首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flea's hind legs are the chief source of jumping power, but in species which execute large jumps, take-off is accelerated by elastic energy released from a resilin pad (homologous with the wing hinge ligaments of flying insects) situated in the pleural arch. A central click mechanism, operated by a rapid twitch of the trochanteral depressor (the starter muscle), synchronizes the separate sources of energy which power the jump. Ciné photos confirm the morphological evidence that the flea takes off from the trochanters, not the tarsi. The loss of wings, associated with lateral compression of the body and the shortening of the pleural ridge (which thus lowers the position of the pleural arch) together with modifications of the direct and indirect flight muscles, are some of the main morphological features associated with the change from a flying to a saltatorial mode of progression. The flea's take-off basically resembles that of other Panorpoid insects (Diptera, Mecoptera, etc.). The release of elastic energy from the pleural arch is a system by which the force used to move the wings of flying insects is rapidly fed back into the legs and adds power to the jump.  相似文献   

2.
Perching dragonflies (Libellulidae; Odonata) are sit-and-wait predators, which take off and pursue small flying insects. To investigate their prey pursuit strategy, we videotaped 36 prey-capture flights of male dragonflies, Erythemis simplicicollis and Leucorrhinia intacta, for frame-by-frame analysis. We found that dragonflies fly directly toward the point of prey interception by steering to minimize the movement of the prey's image on the retina. This behavior could be guided by target-selective descending interneurons which show directionally selective visual responses to small-object movement. We investigated how dragonflies discriminate distance of potential prey. We found a peak in angular velocity of the prey shortly before take-off which might cue the dragonfly to nearby flying targets. Parallax information from head movements was not required for successful prey pursuit. Accepted: 11 November 1999  相似文献   

3.
Polypeptides containing between 4 and 32 repeats of a resilin‐inspired sequence AQTPSSYGAP, derived from the mosquito Anopheles gambiae, have been used as tags on recombinant fusion proteins. These repeating polypeptides were inspired by the repeating structures that are found in resilins and sequence‐related proteins from various insects. Unexpectedly, an aqueous solution of a recombinant resilin protein displays an upper critical solution temperature (cold‐coacervation) when held on ice, leading to a separation into a protein rich phase, typically exceeding 200 mg/mL, and a protein‐poor phase. We show that purification of recombinant proteins by cold‐coacervation can be performed when engineered as a fusion partner to a resilin‐inspired repeat sequence. In this study, we demonstrate the process by the recombinant expression and purification of enhanced Green fluorescent protein (EGFP) in E. coli. This facile purification system can produce high purity, concentrated protein solutions without the need for affinity chromatography or other time‐consuming or expensive purification steps, and that it can be used with other bulk purification steps such as low concentration ammonium sulfate precipitation. Protein purification by cold‐coacervation also minimizes the exposure of the target protein to enhanced proteolysis at higher temperature. Biotechnol. Bioeng. 2012; 109: 2947–2954. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
Electric fly killers (EFKs) are commonly used to control flying insects that enter food establishments. For establishment of the incidence of pathogen-bearing insects in food establishments, insect samples obtained from EFK trays could be used. The principal difficulty with this approach is that the survival time of microorganisms on or within insect corpses after electrocution is unknown. This study determined the survival of Serratia marcescens (as a representative of the enteric bacteria) within houseflies following their electrocution by a commercial EFK. S. marcescens was successfully ingested by houseflies and survived on and within the corpses after electrocution for up to 5 weeks. Maximal levels of bacteria were recovered 24 h postelectrocution. The study also demonstrates the ability of ingested S. marcescens to out-compete resident microbial flora within houseflies. The findings are intended to pave the way for further research to determine the incidence of pathogen-laden flying insects in food establishments. Received: 30 April 2002 / Accepted: 3 July 2002  相似文献   

