface (s mu), or to cell suspensions, labeling s mu alone. In stained radioautographs the incidence of c mu+ s mu- pre-B cells was derived both indirectly by subtracting values for s mu+ cells from those for total mu+ cells of various sizes in normal mice and directly by the total mu chain labeling in mice depleted of s mu+ cells by anti-IgM treatment in vivo. Binding specificity was demonstrated by the displacement of labeling by nonradioactive anti-mu antibody. The c mu+ s mu- cells showed a bimodal size distribution. They accounted for 40% of the large lymphoid cells and 30% of the small lymphocytes in the marrow. A further 50% of the small lymphocytes were B lymphocytes (s mu+) and 8% were T lymphocytes (Thy 1.2+). Thus, the technique demonstrates the presence of c mu+ s mu- pre-B cells among both proliferating large lymphoid cells and nondividing small lymphocytes, as classically defined in marrow smears. In addition, the results reveal a broad size distribution of mu- lymphoid cells, including a subset of small lymphocytes which lack c mu, s mu, and Thy 1.2 and thus cannot be assigned to either B or T lineage by these criteria. The findings suggest that in addition to B cells the marrow may produce other types of lymphoid cells, yet to be defined.  相似文献   

12.
H M Jck  M Wabl 《The EMBO journal》1988,7(4):1041-1046
  相似文献   

13.
Control of IgM synthesis in the murine pre-B cell line, 70Z/3'   总被引:5,自引:0,他引:5  
The murine 70Z/3 tumor resembles a pre-B cell in synthesizing only intracellular mu-chains and no detectable light chain. However, one kappa gene is already rearranged, and after overnight incubation with lipopolysaccharide (LPS), most of the cells are induced to synthesize light chain. The induced cells display IgM on their surface, but do not secrete IgM. Thus, 70Z/3 cells resemble cells poised at the pre-B cell/B lymphocyte border. We have examined synthesis and post-translational modification of mu-chains in uninduced and induced 70Z/3 cells. Isolation of mu-chains and peptide maps demonstrated that both populations synthesize intracellular forms that correspond to membrane-specific mum and secretion-specific mus chains. These intracellular forms have completed only the first of the two glycosylation steps characteristic of eukaryotic cells. After induction by LPS, L chain synthesis commences, mum and mus synthesis are both increased twofold to threefold (due to an increased rate of synthesis rather than decreased degradation), and both complex with L chain to form mu2L2 tetramers. Furthermore, the glycosylation of a subset of the mum chains is completed, and these are placed on the membrane. However, unglycosylated mu2L2 tetramers can be placed on the membrane, so glycosylation is not a requirement. These data suggest that L chain may not be sufficient for externalization of mum and mus chains. These data support the idea that the controls of membrane placement and secretion of mu chains are post-translational and that different mechanisms operate for mum and mus chains.  相似文献   

14.
Two bone marrow stromal cell lines isolated from the adherent layer of a Dexter-type long term bone marrow culture differ markedly in their hemopoietic support capacity. S17 supports myelopoiesis and the differentiation of early B cell precursors into B lymphocytes while S10 supports myeloid cell differentiation and not B lymphopoiesis. The identification of a stromal cell line with B cell support capacity prompted an investigation of whether the effects of S17 were mediated via soluble factors. Results presented herein indicate that medium conditioned by S17 but not S10 contains an activity that can induce the expression of the 220,000 m.w. 14.8 antigen and cytoplasmic mu H chain of Ig in B lymphocyte progenitors that have not yet expressed these markers. Bone marrow cells were depleted of 14.8+, cytoplasmic mu+ pre-B cells on antibody-coated petri dishes. After 24-h liquid culture newly generated pre-B cells were enumerated as cells that expressed cytoplasmic mu H chain of Ig but not Ig L chains by immunofluorescence. Expression of Ly5(220) was monitored by 14.8 antibody binding. This pre-B cell differentiation activity was abrogated by digestion with pronase, aminopeptidase, or carboxypeptidase. Isoelectric focusing data revealed the activity to have isoelectric point of 5.9 to 6.2. S17-conditioned medium was fractionated using HPLC and each fraction tested for pre-B cell-generating activity. Fractions collected from a Superose 12 gel filtration column were found to have two peaks of activity associated with molecules of apparent m.w. of approximately 60,000 and 10,000. Virtually identical peaks of activity were observed when medium conditioned by heterogeneous stromal cell cultures was fractionated. Separation of S10-conditioned medium revealed no cryptic activity. S17-conditioned medium was further characterized by anion exchange chromatography and the majority of the pre-B cell generating activity shown to be associated with the void volume that eluted from a MonoQ column. These fractions were rechromatographed on Superose and the activity again found to be associated with two fractions corresponding to apparent m.w. of 60,000 and 10,000. The S17 pre-B cell differentiation activity appears to result from the presence of a novel molecule because other well characterized mediators had no activity in this short-term liquid culture system. No pre-B cell-generating activity was observed when IL-1 or conditioned medium containing IL-2, IL-3, or IL-4 (B cell stimulatory factor 1) were added to cultures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
It is well understood how a variety of Ig H and L chains, components of BCR, are generated in the DNA level during B cell development. However, it has remained largely unknown whether and how each component is monitored for its quality and selected before the assembly into the BCR. Here we show that muH chains produced by pre-B cells display a wide spectrum of ability to form the pre-BCR, which is composed of muH and surrogate light (SL) chains and is crucial for B cell development. The level of surface pre-BCR expression varies among pre-B cells, depending on the ability of their muH chains to pair with SL chains. The higher the level of pre-BCR expression by pre-B cells, the stronger their pre-BCR signaling, and the better they proliferate and differentiate. Thus, the extent of survival, proliferation, and differentiation of individual pre-B cells is primarily determined by the SL-pairing ability of their muH chains. Furthermore, IgH chains with higher potential to assemble with IgL chains appear to be positively selected and amplified through the assessment of their ability to pair with SL chains at the pre-BCR checkpoint before the assembly into the BCR. These results indicate that the pre-BCR assesses the quality of muH chains and tunes the pre-B cell repertoire by driving the preferential expansion and differentiation of cells with the higher quality of muH chains.  相似文献   

