首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Isolate M of Potato virus A (PVA‐M; genus Potyvirus) is avirulent in Nicandra physaloides L. (family Solanaceae). The inoculated leaves are infected but no systemic infection is observed. Forty plants of ‘Black Pod’ (BP) and ‘Black Pod Alba’ (BPA), two variants of N. physaloides described in this study, were inoculated with PVA‐M. Two plants of BP and one plant of BPA were systemically infected. Mosaic, blistering and dark green islands developed on the systemically infected leaves, and flowers showed colour‐break symptoms. PVAprogeny were sequence‐characterised for the 6K2 protein and viral genome‐linked protein (VPg) encoding regions known to control the long distance movement of PVA in N. physaloides. All virus progeny (designated as PVA‐Mm) in the systemically infected leaves of the plants inoculated with PVA‐M contained only a single amino acid substitution (Vail 16Met) in the central part of VPg due to a nucleotide substitution G6033A, as compared to PVA‐M. Other PVA isolates that infected N. physaloides systemically also contained Metll6 in VPg. In a previous study using chimeric viruses, Metl16 in VPg was shown to be a major determinant for vascular movement of PVA in N. physaloides, and this study reveals that the mutation for Metl16 can occur in vivo during replication of the avirulent PVA‐M in infected plants. Immunolocalisation studies on BP and BPA plants showed that the pods (berries) and seed coat contained PVA‐Mm in the developing seeds, but no virus was detected in embryons. Up to 27% of the mature seeds contained PVA‐Mm but no transmission to seedlings was observed in a total of 450 seeds tested, and no test plants were infected following mechanical inoculation with extracts prepared from the seeds.  相似文献   

2.
The viral protein covalently linked to the 5' end of the plus-sense, single-stranded RNA genome of potyviruses (genus Potyvirus) can be an avirulence determinant in incompatible potyvirus-host combinations in which the resistance prevents systemic virus infection. The mechanism is not well known. This study shows that virus strain-specific resistance to systemic infection with Potato virus A (PVA) in Solanum commersonii is overcome by a single amino acid (aa) substitution, His118Tyr, in the viral genome-linked protein (VPg). Virus localization and other experiments revealed that Tyr118, controls phloem loading of PVA. The critical boundary may be constituted in phloem parenchyma, companion cells, or both. Tyr118 also controls the cellular level of virus accumulation in infected leaves, including phloem cells. Amino acid substitutions at three additional positions of the central part (aa 116) and C terminus (aa 185) of the VPg and of the N terminus of the 6K2 protein (aa 5) affect virus accumulation and rate of systemic infection but are not sufficient for phloem loading of PVA. These data, together with previous studies, indicate that the PVA VPg aa residues crucial for systemic infection are host specific. Also, our data and previous studies on other potyvirus-host species combinations indicate that the central part of the VPg is a domain with universal importance to virus-host interactions required for systemic invasion of plants with potyviruses.  相似文献   

3.
Cross-protection was tested between potato and tobacco strains of Potato virus A, a member of the genus Potyvirus (PVA), in tobacco plants. Cross-protection was effective only at the initiation of infection. The potato strains provided only weak cross-protection against the tobacco strain, whereas the tobacco strain provided strong cross-protection against potato strains. The tamarillo strain (TamMV) showed cross-protection phenotypes mostly resembling those of the potato strains. Chimera of the PVA strains were utilized to map viral genomic regions important for cross-protection. The coat protein (CP) encoding region and the helper component proteinase (HCpro) affected cross-protection and virus accumulation. An amino acid substitution at the CP N-terminus reduced virus accumulation and the ability to overcome cross-protection, whereas amino acid substitutions introduced to the HCpro increased virus accumulation and the ability to overcome cross-protection. Closer sequence relatedness between the protector and challenger isolate, as determined by the CP-encoding sequence, was correlated with an increased cross-protection ability. Cross-protection was not overcome by inoculation with nonencapsidated viral RNA. Thus, the differences in cross-protection abilities between PVA strains and chimera were not explained with the "re-encapsidation model" described for strains of Tobacco mosaic tobamovirus but may be associated with a virus infection-induced RNA silencing mechanism.  相似文献   