6.
Research data of the microstructure and surface morphology of insect wings have been used to help design micro air vehicles (MAV) and coating materials. The present study aimed to examine the microstructure and morphology of the hind wings of Cyrtotrachelus buqueti using inverted fluorescence microscopy (IFM), scanning electron microscopy (SEM), and a mechanical testing system. IFM was used to investigate the distribution of resilin in the hind wing, and SEM was performed to assess the functional characteristics and cross-sectional microstructure of the wings. Moreover, mechanical properties regarding the intersecting location of folding lines and the bending zone (BZ) were examined. Resilin, a rubber-like protein, was found in several mobile joints and in veins walls that are connected to the wing membranes. Taken together, structural data, unfolding motions, and results of tensile testing suggest two conclusions on resilin in the hind wing of C. buqueti: firstly, the resilin distribution is likely associated with specific folding mechanisms of the hind wings, and secondly, resilin occurs at positions where additional elasticity is needed, such as in the bending zone, in order to prevent structural damage during repeated folding and unfolding of the hind wings. The functional significance of resilin joints may shed light on the evolutionary relationship between morphological and structural hind wing properties.  相似文献   

7.
The rubbery protein resilin appears to form an integral part of the energy storage structures that enable many insects to jump by using a catapult mechanism. In plant sucking bugs that jump (Hemiptera, Auchenorrhyncha), the energy generated by the slow contractions of huge thoracic jumping muscles is stored by bending composite bow-shaped parts of the internal thoracic skeleton. Sudden recoil of these bows powers the rapid and simultaneous movements of both hind legs that in turn propel a jump. Until now, identification of resilin at these storage sites has depended exclusively upon characteristics that may not be specific: its fluorescence when illuminated with specific wavelengths of ultraviolet (UV) light and extinction of that fluorescence at low pH. To consolidate identification we have labelled the cuticular structures involved with an antibody raised against a product of the Drosophila CG15920 gene. This encodes pro-resilin, the first exon of which was expressed in E. coli and used to raise the antibody. We show that in frozen sections from two species, the antibody labels precisely those parts of the metathoracic energy stores that fluoresce under UV illumination. The presence of resilin in these insects is thus now further supported by a molecular criterion that is immunohistochemically specific.  相似文献   

8.
Abstract 1. Several studies have shown that above‐ and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host‐plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was carried out to determine if root‐feeding insects can influence feeding and oviposition preferences and decisions of naturally colonising foliar‐feeding insects. 2. Using the wild cruciferous plant Brassica nigra and larvae of the cabbage root fly Delia radicum as the belowground root‐feeding insect, naturally colonising populations of foliar‐feeding insects were monitored over the course of a summer season. 3. Groups of root‐infested and root‐uninfested B. nigra plants were placed in a meadow during June, July, and August of 2006 for periods of 3 days. The root‐infested and the root‐uninfested plants were either dispersed evenly or placed in clusters. Once daily, all leaves of each plant were carefully inspected and insects were removed and collected for identification. 4. The flea beetles Phyllotreta spp. and the aphid Brevicoryne brassicae were significantly more abundant on root‐uninfested (control) than on root‐infested plants. However, for B. brassicae this was only apparent when the plants were placed in clusters. Host‐plant selection by the generalist aphid M. persicae and oviposition preference by the specialist butterfly P. rapae, however, were not significantly influenced by root herbivory. 5. The results of this study show that the presence of root‐feeding insects can affect feeding and oviposition preferences of foliar‐feeding insects, even under natural conditions where many other interactions occur simultaneously. The results suggest that root‐feeding insects play a role in the structuring of aboveground communities of insects, but these effects depend on the insect species as well as on the spatial distribution of the root‐feeding insects.  相似文献   

9.
The dragonfly, (Aeshna, Anax) which feeds on small flying insects, requires a visual system capable of signaling the movements of airborne prey. A group of 8 descending feature detectors in the dragonfly are tuned exclusively to moving contrasting objects. These target-selective descending neurons project from the brain to the thoracic ganglia. Their activity drives steering movement of the wings.In this study, we recorded target-selective descending neuron activity intracellularly.To define their receptive fields, we recorded responses to the movement of black square targets projected onto a screen in front of the animal. Each neuron was identified by dye injection.Target-selective descending neurons exhibit several receptive field properties. Our results show that they are strongly directionally selective. Two TSDNs, exclusively tuned to small targets, have receptive fields restricted to visual midline. Others, which are not selective for target size, have asymmetric receptive fields centered laterally.We suggest that the behavioral function of these specialized feature detectors is to steer the dragonfly during prey-tracking so as to fix the position of the prey image on the retina. If the dragonfly maintains a constant visual bearing to its prey over time it will intercept its prey.Abbreviations TSDN target-selective descending neuron - DCMD descending contralateral movement detector - MDT median dorsal tract - DIT dorsal intermediate tract - VNC ventral nerve cord  相似文献   

