首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated multiple forms of rabies virus matrix (M) protein. Under non-reducing electrophoretic conditions, we detected, in addition to major bands of monomer forms (23- and 24-kDa) of M protein, an M antigen-positive slow-migrating minor band (about 54 kDa) in both the virion and infected cells. Relative contents of the 54-kDa and monomer components in the virion were about 20-30% and 70-80% of the whole M protein, respectively, while the content of the 54-kDa component was smaller (about 10-20% of the total M protein) in the cell than in the virion. The 54-kDa components could be extracted from the infected cells with sodium deoxycholate, but they were quite resistant to extraction with 1% nonionic detergents by which most monomer components were solubilized. The 54-kDa component was precipitated more efficiently than the monomer by a monoclonal antibody (mAb; #3-9-16), which recognized a linear epitope located at the N-terminal of the M protein. The mAb #3-9-16 coprecipitated the viral glycoprotein (G), which was demonstrated to be due to strong association between the G and 54-kDa component of the M protein. Monomers and the 54-kDa polypeptide migrated to the same isoelectric point (pI) in twodimensional (2-D) gel electrophoresis, implicating that the 54-kDa component was composed of component(s) of the same pI as that of the M protein monomers. From these results, we conclude that the M antigen-positive 54-kDa polypeptide is a homodimer of M protein, taking an N-terminal-exposed conformation, and is strongly associated with the viral glycoprotein. Possible association with a membrane microdomain of the cell will be discussed.  相似文献   

2.
We investigated a minor polypeptide component of 100-kDa detected in the rabies virion (referred to as VAP100) by using a monoclonal antibody (mAb), #16743, which was shown to recognize the SDS-denatured VAP100 antigen by immunoblot analyses. Although the VAP100 antigen was hardly detectable in the cell by usual immunoblot methods with this mAb, we could detect the antigen by a luminescent immunoblot method as well as by immunoprecipitation from the metabolically radiolabeled cell lysates and virions. Fluorescent antibody (FA) staining with mAb #16743 detected the uniformly distributed antigen on the formalin-fixed normal BHK-21 cells, while slight accumulation of the antigen was also seen in the Golgi area when the cells were permeabilized by treatment with Triton X-100 after fixation. Rabies virus infection induced alteration of the behavior of VAP100 to show a spotted distribution pattern in virus-infected cells. Double FA staining with mAb #16743 and rabbit antibody against the rabies virus envelope antigen demonstrated colocalized distribution of the viral envelope antigens and VAP100 in the cell. From these results, we think that VAP100 is a membrane-associated component of the cell, and its colocalized distribution with the viral envelope antigens in the cell implicates an intimate association of the VAP100 with viral envelope protein(s) and a reflection of possible involvement in the efficient incorporation of VAP100 into the virion.  相似文献   

3.
Monoclonal antibody (mAb) #1-30-44 recognized an acid-sensitive conformational epitope of rabies virus glycoprotein (G). The antigenicity of G protein exposed on the cell surface was lost when the infected cells were exposed to pH 5.8. By comparing the deduced amino acid sequence of G protein between the HEP-Flury strain and the epitope-negative CVS strain as well as the mAb-resistant escape mutants, two distant sites that contained Lys-202 and Asn-336 were shown to be involved in the epitope formation. Lys-202 is located in the so-called neurotoxin-like sequence, while Asn-336 is included in antigenic site III and is very near the amino acid at position 333, which is known to affect greatly the neuropathogenicity of rabies virus when changed. Consistent with this finding, antigenicity of a neurovirulent revertant of the HEP-Flury strain, in which Gln-333 of G protein was replaced by Arg, was also affected as shown by its greatly decreased reactivity with mAb #1-30-44 compared to that of the original avirulent HEP virus. Based on these results, we hypothesize that the neurotoxin-like domain and some amino acids in antigenic site III come into contact with each other to form a conformational epitope for mAb #1-30-44, and such a configuration would be lost when exposed to acidic conditions to perform a certain low pH-dependent function of G protein.  相似文献   

