首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
3.
4.
5.

Background

Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection.

Results

Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process.

Conclusion

How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experienced sub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.  相似文献   

6.
Wang Y  Xiao Y  Zhang Y  Chai C  Wei G  Wei X  Xu H  Wang M  Ouwerkerk PB  Zhu Z 《Planta》2008,228(4):525-535
Monosaccharides transporters play important roles in assimilate supply for sink tissue development. In this study, a new monosaccharide transporter gene OsMST6 was identified from rice (Oryza sativa L.). The predicted OsMST6 protein shows typical features of sugar transporters and shares 79.6% identity with the rice monosaccharide transporter OsMST3. Heterologous expression in yeast (Saccharomyces cerevisiae) demonstrated that OsMST6 is a broad-spectrum monosaccharide transporter, with a K (m) of 266.1 muMu for glucose. OsMST6-green fluorescent protein fusion protein is localized to the plasma membrane in plant. Semi-quantitative RT-PCR analysis exhibited that OsMST6 is expressed in all tested organs/tissues. In developing seeds, OsMST6 expression level is high at the early and middle grain filling stages and gradually declines later. Further analysis detected its expression in both maternal and filial tissues. RNA in situ hybridization analysis indicated that OsMST6 is predominantly expressed in the vascular parenchyma of the chalazal vein, cross-cells, nucellar tissue and endosperm of young seeds, in mesophyll cells of source leaf blades, and in pollens and the connective vein of anthers. In addition, OsMST6 expression is up-regulated by salt stress and sugars. The physiological role of OsMST6 for seed development and its roles in other sink and source tissues are discussed.  相似文献   

7.
In rice, caryopses located at the base of the panicle have a lower growth rate than those at the tip of the panicle. The former and latter types of caryopses are called inferior and superior caryopses, respectively. Taking the different growth rate into consideration, sugar status and the expression of genes encoding carbohydrate-metabolizing enzymes in inferior caryopses were compared with those in superior caryopses. During the first 5 d after flowering, superior caryopses elongated rapidly, but inferior caryopses did not. At this phase, inferior caryopses had a low ratio of hexose to sucrose, high activity of acid invertase and the absence of the expression of the genes encoding the above enzymes except for two isoforms of cell wall invertase, OsCIN4 and INV1, in comparison with superior caryopses. At the start of caryopsis elongation in both superior and inferior caryopses, the hexose/sucrose ratio increased accompanied by gene expression of vacuolar invertase (INV3), sucrose synthase (RSus1) and ADP-glucose pyrophosphorylase (AGP-L2: D50317). Furthermore, the genes related to endospermal starch accumulation were expressed highly with the decrease in the hexose/sucrose ratio after its peak. Based on the comparison of superior and inferior caryopses, the possible mechanism of grain filling in rice is discussed.  相似文献   

8.
Tonoplast intrinsic proteins (TIPs) belong to an aquaporin family of proteins that function as water-transport channels. In this study, we isolated and characterized three novel rice cDNAs for OsTIP1, OsTIP2, and OsTIP3 that are homologous to rice gamma-TIP cDNA. Northern blot hybridization analyses revealed that rice gamma-TIP was expressed in all plant organs. OsTIP1 was expressed in mature seed embryos and during early seed germination. OsTIP2 was expressed exclusively in roots. OsTIP3 was specifically expressed in seeds. These results suggest that the OsTIP1, OsTIP2, and OsTIP3 genes encode discrete, functionally specialized TIPs. Immunocytochemical analysis in rice endosperm cells revealed that rice gamma-TIP was localized only on the protein body type II (PB-II) membranes, whereas OsTIP3 was localized on the PB-II and the aleurone grain membranes. Although both the PB-II and the aleurone grain are derived from vacuoles, these results suggest that they may be derived from different types of vacuoles.  相似文献   

9.
The endosperm of cereal grains is an important resource for both food and feed. It contains three major types of tissue: starchy endosperm, the aleurone layer, and transfer cells. To improve grain quality and quantity using molecular methods, control of transgene expression directed by distinct temporal and spatial promoter activity is necessary. To identify aleurone layer-specific and/or transfer cell-specific promoters in rice, microarray analyses were performed, comparing the aleurone layer containing transfer cells and the other reproductive and vegetative tissues. After confirmation by RT-PCR analysis, we identified two putative aleurone layer and/or transfer cell-specific genes, AL1 and AL2. The promoter regions of these genes and β-glucuronidase (GUS) fusion constructs were stably transformed into rice. The GUS expression patterns indicated that the AL1 promoter was active exclusively in the dorsal aleurone layer adjacent to the main vascular bundle. In rice, transfer cells are differentiated in this region. Therefore, the promoter of the AL1 gene exhibits transfer cell-containing region-specific activity. The AL1 gene encodes a putative anthranilate N-hydroxycinnamoyl/benzoyltransferase. The promoter of this gene will be useful for enhancing uptake of nutrients from the mother cells and protecting filial seeds from pathogen attack.  相似文献   