16.
An increase in pre-B cell proliferation and B lymphocyte production in mouse bone marrow has previously been shown to follow the administration of various foreign agents in vivo. The responses of early precursor B cells before the expression of mu chains (pro-B cells) have now been examined, using double immunofluorescence labeling for terminal deoxynucleotidyl transferase (TdT) and B220 glycoprotein as detected by monoclonal antibody 14.8. A single injection of sheep red blood cells (SRBC) was followed by an increase in the number of cells in three defined populations of early precursor B cells lacking mu chains (TdT+ 14.8- cells, TdT+ 14.8+ cells, and 14.8+ mu- cells) as well as cytoplasmic mu-bearing pre-B cells and surface mu-bearing B lymphocytes. An accompanying increase in proliferative activity was indicated by the numbers of 14.8+ mu- cells and pre-B cells which accumulated in metaphase after inducing mitotic arrest with vincristine. These effects were all abrogated either by treating mice with silica to depress macrophage function or by splenectomy. In mice given multiple injections of SRBC for 4 weeks the elevated levels of early precursor B cell production and B cell genesis were sustained. The work demonstrates that the in vivo production of early precursor B cells, putatively including those at the stage of Ig heavy chain gene rearrangement, can be stimulated by exposure to external agents acting indirectly by a silica-sensitive, spleen-dependent mechanism. The findings suggest that the level of pro-B cell proliferation and primary B cell genesis normally taking place in mouse bone marrow may reflect the level of exposure to potential stimulants in the external environment mediated by activation of splenic macrophages. The possibility that abnormally high levels of macrophage activation could predispose to dysregulations of the B cell lineage is raised.  相似文献   

17.
The cellular mechanism by which an injection of sheep red blood cells (SRBC) results in an increased production of B lymphocytes in mouse bone marrow has been studied by adoptive cell transfer and the use of two in vivo assays of bone marrow B-cell genesis. Proliferation of B progenitor cells was examined by immunofluorescent labeling combined with mitotic arrest, while small lymphocyte renewal was measured by [3H]thymidine labeling and radioautography. In C3H/HeJ mice the administration of SRBC resulted in increased proliferation among bone marrow pre-B cells which contained cytoplasmic mu heavy chains but lacked kappa light chains and surface mu chains. The turnover of small lymphocytes also increased. These stimulatory effects were transferred to naive recipient mice by organ fragments and by cell suspensions harvested from the spleens of donor mice injected with SRBC. In contrast, spleen cells and thymus cells from saline-injected donors and thymus cells from SRBC-injected donors had no such stimulatory effects. The results demonstrate that spleen cells mediate the stimulatory effect of SRBC on bone marrow B-lymphocyte production. Spleen cell transfer provides a system to study further the cells and factors involved in the regulation by external environmental agents of the rate of primary B-cell genesis in vivo.  相似文献   

