首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neural cells differentiated from pluripotent stem cells (PSCs), including both embryonic stem cells and induced pluripotent stem cells, provide a powerful tool for drug screening, disease modeling and regenerative medicine. High-purity oligodendrocyte progenitor cells (OPCs) and neural progenitor cells (NPCs) have been derived from PSCs recently due to the advancements in understanding the developmental signaling pathways. Extracellular matrices (ECM) have been shown to play important roles in regulating the survival, proliferation, and differentiation of neural cells. To improve the function and maturation of the derived neural cells from PSCs, understanding the effects of ECM over the course of neural differentiation of PSCs is critical. During neural differentiation of PSCs, the cells are sensitive to the properties of natural or synthetic ECMs, including biochemical composition, biomechanical properties, and structural/topographical features. This review summarizes recent advances in neural differentiation of human PSCs into OPCs and NPCs, focusing on the role of ECM in modulating the composition and function of the differentiated cells. Especially, the importance of using three-dimensional ECM scaffolds to simulate the in vivo microenvironment for neural differentiation of PSCs is highlighted. Future perspectives including the immediate applications of PSC-derived neural cells in drug screening and disease modeling are also discussed.  相似文献   

2.
近年来多能干细胞(PSCs)的体外培养与分化技术发展迅速,并广泛应用于再生医学和发育生物学等领域。PSCs能够在体外神经诱导的条件下分化为类神经管模型,这为探索体内早期神经发育与中枢神经系统发育疾病的形成机制提供了全新的实验平台。本文总结了近年来应用小鼠和人PSCs建立体外类神经管模型的研究进展,其中体外模型主要包括在不同培养体系下诱导获得的二维(2D)与三维(3D)类神经管模型,并针对早期类神经管模型在神经系统发育性疾病机制研究中的前景和挑战作进一步探讨,同时为疾病预防和治疗提供新的思路。  相似文献   

3.
Non-human primate (NHP) embryonic stem (ES) cells show unlimited proliferative capacities and a great potential to generate multiple cell lineages. These properties make them an ideal resource both for investigating early developmental processes and for assessing their therapeutic potential in numerous models of degenerative diseases. They share the same markers and the same properties with human ES cells, and thus provide an invaluable transitional model that can be used to address the safety issues related to the clinical use of human ES cells. Here, we review the available information on the derivation and the specific features of monkey ES cells. We comment on the capacity of primate ES cells to differentiate into neural lineages and the current protocols to generate self-renewing neural stem cells. We also highlight the signalling pathways involved in the maintenance of these neural cell types. Finally, we discuss the potential of monkey ES cells for neuronal differentiation.  相似文献   

4.
5.
干细胞具有分化成为体内所有类型细胞的能力,因此,其在再生医学治疗、体外疾病模拟、药物筛选等方面具有广阔的应用前景。干细胞技术在近些年取得了突飞猛进的发展,特别是诱导多能性干细胞的出现使干细胞领域经历了一场巨大的变革。我国干细胞研究在这场干细胞技术变革中取得了多项重大成果,逐渐成为了世界干细胞研究领域中的重要力量。本综述着重介绍近几年来,主要是诱导多能性干细胞技术出现之后,我国在干细胞和再生医学领域取得的重要进展,主要涵盖诱导多能性干细胞、转分化、单倍体干细胞以及基因修饰动物模型和基因治疗等方面。  相似文献   

6.
Neural cells differentiated from pluripotent stem cells(PSCs), including both embryonic stem cells and induced pluripotent stem cells, provide a powerful tool for drug screening, disease modeling and regenerative medicine. High-purity oligodendrocyte progenitor cells(OPCs) and neural progenitor cells(NPCs) have been derived from PSCs recently due to the advancements in understanding the developmental signaling pathways. Extracellular matrices(ECM) have been shown to play important roles in regulating the survival, proliferation, and differentiation of neural cells. To improve the function and maturation of the derived neural cells from PSCs, understanding the effects of ECM over the course of neural differentiation of PSCs is critical. During neural differentiation of PSCs, the cells are sensitive to the properties of natural or synthetic ECMs, including biochemical composition, biomechanical properties, and structural/topographical features. This review summarizes recent advances in neural differentiation of humanPSCs into OPCs and NPCs, focusing on the role of ECM in modulating the composition and function of the differentiated cells. Especially, the importance of using three-dimensional ECM scaffolds to simulate the in vivo microenvironment for neural differentiation of PSCs is highlighted. Future perspectives including the immediate applications of PSC-derived neural cells in drug screening and disease modeling are also discussed.  相似文献   