10.
The capture of flying insects by foraging dragonflies is a highly accurate, visually guided behavior. Rather than simply aiming at the prey’s position, the dragonfly aims at a point in front of the prey, so that the prey is intercepted with a relatively straight flight trajectory. To better understand the neural mechanisms underlying this behavior, we used high-speed video to quantify the head and body orientation of dragonflies (female Erythemis simplicicollis flying in an outdoor flight cage) relative to an artificial prey object before and during pursuit. The results of our frame-by-frame analysis showed that during prey pursuit, the dragonfly adjusts its head orientation to maintain the image of the prey centered on the “crosshairs” formed by the visual midline and the dorsal fovea, a high acuity streak that crosses midline at right angles about 60° above the horizon. The visual response latencies to drifting of the prey image are remarkably short, ca. 25 ms for the head and 30 ms for the wing responses. Our results imply that the control of the prey-interception flight must include a neural pathway that takes head position into account.  相似文献   

11.
Insects flying in a horizontal pheromone plume must attend to visual cues to ensure that they make upwind progress. Moreover, it is suggested that flying insects will also modulate their flight speed to maintain a constant retinal angular velocity of terrestrial contrast elements. Evidence from flies and honeybees supports such a hypothesis, although tests with male moths and beetles flying in pheromone plumes are not conclusive. These insects typically fly faster at higher elevations above a high‐contrast ground pattern, as predicted by the hypothesis, although the increase in speed is not sufficient to demonstrate quantitatively that they maintain constant visual angular velocity of the ground pattern. To test this hypothesis more rigorously, the flight speed of male oriental fruit moths (OFM) Grapholita molesta Busck (Lepidoptera: Tortricidae) flying in a sex pheromone plume in a laboratory wind tunnel is measured at various heights (5–40 cm) above patterns of different spatial wavelength (1.8–90°) in the direction of flight. The OFM modulate their flight speed three‐fold over different patterns. They fly fastest when there is no pattern in the tunnel or the contrast elements are too narrow to resolve. When the spatial wavelength of the pattern is sufficiently wide to resolve, moths fly at a speed that tends to maintain a visual contrast frequency of 3.5 ± 3.2 Hz rather than a constant angular velocity, which varies from 57 to 611° s?1. In addition, for the first time, it is also demonstrated that the width of a contrast pattern perpendicular to the flight direction modulates flight speed.  相似文献   

12.
In this communication, the morphologies and mechanical characteristics of nodi from the hindwings of seven Indonesian Libellulidae dragonfly species are identified. Geometrical analyses reveal that in all species, the shape of dorsal face resilin is relatively long and thin while ventral face resilin covers a greater surface area than dorsal face resilin, and is shaped like a hook. Finite element analyses reveal that the magnitude of strain energy may differ considerably between species, even though the locations of highest strain energy are usually the same. Importantly, a correlation is found to exist between the mechanical forces that build up in the resilin, the face under investigation (dorsal or ventral) and the elongational shape factor of the resilin.  相似文献   

13.
  • 1 The size–grain hypothesis ( Kaspari & Weiser, 1999 ) states that (1) as organisms decrease in size, they perceive their environment as being more rugose; (2) long legs allow organisms to step over obstacles but hinder them from entering small gaps; and (3) as the size of an organism decreases, the benefits of long legs begin to be outweighed by the costs of construction. Natural selection should therefore favour proportionally longer legs in larger organisms, thereby leading to a positive allometry between leg and body length (scaling exponent b > 1).
  • 2 Here we compare the scaling exponent of leg‐to‐body length relationships among insects that walk, walk and fly, and predominantly fly. We measured the lengths of the hind tibia, hind femur, and body length of each species.
  • 3 The taxa varied considerably in the scaling exponent b. In seven out of ten groups (Formicidae, Isoptera, Carabidae, Pentatomidae, Apidae, Lepidoptera, Odonata adult), b was significantly greater than one. However, there was no gradual decrease in b from walking to walking/flying to flying insects.
  • 4 The results of the present study provide no support for the size–grain hypothesis. We propose that leg length is not only affected by the rugosity of the environment, but also by (1) functional adaptations, (2) phylogeny, (3) lifestyle, (4) the type of insect development (hemimetabolism or holometabolism), and (5) constraints of gas exchange.
  相似文献   