4.
中国人白细胞介素-12 cDNA基因的克隆及序列分析与比较   总被引:3,自引:0,他引:3  
焦宏远  詹美云 《病毒学报》2000,16(4):336-340
为研究中国人IL-12的基因特征,采用逆转录巢式聚合酶链反应(RT-nPCR)从中国人脐带血单核细胞中分别克隆了P35、P40两亚基cDNA基因,包括完整的前体蛋白编码序列,其中P35 cDNA编码219个氨基酸的多肽,P40 cDNA编码328个氨基酸的多肽,与国外序列(NKSF、CLMF)比较结果发现:所克隆序列P35同NKSF相比,第44aa密友子由GTC(Val)→GTG(Val),但未改  相似文献   

5.
Two acidic domains of the Potato leafroll virus (PLRV) coat protein, separated by 55 amino acids and predicted to be adjacent surface features on the virion, were the focus of a mutational analysis. Eleven site-directed mutants were generated from a cloned infectious cDNA of PLRV and delivered to plants by Agrobacterium-mediated mechanical inoculation. Alanine substitutions of any of the three amino acids of the sequence EWH (amino acids 170 to 172) or of D177 disrupted the ability of the coat protein to assemble stable particles and the ability of the viral RNA to move systemically in four host plant species. Alanine substitution of E109, D173, or E176 reduced the accumulation of virus in agrobacterium-infiltrated tissues, the efficiency of systemic infection, and the efficiency of aphid transmission relative to wild-type virus, but the mutations did not affect virion stability. A structural model of the PLRV capsid predicted that the amino acids critical for virion assembly were located within a depression at the center of a coat protein trimer. The other amino acids that affected plant infection and/or aphid transmission were predicted to be located around the perimeter of the depression. PLRV virions play key roles in phloem-limited virus movement in plant hosts as well as in transport and persistence in the aphid vectors. These results identified amino acid residues in a surface-oriented loop of the coat protein that are critical for virus assembly and stability, systemic infection of plants, and movement of virus through aphid vectors.  相似文献   

6.
Mugiline beta isolated from mature sperm nuclei of the Formosan grey mullet, belonging to Perciformes, was fractionated into seven components (M1-M7), by chromatography on CM-Sephadex C-25. The amino acid sequences of the two major components (M6 and M7) were then determined. M6 contained 33 amino acid residues per molecule: Arg, 21; Thr, 1; Ser, 1; Glu, 1; Pro, 3; Ala, 2; Val, 2; Met, 0.3 and Ile, 1.7. The amino acid sequence of M6 is: Pro-Arg-Arg-Arg-Arg-Glu-Thr-Ser-Arg-Pro-Ile-Arg-Arg-Arg-Arg-Arg-Ala-Pro- Ile (Met)-Arg-Arg-Arg-Arg-Arg-Val-Val-Arg-Arg-Arg-Arg. Isoleucine at position 22 is partially replaced by methionine. M7 had an amino acid sequence similar to that of M6 except that glutamic acid at position 6 of M6 was replaced by glutamine. A high degree of homology in the sequences was found between mugiline beta from mullet and thynnine from tuna fish, which also belongs to Perciformes.  相似文献   

7.
The multifunctional genome-linked protein (VPg) of Potato virus A (PVA; genus Potyvirus) was found to be phosphorylated as a part of the virus particle by a cellular kinase activity from tobacco. Immunoprecipitation, immunolabeling, and immunoelectron microscopy experiments showed that VPg is exposed at one end of the virion and it is accessible to protein-protein interactions. Substitution Ser185Leu at the C-proximal part of VPg reduces accumulation of PVA in inoculated leaves of the wild potato species Solanum commersonii and delays systemic infection, which is not observed in tobacco plants. Our data show that kinases of S. commersonii differentially recognize the VPg containing Ser or Leu at position 185, whereas both forms of VPg are similarly recognized by tobacco kinases. Taken together, our data imply that the virion-bound VPg may interact with host proteins and that phosphorylation of VPg may play a role in the VPg-mediated functions during the infection cycle of potyviruses.  相似文献   