4.
We previously reported that a conformational epitope-specific monoclonal antibody (mAb; #1-46-12) neutralized the rabies virus by binding only a small number (less than 20) of the antibody molecules per virion, while a linear epitope-specific mAb (#7-1-9) required more than 250 IgG molecules for the neutralization. We also isolated both the epitope-negative (R-31) and-positive (R-61) escape mutants that resisted mAb #1-46-12. Co-infection studies with wild type (wt) and R-61 mutant have shown that although the infectivity of R-61 mutant was not affected by the binding of about 300 IgG molecules per virion, incorporation of a small number of wt G protein into the R-61 virion resulted in dramatic loss of the resistance. In this study, we further investigated properties of the mutant G proteins. The R-61 G protein lost reactivity to the mAb when solubilized, even keeping a trimer form, suggesting that membrane-anchorage is essential for the maintenance of its epitope-positive conformation. On the other hand, incorporation of wt G proteins into the R-31 virions did not affect their resistance to the mAb very much. Although we have not so far found the presumed conformational changes induced by the mAb-binding, we think that these results are not inconsistent with our previously proposed novel model (referred to as a domino effect model) for the virus neutralization by mAb #1-46-12 other than a classical spike-blocking model, which implicates successive spreading of the postulated antibody-induced conformational changes of G protein to the neighboring spikes until abolishing the host cell-binding ability of the virion.  相似文献   

5.
The Golgi apparatus is fragmented and dispersed in Vero cells but not in human 143TK- cells infected with wild-type herpes simplex virus 1. Moreover, a recombinant virus lacking the gene encoding the membrane protein UL20 (UL20- virus) accumulates in the space between the inner and outer nuclear membranes of Vero cells but is exported and spreads from cell to cell in 143TK- cell cultures. Here we report that in Vero cells infected with UL20- virus, the virion envelope glycoproteins were of the immature type, whereas the viral glycoproteins associated with cell membranes were fully processed up to the addition of sialic acid, a trans-Golgi function. Moreover, the amounts of viral glycoproteins accumulating in the plasma membranes were considerably smaller than those detected on the surface of Vero cells infected with wild-type virus. In contrast, the amounts of viral glycoproteins present on the plasma membranes of 143TK- cells infected with wild-type or UL20- virus were nearly identical. We conclude that (i) in Vero cells infected with UL20- virus the block in the export of virions is at the entry into the exocytic pathway, and a second block in the exocytosis of viral glycoproteins associated with cytoplasmic membranes is due to an impairment of transport beyond Golgi fragments containing trans-Golgi enzymes and not to a failure of the Golgi oligosaccharide-processing functions; (ii) these defects are manifested in cells in which the Golgi apparatus is fragmented; and (iii) the UL20 protein compensates for these defects by enabling transport to and from the fragmented Golgi apparatus.  相似文献   

6.
B Burke  G Warren 《Cell》1984,36(4):847-856
Messenger RNA was prepared from a hybridoma cell line secreting a monoclonal antibody (53FC3) directed against a luminal epitope of a Golgi membrane protein (Mr = 135 kd) found in rodent cells. When this mRNA was microinjected into the cytoplasm of BHK cells, mouse IgG was seen to accumulate in the Golgi complex after 5-6 hr of incubation. No accumulation was seen in 3T3 cells which lack the epitope recognized by 53FC3. When microinjected BHK cells were infected with vesicular stomatitis virus, surface expression of the viral G protein was considerably reduced when compared with neighboring noninjected cells.  相似文献   