7.
Somatic cell reprogramming may become a powerful approach to generate specific human cell types for cell-fate determination studies and potential transplantation therapies of neurological diseases. Here we report a reprogramming methodology with which human adipose stem cells (hADSCs) can be differentiated into neural cells. After being reprogrammed with polycistronic plasmid carrying defined factor OCT3/4, SOX2, KLF4 and c-MYC, and further treated with neural induce medium, the hADSCs switched to differentiate toward neural cell lineages. The generated cells had normal karyotypes and exogenous vector sequences were not inserted in the genomes. Therefore, this cell lineage conversion methodology bypasses the risk of mutation and gene instability, and provides a novel strategy to obtain patient-specific neural cells for basic research and therapeutic application.  相似文献   

8.
Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.  相似文献   

9.
Induced pluripotent stem cells (iPSCs) refer to stem cells that are artificially produced using a new technology known as cellular reprogramming, which can use gene transduction in somatic cells. There are numerous potential applications for iPSCs in the field of stem cell biology becauase they are able to give rise to several different cell features of lineages such as three-germ layers. Primordial germ cells, generated via in vitro differentiation of iPSCs, have been demonstrated to produce functional gametes. Therefore, in this review we discussed past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells with an emphasis on iPSCs. Although this domain of research is still in its infancy, exploring development mechanisms of germ cells is promising, especially in humans, to promote future reproductive and developmental engineering technologies. While few studies have evaluated the ability and efficiency of iPSCs to differentiate toward male germ cells in vitro by different inducers, the given effect was investigated in this review.  相似文献   

10.
Considerable hope surrounds the use of disease-specific pluripotent stem cells to generate models of human disease allowing exploration of pathological mechanisms and search for new treatments. Disease-specific human embryonic stem cells were the first to provide a useful source for studying certain disease states. The recent demonstration that human somatic cells, derived from readily accessible tissue such as skin or blood, can be converted to embryonic-like induced pluripotent stem cells (hiPSCs) has opened new perspectives for modelling and understanding a larger number of human pathologies. In this review, we examine the opportunities and challenges for the use of disease-specific pluripotent stem cells in disease modelling and drug screening. Progress in these areas will substantially accelerate effective application of disease-specific human pluripotent stem cells for drug screening.  相似文献   

11.
In recent years, there has been an explosion of interest in stem cells, not just within the scientific and medical communities but also among politicians, religious groups and ethicists. Here, we summarize the different types of stem cells that have been described: their origins in embryonic and adult tissues and their differentiation potential in vivo and in culture. We review some current clinical applications of stem cells, highlighting the problems encountered when going from proof-of-principle in the laboratory to widespread clinical practice. While some of the key genetic and epigenetic factors that determine stem cell properties have been identified, there is still much to be learned about how these factors interact. There is a growing realization of the importance of environmental factors in regulating stem cell behaviour and this is being explored by imaging stem cells in vivo and recreating artificial niches in vitro. New therapies, based on stem cell transplantation or endogenous stem cells, are emerging areas, as is drug discovery based on patient-specific pluripotent cells and cancer stem cells. What makes stem cell research so exciting is its tremendous potential to benefit human health and the opportunities for interdisciplinary research that it presents.  相似文献   

12.
In the adult brain, neural stem cells have been found in two major niches: the hippocampus and the olfactory bulb. Neurons derived from these stem cells contribute to learning, memory, and the autonomous repair of the brain under pathological conditions. Hence, the physiology of adult neural stem cells has become a significant component of research on synaptic plasticity and neuronal disorders. In addition, the recently developed induced pluripotent stem cell technique provides a powerful tool for researchers engaged in the pathological and pharmacological study of neuronal disorders. In this review, we briefly summarize the research progress in neural stem cells in the adult brain and in the neuropathological application of the induced pluripotent stem cell technique.  相似文献   

13.
Conventional culture systems are often limited in their ability to regulate the growth and differentiation of pluripotent stem cells. Microfluidic systems can overcome some of these limitations by providing defined growth conditions with user-controlled spatiotemporal cues. Microfluidic systems allow researchers to modulate pluripotent stem cell renewal and differentiation through biochemical and mechanical stimulation, as well as through microscale patterning and organization of cells and extracellular materials. Essentially, microfluidic tools are reducing the gap between in vitro cell culture environments and the complex and dynamic features of the in vivo stem cell niche. These microfluidic culture systems can also be integrated with microanalytical tools to assess the health and molecular status of pluripotent stem cells. The ability to control biochemical and mechanical input to cells, as well as rapidly and efficiently analyze the biological output from cells, will further our understanding of stem cells and help translate them into clinical use. This review provides a comprehensive insignt into the implications of microfluidics on pluripotent stem cell research.  相似文献   