14.
Dragonflies are excellent flyers among insects and their flight ability is closely related to the architecture and material properties of their wings.The veins are main structure components of a dragonfly wing,which are found to be connected by resilin with high elasticity at some joints.A three-dimensional (3D) finite element model of dragonfly wing considering the soft vein joints is developed,with some simplifications.Passive deformation under aerodynamic loads and active flapping motion of the wing are both studied.The functions of soft vein joints in dragonfly flight are concluded.In passive deformation,the chordwise flexibility is improved by soft vein joints and the wing is cambered under loads,increasing the action area with air.In active flapping,the wing rigidity in spanwise direction is maintained to achieve the required amplitude.As a result,both the passive deformation and the active control of flapping work well in dragonfly flight.The present study may also inspire the design of biomimetic Flapping Micro Air Vehicles (FMAVs).  相似文献   

15.
16.
17.
Millennia-long selective pressure of single-strand RNA viruses on the bovine Mx locus has increased the advantages of using the bovine Mx protein to evaluate the ultimate significance of the antiviral role of Mx proteins. The conclusions of research based only on the bovine Mx1 protein showed the need for comprehensive studies that demonstrate the role of all isoforms, individually or together, especially in the presence of a second isoform, the bovine Mx2 gene. This study provides information about bovine and water buffalo Mx2 genes, as well as their allelic polymorphism and basic antiviral potential. Observation of an Mx2 cDNA sequence (2,381 bp) obtained from 15 animals from 11 breeds using primers based on a previous sequence (NCBI accession no. AF335147) revealed several nucleotide substitutions, with eight different alleles and two amino acid exchanges: Gly to Ser at position 302 and Ile to Val at position 354, though the latter was found only in the NCBI database. A water buffalo Mx2 cDNA sequence was identified for the first time, revealing 46 nucleotide substitutions with 12 amino acid variations, in addition to a 9-bp insertion in the 5′ untranslated region UTR, compared with the bovine Mx2 cDNA. Transfected 3T3 cells expressing bovine Mx2 mRNAs coding Gly or Ser at position 302, water buffalo Mx2 mRNA, positive control bovine Mx1 mRNA-expressing cells, and negative control parental 3T3 were subjected to infection with recombinant vesicular stomatitis virus (VSVΔG*-G), as were empty pCI-neo vector-transfected cells. The positive control and all cells expressing Mx2 mRNAs displayed significantly higher levels of antiviral activity against VSVΔG*-G (P < 0.01) than did the negative controls.  相似文献   

18.
Gene fragments encoding serine proteases expressed in adult buffalo fly (Haematobia irritans exigua) were amplified from cDNA using generic oligonucleotide PCR primers, based on conserved residues surrounding the active-site His and Ser amino acids found in all serine proteases. The PCR product consisted of a broad band extending from about 450 by to 520 bp, which suggested that the PCR product actually consisted of numerous DNA fragments of slightly variable sizes. Seventeen independent clones of these fragments, each with an insert of approximately 480 bp, were digested with HaeIII. Comparison of restriction fragment patterns indicated that 13 of these clones harboured different PCR products. This was confirmed by DNA sequence analysis of 9 clones. Each of the sequenced clones contained an open reading frame which included structurally conserved regions characteristic of the serine protease superfamily. This study reveals the expression of a large and highly variable repertoire of serine proteases in adult buffalo fly. Importantly, these data also demonstrate the utility of such an approach in obtaining DNA probes for use in further investigations of gene family organization and expression, as well as providing recombinant antigens in the form of fusion proteins which may be used as candidates for vaccine production.  相似文献   

19.
It was found that the succinate oxidation rate in mitochondria of flight muscles of Bombus terrestris L. increased by a factor of 2.15 after flying for 1 h. An electrophoretically homogenous preparation of succinate dehydrogenase with a specific activity of 7.14 U/mg protein and 81.55-fold purity was isolated from B. terrestris flight muscles. It is shown that this enzyme is represented in the muscle tissue by only one isoform with R f = 0.24. The molecular weight of the native molecule and its subunits A and B was determined. The kinetic characteristics of succinate dehydrogenase (K m = 0.33 mM) and the optimal concentration of hydrogen ions (pH 7.8) were established, and the effect of salts on the enzyme activity was studied. The role of succinate as a respiratory substrate in stress and the structural and functional characteristics of the succinate dehydrogenase system in the flight muscles of insects are discussed.  相似文献   

20.
Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号