10.
11.
12.
Kim JY  Mahé A  Guy S  Brangeon J  Roche O  Chourey PS  Prioul JL 《Gene》2000,245(1):89-102
Two maize putative cell-wall invertase genes (Incw3 and Incw4) have been isolated by screening a genomic DNA library (Zea mays L. W22) using the cDNA probes encoding the two maize cell-wall invertases Incw1 and Incw2. The Incw3 and Incw4 genes contain six exons/five introns and five exons/four introns, respectively. The protein sequences deduced from both genes revealed a beta-fructosidase motif and a cysteine catalytic site known to be conserved in invertase genes. A detailed analysis of the protein and nucleotide sequences provides evidence that the Incw3 and the Incw4 genes encode putative cell-wall invertases. Furthermore, the isoelectric point deduced from the INCW4 protein sequence suggested that the Incw4 gene may encode a unique type of cell-wall invertase unbound in the apoplast. Gene expression studies using RT-PCR and in-situ RT-PCR hybridization showed that the Incw3 expression is organ/tissue-specific and developmentally regulated. In contrast, the Incw4 gene is constitutively expressed in all vegetative and reproductive tissues tested.  相似文献   

13.
The unique capability of rice (Oryza sativa L.) seedlings to grow under anoxic conditions may result in part from their ability to express -amylase and maintain the supply of sugar needed for energy metabolism. Previous studies have demonstrated that under aerobic conditions the Amy1 and Amy2 subfamily genes are regulated primarily by phytohormones while the Amy3 subfamily genes are induced during sugar starvation. The expression patterns for these -amylase genes were considerably different in anoxic vs. aerobic rice seedlings. The level of total -amylase mRNA under anoxic conditions was decreased in aleurone layers while it increased in the embryo. Anoxic conditions greatly diminished the expression of the Amy1A gene in aleurone. Conversely, expression of many Amy3 subfamily genes was up-regulated and prolonged in embryo tissues under anoxic conditions.  相似文献   

14.
Expression patterns of barley β - d -glucan glucohydrolase genes were monitored using cDNAs encoding isoenzymes ExoI and ExoII. The cDNAs were isolated from 5-day-old seedling libraries. The enzymes are encoded by a small gene family, in which marked differences in codon usage are evident. The cDNAs can be used as specific probes for two subfamilies of β - d -glucan glucohydrolase genes. Genes of both subfamilies are transcribed in the scutellum of germinated grain, in elongating coleoptiles, and in young roots and leaves. Low levels of mRNA for the isoenzyme ExoI gene subfamily could be detected in aleurone layers of germinated grain. Most of the β - d -glucan glucohydrolase activity can be extracted from tissues with dilute aqueous buffers. Enzyme activity is highest in young leaves and elongating coleoptiles, but is not well-correlated with mRNA levels. The expression patterns are consistent with proposed roles for β -glucan glucohydrolases in the turnover or modification of cell-wall (1→3,1→4)- β - d -glucans in elongating coleoptiles and in young vegetative tissues.  相似文献   

15.
During rice grain filling, grain moisture content and weight show dynamic changes. We focused on the expression of all 33 rice aquaporins in developing grains. Only two aquaporin genes, OsPIP2;1 and OsTIP3;1, were highly expressed in the period 10–25 days after heading (DAH). High-temperature treatment from 7 to 21 DAH abolished the dynamic up-regulation of OsPIP2;1 in the period 15–20 DAH, whereas OsTIP3;1 expression was not affected. Immunohistochemical analysis revealed that OsPIP2;1 was present in the starchy endosperm, nucellar projection, nucellar epidermis, and dorsal vascular bundles, but not in the aleurone layer. OsTIP3;1 was present in the aleurone layer and starchy endosperm. Water transport activity of recombinant OsTIP3;1 was low, in contrast to the high activity of recombinant OsPIP2;1 we reported previously. Our data suggest that OsPIP2;1 and OsTIP3;1 have distinct roles in developing grains.  相似文献   

16.
Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase–encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild‐type plants, an effect that was reproduced in our 2‐year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase‐encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants.  相似文献   

17.
18.
19.
Grain filling is a crucial process that affects yield in rice (Oryza sativa L.). Auxin biosynthesis and signaling are closely related to rice yield; therefore, it is important to understand the effects of auxin biosynthesis on rice grain filling to improve crop yield. In this study, we used physiological and molecular strategies to identify the roles of auxin in rice grain filling. Exogenous application of auxin (IAA) or auxin analogues (2, 4-D) to young spikelets and flag leaves improved the seed-setting rate and yield per spike. Furthermore, real-time quantitative PCR assays confirmed that nine members of the OsYUCCA family of auxin biosynthetic genes were upregulated during grain filling, implication that auxin biosynthesis plays a major role in grain development. The specific expression of either Arabidopsis AtYUCCA1 or OsYUCCA2 in the endosperm or leaves resulted in increased expression of OsIAA genes and auxin content of seeds, as well as increased grain filling and seed-setting rate. This result establishes that the auxin content in grains and leaves is important for grain development. Our findings further highlight the potential applications for improving rice yield by elevating targeted gene expression in specific tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号