8.
The nucleotide sequence corresponding to the P3 region of the hepatitis A virus (HAV) polyprotein genome was determined from cloned cDNA and translated into an amino acid sequence. Comparison of the amino acid sequences of the genome-linked proteins (VPgs) of other picornaviruses with the predicted amino acid sequence of HAV was used to locate the primary structure of a putative VPg within the genome of HAV. The sequence of HAV VPg, like those of other picornaviral VPg molecules, contains a tyrosine residue as a potential binding site for HAV RNA in position 3 from its N terminus. The potential cleavage sites to generate VPg from a putative HAV polyprotein are between glutamic acid and glycine at the N terminus and glutamic acid and serine or glutamine and serine at the C terminus. A synthetic peptide corresponding to 10 amino acids of the predicted C terminus of HAV VPg induced anti-peptide antibodies in rabbits when it was conjugated to thyroglobulin as a carrier. These antibodies were specific for the peptide and precipitated VPg, linked to HAV RNA, from purified HAV and from lysates of HAV-infected cells. The precipitation reaction was blocked by the synthetic peptide (free in solution or coupled to carrier proteins) and prevented by pretreatment of VPg RNA with protease. Thus, our predicted amino acid sequence is colinear with the nucleotide sequence of the VPg gene in the HAV genome. From our results we concluded that HAV has the typical organization of picornavirus genes in this part of its genome. Similarity among hydrophobicity patterns of amino acid sequences of different picornaviral VPgs was revealed in hydropathy plots. Thus, the VPg of HAV appears to be closely related to VPg1 and VPg2 of foot-and-mouth disease virus. In contrast, HAV VPg has a unique isoelectric point (pI = 7.15) among the picornavirus VPgs.  相似文献   

9.
10.
SA virus, a mutant of the Mahoney strain of type 1 poliovirus (PV1/Mahoney), replicates specifically in the spinal cords of mice and causes paralysis, although the PV1/Mahoney strain does not show any mouse neurovirulence (Q. Jia, S. Ohka, K. Iwasaki, K. Tohyama, and A. Nomoto, J. Virol. 73:6041-6047, 1999). The key mutation site for the mouse neurovirulence of SA was mapped to nucleotide (nt) 928 of the genome (A to G), resulting in the amino acid substitution of Met for Ile at residue 62 within the capsid protein VP4 (VP4062). A small-plaque phenotype of SA appears to be indicative of its mouse-neurovirulent phenotype. To identify additional amino acid residues involved in the host range determination of PV, a total of 14 large-plaque (LP) variants were isolated from a single point mutant, Mah/I4062M, that showed the SA phenotype. All the LP variants no longer showed any mouse neurovirulence when delivered via an intraspinal inoculation route. Of these, 11 isolates had a back mutation at nt 928 (G to A) that restored the nucleotide of the PV1/Mahoney type. The reversions of the remaining three isolates (LP8, LP9, and LP14) were mediated by a second site mutation. Molecular genetic analysis involving recombinants between Mah/I4062M and the LP variants revealed that the mere substitution of an amino acid residue at position 107 in VP1 (Val to Leu) (LP9), position 33 in VP2 (Val to Ile) (LP14), or position 231 in VP3 (Ile to Thr) (LP8) was sufficient to restore the PV1/Mahoney phenotype. These amino acid residues are located either on the surface or inside of the virus particle. Our results indicate that the mouse neurovirulence of PV is determined by the virion surface structure, which is formed by all four capsid proteins.  相似文献   

11.
The upper noninoculated 'sink' leaves of the wild potato species, Solanum commersonii, were studied for distribution of Potato virus A (PVA) at an early stage of systemic infection. Viral RNA was detected by in situ hybridization, and five viral proteins were localized using immunohistochemical staining in leaf sections. Initial systemic infection foci were found at the vicinity of major and minor veins. In these infection foci, the viral coat protein, cylindrical inclusion protein, and helper component-proteinase colocalized with viral RNA in parenchyma and mesophyll cells, but none of these were detected in companion cells (CC). In contrast, VPg, which is the N-proximal half of the NIa protein (separated from the C-terminal proteinase domain, NIapro, by an autocatalytic cleavage) and acts as a viral genome-linked protein, was detected in CC in the infection foci, but only at an early stage of virus unloading. Outside the infection foci, conspicuous signals for VPg were readily and exclusively detected in CC of many veins in all vein classes in the absence of signals for NIapro, other viral proteins, and viral RNA. Taken together, our data indicate that both major and minor veins may unload PVA in the sink leaves of potato. The data suggest that VPg is translocated from inoculated source leaves to the sink leaves, where it accumulates in CC at an early stage of systemic infection. These findings suggest that VPg may be a 'phloem protein' that specifically acts in CC in the sink leaves to facilitate virus unloading.  相似文献   