14.
In mammals, DNA methylation and hydroxymethylation are specific epigenetic mechanisms that can contribute to the regulation of gene expression and cellular functions. DNA methylation is important for the function of embryonic stem cells and adult stem cells (such as haematopoietic stem cells, neural stem cells and germline stem cells), and changes in DNA methylation patterns are essential for successful nuclear reprogramming. In the past several years, the rediscovery of hydroxymethylation and the TET enzymes expanded our insights tremendously and uncovered more dynamic aspects of cytosine methylation regulation. Here, we review the current knowledge and highlight the most recent advances in DNA methylation and hydroxymethylation in embryonic stem cells, induced pluripotent stem cells and several well‐studied adult stems cells. Our current understanding of stem cell epigenetics and new advances in the field will undoubtedly stimulate further clinical applications of regenerative medicine in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
锂在现代精神病学中使用超过65年,其构成了双相情感障碍(BD)长期治疗的基础。锂的许多生物学特性已经被证实,包括抗病毒、血液系统和神经系统保护作用。本文系统综述了锂对造血干细胞(HSCs)、神经干细胞(NSCs)以及诱导多能干细胞(iPSCs)作用影响的研究进展及其目前已证实的分子机制。自20世纪70年代以来,锂对保持HSCs和生长因子高水平的作用已被报道。锂可以改善HSCs的归巢能力、形成菌落的能力和自我更新的能力。关于锂对神经发生影响的研究表明,锂可促进海马齿状回的干细胞增殖,并导致施旺氏细胞有丝分裂活性增强。锂被证实与神经保护和神经营养作用相关,具体作用反映在锂可改善突触的可塑性,促进细胞存活,抑制细胞凋亡等。在临床研究中发现,锂离子的治疗可增加大脑灰质的成分,尤其作用在额叶、海马和杏仁核等位置。锂对干细胞的作用涉及多条介质和信号通路,其中最重要的介质和信号通路被认为是糖原合成酶激酶-3(GSK-3)和Wnt/β-catenin通路,另外包括调节cAMP、蛋白激酶B、磷脂酰肌醇3-激酶(pi3k)和肌醇单磷酸酶(IMP)水平的信号通路等也与锂作用有紧密的联系。锂在现阶段被利用于治疗BD和降低痴呆症患病风险的临床实验中,并对神经退行性疾病发挥有益作用。除此之外,为了研究的发病机制和锂离子在其中的作用机制,从BD患者中获得的iPSCs也被广泛应用。  相似文献   

16.
Human pluripotent stem cells, such as embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), have the ability to differentiate into various cell types, and will become a potential source of cellular materials for regenerative medicine. To make full use of hESCs or hiPSCs for both basic and clinical research, genetic modification, especially gene targeting via homologous recombination (HR), would be an essential technique. This report describes the successful gene targeting of the hypoxanthine phosphoribosyl transferase 1 (HPRT1) and the NANOG loci in human pluripotent stem cells with adeno-associated virus (AAV) vectors. At the HPRT1 locus, up to 1% of stable transformants were targeted via HR with an AAV-HPRT1 targeting vector, without loss of pluripotency. On the other hand, 20-87% of stable transformants were targeted using an AAV-NANOG-targeting vector designed for the promoter-trap strategy. In the KhES-3 cell line, which shows particularly high fragility to experimental manipulation, gene targeting was successful only by using an AAV vector but not by electroporation. In addition to hESC, gene targeting was achieved in hiPSC lines at similar frequencies. These data indicate that AAV vectors may therefore be a useful tool to introduce genetic modifications in hESCs and hiPSCs.  相似文献   

17.
18.
康岚  陈嘉瑜  高绍荣 《遗传》2018,40(10):825-840
近几十年是干细胞领域飞速发展的重要时期。随着中国经济实力的发展壮大,科研实力也在稳步增强,干细胞研究领域达到了国际并跑甚至领跑的水平。本文从体细胞核移植、诱导多能干细胞、单倍体多能干细胞和胚胎早期发育研究4个方面,对中国细胞重编程和干细胞领域的研究进展进行了历史性回顾,总结了中国科学家在相关领域所取得的重要科研成果。随着单细胞测序技术的发展,各种发育过程将实现更为深入的解读,干细胞的临床应用在中国也会大放异彩。  相似文献   

19.
Human cell types affected by retinal diseases(such as age-related macular degeneration or retinitis pimentosa) are limited in cell number and of reduced accessibility. As a consequence, their isolation for in vitro studies of disease mechanisms or for drug screening efforts is fastidious. Human pluripotent stem cells(h PSCs), either of embryonic origin or through reprogramming of adult somatic cells,represent a new promising way to generate models of human retinopathies, explore the physiopathological mechanisms and develop novel therapeutic strategies. Disease-specific human embryonic stem cells were the first source of material to be used to study certain disease states. The recent demonstration that human somatic cells, such as fibroblasts or blood cells, can be genetically converted to induce pluripotent stem cells together with the continuous improvement of methods to differentiate these cells into disease-affected cellular subtypes opens new perspectives to model and understand a large number of human pathologies, including retinopathies. This review focuses on the added value of h PSCs for the disease modeling of human retinopathies and the study of their molecular pathological mechanisms. We also discuss the recent use of these cells for establishing the validation studies for therapeutic intervention and for the screening of large compound libraries to identify candidate drugs.  相似文献   

20.
Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found inspecific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of agerelated neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号