18.
Signals delivered by Ig receptors guide the development of functional B lymphocytes. For example, clonal expansion of early mu heavy chain ( mu HC)-positive pre-B cells requires the assembly of a signal-competent pre-B cell receptor complex (pre-BCR) consisting of a mu HC, a surrogate L chain, and the signal dimer Ig alpha beta. However, only a small fraction of the pre-BCR is transported to the cell surface, suggesting that pre-BCR signaling initiates already from an intracellular compartment, e.g., the endoplasmic reticulum (ER). The finding that differentiation of pre-B cells and allelic exclusion at the IgH locus take place in surrogate L chain-deficient mice further supports the presence of a mu HC-mediated intracellular signal pathway. To determine whether a signal-competent Ig complex can already be assembled in the ER, we analyzed the consequence of pervanadate on tyrosine phosphorylation of Ig alpha in J558L plasmacytoma and 38B9 pre-B cells transfected with either a transport-competent IgL chain-pairing or an ER-retained nonpairing micro HC. Flow cytometry, combined Western blot-immunoprecipitation-kinase assays, and confocal microscopy revealed that both the nonpairing and pairing mu HC assembled with the Ig alpha beta dimer; however, in contrast to a pairing mu HC, the nonpairing mu HC was retained in the ER-cis-Golgi compartment, and neither colocalized with the src kinase lyn nor induced tyrosine phosphorylation of Ig alpha after pervanadate treatment of cells. On the basis of these findings, we propose that a signal-competent Ig complex consisting of mu HC, Ig alpha beta, and associated kinases is assembled in a post-ER compartment, thereby supporting the idea that a pre-BCR must be transported to the cell surface to initiate pre-BCR signaling.  相似文献   

19.
In rat bone marrow (BM), the B lineage surface antigen HIS24 is expressed by all surface mu chain-bearing (s mu+) B cells, by cytoplasmic mu chain-containing (c mu+s mu-) pre-B cells and TdT+ cells, and by lymphoid cells lacking both mu and TdT. Because TdT+ and HIS24+TdT-mu- cells may represent stages in B lymphocytopoiesis before mu chain expression, we investigated their kinetics. The metaphase arrest method was combined with immunofluorescence staining to detect proliferation and to quantitate cell production in the BM pre-B, TdT+, and HIS24+TdT-mu- compartments. Their apparent cell cycle times (tC(a)) were 38, 36, and 19 hr, and the number of cells produced per hour per femur were 58, 9, and 41 X 10(4), respectively. The HIS24+ compartments showed further phenotypic heterogeneity. Six percent of TdT+ cells expressed mu chains and were therefore pre-B cells. Twenty percent of HIS24+TdT-mu- cells expressed Ig other than mu chains, with size distribution and kinetics similar to HIS24+TdT-Ig- cells. Thus, the rate of production in the truly Ig-HIS24+ compartment was about 40 X 10(4)/hr/femur (8.5 by TdT+mu- and 33 by TdT-Ig-). In each phenotypic compartment, mitoses were confined to subsets of large (greater than 11 to 12 micron) cells with tC(a) of 13 to 15 hr. Surface mu+ B cells were essentially non-cycling. To quantitate whole body BM cell production, the recovery of marrow from bone and the distribution of BM were measured in 59Fe distribution experiments. The number of cells produced by whole body BM was estimated as follows: for pre-B cells, 4.5 X 10(8)/day; for TdT+mu-, 0.7 X 10(8)/day; and for HIS24+TdT-Ig- 2.6 X 10(8)/day. From the derived cell flux in these compartments we suggest that 1) many more pre-B cells are produced than needed by the peripheral B cell pool; 2) if TdT is an obligatory stage in B cell genesis, there must be at least two cell cycles in the pre-B cell compartment; 3) if it is not, the TdT+ stage may be bypassed, with HIS24+TdT-Ig- cells perhaps feeding directly into the pre-B cell compartment.  相似文献   

20.
V(H)12 B cells undergo stringent selection at multiple checkpoints to favor development of B-1 cells that bind phosphatidylcholine. Selection begins with the V(H) third complementarity-determining region (CDR3) at the pre-B cell stage, in which most V(H)12 pre-B cells are selectively eliminated, enriching for those with V(H)CDR3s of 10 aa and a fourth position Gly (designated 10/G4). To understand this selection, we compared B cell differentiation in mice of two V(H)12 transgenic lines, one with the favored 10/G4 V(H)CDR3 and one with a non-10/G4 V(H)CDR3 of 8 aa and no Gly (8/G0). Both H chains drive B cell differentiation to the small pre-BII cell stage, and induce allelic exclusion and L chain gene rearrangement. However, unlike 10/G4 pre-B cells, 8/G0 pre-B cells are deficient in cell division and unable to differentiate to B cells. We suggest that this is due to poor 8/G0 pre-B cell receptor expression and to an inability to form an 8/G0 B cell receptor. Our findings also suggest that V(H)12 H chains have evolved such that association with surrogate and conventional L chains is most efficient with a 10/G4 CDR3. Thus, selection for phosphatidylcholine-binding B-1 cells is most likely the underlying evolutionary basis for the loss of non-10/G4 pre-B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号