12.
Mutational analysis of the genome-linked protein VPg of poliovirus.   总被引:16,自引:13,他引:3       下载免费PDF全文
Using a mutagenesis cartridge (R. J. Kuhn, H. Tada, M. F. Ypma-Wong, J. J. Dunn, B. L. Semler, and E. Wimmer, Proc. Natl. Acad. Sci. USA 85:519-523, 1988), we have generated single and multiple amino acid replacement mutants, as well as a single amino acid insertion mutant in the genome-linked protein VPg of poliovirus. Moreover, we constructed three different 5-amino-acid insertion mutants that map close to the C terminus of 3A, a viral polypeptide whose coding sequence is adjacent to VPg. Transfection of HeLa cells with RNA synthesized in vitro was used to test the effect of the mutation on viral proliferation. Mutations were either lethal or nonlethal. A temperature-sensitive phenotype was not observed. The arginine at position 17 of VPg could not be exchanged with any other amino acid without loss of viability, whereas the lysine at position 20, an amino acid conserved among all known polioviruses, coxsackieviruses, and echoviruses, was replaceable with several neutral amino acids and even with glutamic acid. Replacement of poliovirus VPg with echovirus 9 VPg yielded viable virus with impaired growth properties. Our results suggest considerable flexibility in the amino acid sequence of a functional VPg. All insertions in polypeptide 3A proved to be lethal. In vitro translation of mutated viral RNAs gave patterns of proteolytic processing that in some cases was aberrant, even though the mutation was nonlethal.  相似文献   

13.
We have purified apolipoprotein C-II (apo C-II) from cynomolgus monkey plasma, prepared antibody against it and used the antibody to isolate a cDNA containing the complete coding sequence for cynomolgus monkey apo C-11. Sequence analysis indicated that the monkey apo C-11 cDNA was 200 by longer than the human and the difference in size was all in the 5° untranslated region of the mRNA. This was confirmed by Northern analysis of human and monkey RNA. There was an open reading frame in the monkey apo C-11 cDNA sequence encoding a preprotein of 101 amino acids — identical in size to the human protein. The carboxyl terminal 44 amino acids of the protein were 100% homologous to the human apo C-11 amino acid sequence indicating evolutionary conservation of both structure and function. However, the amino terminal 35 amino acids of the protein were only 75% homologous and the amino terminal 19 amino acids were only 58% homologous to the human sequence. The amino acid sequence derived from the nucleotide sequence predicts a more basic protein than the human apo C-11 and this is confirmed by isoelectric focusing and immunoblotting.  相似文献   

14.
15.
We have used our recently characterized human 3 beta-hydroxy-5-ene steroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD) cDNA as probe to isolate cDNAs encoding bovine 3 beta-HSD from a bovine ovary lambda gtll cDNA library. Nucleotide sequence analysis of two overlapping cDNA clones of 1362 bp and 1536 bp in length predicts a protein of 372 amino acids with a calculated molecular mass of 42,093 (excluding the first Met). The deduced amino acid sequence of bovine 3 beta-HSD displays 79% homology with human 3 beta-HSD while the nucleotide sequence of the coding region shares 82% interspecies similarity. Hybridization of cloned cDNAs to bovine ovary poly(A)+ RNA shows the presence of an approximately 1.7 kb mRNA species.  相似文献   

16.
Two lambda gt11 libraries containing complementary DNAs from human breast cancer MCF7 cells were screened by expression with monoclonal antibodies to the secreted 52K protein and with a 36-mer oligonucleotide derived from the N-terminal amino acid sequence of the secreted 52K protein. Four overlapping clones were sequenced, and found to be extensively homologous to the cathepsin D of normal human kidney, except for 5-point mutations resulting in one amino acid change (Ala to Val) in the profragment of cathepsin D. Northern blot analysis showed the 2.2 kilobase (kb) cathepsin D mRNA to be induced by estradiol in MCF7 cells and produced constitutively at high levels in the estrogen-receptor-negative BT20 cell line. A simple restriction pattern consistent with the restriction map of cathepsin D cDNA was obtained in Southern blot analysis of MCF7 cell DNA. In situ hybridization of the 52K-9 cDNA probe on normal lymphocytes assigned the 52K cathepsin D gene at the extremity of the short arm of chromosome 11, in the p15 band, close to the H-ras gene and in the region whose deletion increases the risk of invasive breast cancer. We conclude that the estrogen induced 52K protein has the same sequence as normal pro-cathepsin D and we propose that the 52K protein correspond to the only pro-cathepsin D expressed in MCF7 cells.  相似文献   