7.
We investigated structural changes in the rabies virus (HEP-Flury strain) nucleocapsid (NC) during the virus replication, for which we used two anti-nucleoprotein (N) monoclonal antibodies (mAbs), #404-11 (specific for a conformation-dependently exposed linear epitope) and #1-7-11 (specific for a conformational epitope which is exposed after the nucleocapsid formation). Both mAbs recognized the N protein of the viral NC, but not of the RNA-free N-P complex. The 1-7-11 and 404-11 epitopes could be mapped to the N-terminal and the C-terminal regions of N protein, respectively. Immunoprecipitation studies demonstrated that treatment of the NC either with the alkaline phosphatase or sodium deoxycholate (DOC) resulted in dissociation of most P proteins from the NC and in the reduced reactivity to mAb #404-11, but not to mAb #1-7-11. NC-like structures produced in the N cDNA-transfected cells displayed strong reactivity to mAb #1-7-11; however, reactivity to mAb #404-11 was very weak. And, coexpression with viral phosphoprotein (P) resulted in little increase in reactivity to mAb #404-11 of the NC-like structures, while the reactivity was significantly increased by cotransfection with P and the viral minigenome whose 3'- and 5'-end structures were derived from the viral genome. From these results, we assume that, although the 404-11 epitope is a linear one, the epitope-containing region is exposed only when N proteins encapsidate properly the viral RNA in collaboration with the P protein. Further, exposure of the 404-11 epitope region might be function-related, and be regulated by association and dissociation of the P protein.  相似文献   

8.
An immunodominant antigen, p35, is expressed on the envelope of intracellular mature virions (IMV) of vaccinia virus. p35 is encoded by the viral late gene H3L, but its role in the virus life cycle is not known. This report demonstrates that soluble H3L protein binds to heparan sulfate on the cell surface and competes with the binding of vaccinia virus, indicating a role for H3L protein in IMV adsorption to mammalian cells. A mutant virus defective in expression of H3L (H3L(-)) was constructed; the mutant virus has a small plaque phenotype and 10-fold lower IMV and extracellular enveloped virion titers than the wild-type virus. Virion morphogenesis is severely blocked and intermediate viral structures such as viral factories and crescents accumulate in cells infected with the H3L(-) mutant virus. IMV from the H3L(-) mutant virus are somewhat altered and less infectious than wild-type virions. However, cells infected by the mutant virus form multinucleated syncytia after low pH treatment, suggesting that H3L protein is not required for cell fusion. Mice inoculated intranasally with wild-type virus show high mortality and severe weight loss, whereas mice infected with H3L(-) mutant virus survive and recover faster, indicating that inactivation of the H3L gene attenuates virus virulence in vivo. In summary, these data indicate that H3L protein mediates vaccinia virus adsorption to cell surface heparan sulfate and is important for vaccinia virus infection in vitro and in vivo. In addition, H3L protein plays a role in virion assembly.  相似文献   

9.
We have investigated the possibility that immediate-early (IE) protein ICP4 could be a part of herpes simplex virus type 1 (HSV-1) virion particle. Immunodetection with a monoclonal antibody against ICP4 reveals that a component of the virion, migrating at 165 kd, shares a common epitope with this immediate-early protein. Immunolocalization studies on purified virions indicate that the antigen can be detected only in virions without membranes, and is located outside the capsid, most probably in the tegument. Ultrastructural localizations on HSV-1 infected BHK cells extracted with a nonionic detergent confirm that the protein immunoreacting with anti-ICP4 is present in virions.  相似文献   

10.
A human mAb (HmAb) termed F105 was obtained by fusion of antibody-producing EBV-transformed cells with the HMMA2.11TG/O cell line. F105 is an IgG1 kappa antibody that binds to the surfaces of cells infected with all HIV-1 strains tested: MN, RF, IIIB, and SF2, but not uninfected cells. The HmAb immunoprecipitates GP120 from all four strains. F105 does not react with denatured GP120 on Western blots, but does react with viral lysates and purified GP120 dotted onto nitrocellulose filter paper under nondenaturing conditions. rGP120 from SF2 and soluble rCD4 inhibit antibody binding to infected cells in a dose-dependent manner. F105 inhibits the binding of free, infectious virions to uninfected HT-H9 cells with 50% of maximal (100%) inhibition at approximately 1 microgram/ml. F105 inhibits infection of HT-H9 cells by 100 tissue culture infective dose 50% units of MN and IIIB strains with 50% inhibition at concentrations of HmAb readily achievable in man. It appears that the F105 HmAb reacts with a conformationally defined epitope on HIV-1/GP120 that is exposed on the free virion and is important for binding to the cell surface by the virion. The epitope, which is immunogenic in humans, appears to be within, or topographically near, the CD4-binding site. F105 and the F105 epitope are potentially useful in therapy and in the design of peptide or anti-Id based vaccines; monitoring of the expression of the Id may prove useful in evaluating immune responses in infected individuals or vaccinated volunteers.  相似文献   

11.
HEp-2 cells or Vero cells infected with herpes simplex virus type 1 were exposed to the ionophore monensin, which is thought to block the transit of membrane vesicles from the Golgi apparatus to the cell surface. We found that yields of extracellular virus were reduced to less than 0.5% of control values by 0.2 microM monensin under conditions that permitted accumulation of cell-associated infectious virus at about 20% of control values. Viral protein synthesis was not inhibited by monensin, whereas late stages in the post-translational processing of the viral glycoproteins were blocked. The transport of viral glycoproteins to the cell surface was also blocked by monensin. Although the assembly of nucleocapsids appeared to be somewhat inhibited in monensin-treated cells, electron microscopy revealed that nucleocapsids were enveloped to yield virions, and electrophoretic analyses showed that the isolated virions contained immature forms of the envelope glycoproteins. Most of the virions which were assembled in monensin-treated cells accumulated in large intracytoplasmic vacuoles, whereas most of the virions produced by and associated with untreated cells were found attached to the cell surface. Our results implicate the Golgi apparatus in the egress of herpes simplex virus from infected cells and also suggest that complete processing of the viral envelope glycoproteins is not essential for nucleocapsid envelopment or for virion infectivity.  相似文献   

12.
Expression of rabies virus glycoprotein (G) by G cDNA-transfected mammalian cells resulted in the production of only a fusion-negative form. Low pH-dependent fusion activity, however, was seen when the expression was done under control of the T7 promoter with the help of recombinant vaccinia virus (RVV-T7) that provided T7 RNA polymerase. Fusion-inactive G proteins were transported to the cell surface as being detected by a conformational epitope-specific monoclonal antibody (mAb; #1-46-12). The fusion-inactive G proteins were recognized by most of our 13 conformation-specific mAbs, except for one mAb, #1-30-44, that recognized the low pH-sensitive conformational epitope. When the G gene expression was done with the help of RVV-T7, although most G proteins remained in the epitope-negative form, a small fraction of G gene products were 1-30-44 epitope-positive, and cell fusion activity could be seen when cells were exposed to low pH conditions. From these results, we conclude that acquisition of low pH-dependent fusion activity is closely related to structural maturation of the G protein to form the low pH-sensitive 1-30-44 epitope. Such maturation seems to be dependent on certain rabies virus-induced cellular conditions or functions, which might also be provided in part by the vaccinia virus infection. We further assume that expression of G cDNA alone mostly results in the production of mis-folded and/or differently folded forms of G protein, and only a small fraction is correctly folded even under RVV-T7-mediated expression conditions.  相似文献   