17.
Amino acid substitutions in the eukaryotic translation initiation factor 4E (eIF4E) result in recessive resistance to potyviruses in a range of plant species, including Capsicum spp. Correspondingly, amino acid changes in the central part of the viral genome-linked protein (VPg) are responsible for the potyvirus's ability to overcome eIF4E-mediated resistance. A key observation was that physical interaction between eIF4E and the VPg is required for viral infection, and eIF4E mutations that cause resistance prevent VPg binding and inhibit the viral cycle. In this study, polymorphism analysis of the pvr2-eIF4E coding sequence in a worldwide sample of 25 C. annuum accessions identified 10 allelic variants with exclusively non-synonymous variations clustered in two surface loops of eIF4E. Resistance and genetic complementation assays demonstrated that pvr2 variants, each with signature amino acid changes, corresponded to potyvirus resistance alleles. Systematic analysis of the interactions between eIF4E proteins encoded by the 10 pvr2 alleles and VPgs of virulent and avirulent potato virus Y (PVY) and tobacco etch virus (TEV) strains demonstrated that resistance phenotypes arose from disruption of the interaction between eIF4E and VPg, and that viral adaptation to eIF4E-mediated resistance resulted from restored interaction with the resistance protein. Complementation of an eIF4E knockout yeast strain by C. annuum eIF4E proteins further shows that amino acid changes did not impede essential eIF4E functions. Altogether, these results argue in favour of a co-evolutionary 'arms race' between Capsicum eIF4E and potyviral VPg.  相似文献   

18.
19.
Deletion of various portions, or insertion of six histidine residues (6xHis) into various positions of the membrane-bound 6K2 protein (53 amino acids) of Potato virus A (PVA, genus Potyvirus), inhibited systemic infection in Nicotiana tabacum and N. benthamiana plants. However, a spontaneous mutation (Gly2Cys) that occurred in 6K2 adjacent to the 6xHis insert placed between Ser1 and Gly2 enabled systemic infection in a single N. benthamiana plant. No symptoms were observed, but virus titers were similar to the symptom-inducing wild-type (wt) PVA. N. tabacum plants were not systemically infected, albeit virus propagation was observed in inoculated protoplasts. The 6xHis/Gly2Cys mutant was reconstructed in vitro and serially propagated by mechanical inoculation in N. benthamiana. Following the third passage, a novel viral mutant appeared, lacking the last four His residues of the insert, as well as the Gly2 and Thr3 of 6K2. It infected N. tabacum plants systemically, and in the systemically infected N. benthamiana leaves, vein chlorosis and mild yellowing symptoms were observed, typical of wt PVA infection. The mutant virus accumulated to titers similar to wt PVA in both hosts. These results show that the PVA 6K2 protein affects viral long-distance movement and symptom induction independently and in a host-specific manner.  相似文献   

20.
Cloning of the human cDNA for the U1 RNA-associated 70K protein.   总被引:63,自引:8,他引:55       下载免费PDF全文
Anti-RNP sera were used to isolate a cDNA clone for the largest polypeptide of the U1 snRNP, a protein of mol. wt 70 kd designated 70K, from a human liver cDNA library constructed in the expression vector pEX1. The cro-beta-galactosidase-70K fusion protein reacted with various anti-RNP patient sera, a rabbit anti-70K antiserum, as well as with a monoclonal antibody specific for this protein. The sequences of four 70K peptides were determined and they match parts of the deduced amino acid sequence of the 1.3 kb insert of p70.1 indicating that it is a genuine 70K cDNA. Screening of a new cDNA library constructed from polysomal mRNA of HeLa cells with the p70.1 clone yielded an overlapping clone, FL70K, which was 2.7 kb long and covered the complete coding and 3'-untranslated sequence of the 70K protein in addition to 680 nucleotides upstream of the putative initiation codon, The predicted mol. wt of the encoded protein is approximately 70 kd. Amino acid analysis of the purified HeLa 70K protein yielded values close or identical to those deduced from the nucleotide sequence of the full-length cDNA. The 70K protein is rich in arginine (20%) and acidic amino acids (18%). Extremely hydrophilic regions containing mixed-charge amino acid clusters have been identified at the carboxyl-terminal half of the protein, which may function in RNA binding. A sequence comparison with two recently cloned RNA binding proteins revealed homology with one region in the U1 RNP 70K protein. This domain may also be responsible for RNA binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号