13.
The difference in membrane (M) protein compositions between the transmissible gastroenteritis coronavirus (TGEV) virion and the core has been studied. The TGEV M protein adopts two topologies in the virus envelope, a Nexo-Cendo topology (with the amino terminus exposed to the virus surface and the carboxy terminus inside the virus particle) and a Nexo-Cexo topology (with both the amino and carboxy termini exposed to the virion surface). The existence of a population of M molecules adopting a Nexo-Cexo topology in the virion envelope was demonstrated by (i) immunopurification of (35)S-labeled TGEV virions using monoclonal antibodies (MAbs) specific for the M protein carboxy terminus (this immunopurification was inhibited only by deletion mutant M proteins that maintained an intact carboxy terminus), (ii) direct binding of M-specific MAbs to the virus surface, and (iii) mass spectrometry analysis of peptides released from trypsin-treated virions. Two-thirds of the total number of M protein molecules found in the virion were associated with the cores, and one-third was lost during core purification. MAbs specific for the M protein carboxy terminus were bound to native virions through the M protein in a Nexo-Cexo conformation, and these molecules were removed when the virus envelope was disrupted with NP-40 during virus core purification. All of the M protein was susceptible to N-glycosidase F treatment of the native virions, which indicates that all the M protein molecules are exposed to the virus surface. Cores purified from glycosidase-treated virions included M protein molecules that completely or partially lost the carbohydrate moiety, which strongly suggests that the M protein found in the cores was also exposed in the virus envelope and was not present exclusively in the virus interior. A TGEV virion structure integrating all the data is proposed. According to this working model, the TGEV virion consists of an internal core, made of the nucleocapsid and the carboxy terminus of the M protein, and the envelope, containing the spike (S) protein, the envelope (E) protein, and the M protein in two conformations. The two-thirds of the molecules that are in a Nexo-Cendo conformation (with their carboxy termini embedded within the virus core) interact with the internal core, and the remaining third of the molecules, whose carboxy termini are in a Nexo-Cexo conformation, are lost during virus core purification.  相似文献   

14.
15.
《Seminars in Virology》1995,6(4):249-255
Antibodies to alphaviruses are essential for recovery from infection. These antibodies act by interacting with the E1 and E2 glycoproteins on the virion and on the surface of infected cells. E1 epitopes are displayed primarily on infected cells and are cryptic on the virion until after exposure to acidic pH. A single neutralizing epitope (E1-c) includes E1 residue 132. Two dominant neutralizing domains have been identified on the Sindbis virus E2: E2-ab from E2-190 to 216 and E2-c from E2-62 to 159. E2-ab is likely to form a single loop and contain linear determinants while E2-c is strictly conformational involving several sites on the linear molecule. Both neutralizing and non-neutralizing E1 and E2 MAbs can protect and promote recovery from fatal encephalitis. E2 MAb can clear infectious virus from persistently infected cells by non-cytolytic process and acts synergistically with interferon.  相似文献   

16.
The influenza A virus M2 protein is an integral membrane protein of 97 amino acids that is expressed at the surface of infected cells with an extracellular N-terminal domain of 18 to 23 amino acid residues, an internal hydrophobic domain of approximately 19 residues, and a C-terminal cytoplasmic domain of 54 residues. To gain an understanding of the M2 protein function in the influenza virus replicative pathway, we produced and characterized a monoclonal antibody to M2. The antibody-binding site was located to the extracellular N terminus of M2 as shown by the loss of recognition after proteolysis at the infected-cell surface, which removes 18 N-terminal residues, and by the finding that the antibody recognizes M2 in cell surface fluorescence. The epitope was further defined to involve residues 11 and 14 by comparing the predicted amino acid sequences of M2 from several avian and human strains and the ability of the M2 protein to be recognized by the antibody. The M2-specific monoclonal antibody was used in a sensitive immunoblot assay to show that M2 protein could be detected in virion preparations. Quantitation of the amount of M2 associated with virions by two unrelated methods indicated that in the virion preparations used there are 14 to 68 molecules of M2 per virion. The monoclonal antibody, when included in a plaque assay overlay, considerably showed the growth of some influenza virus strains. This plaque size reduction is a specific effect for the M2 antibody as determined by an analysis of recombinants with defined genome composition and by the observation that competition by an N-terminal peptide prevents the antibody restriction of virus growth.  相似文献   

17.
The monoclonal antibody (mAb) 95-111 binds the alpha subunit of (H+,K+)-ATPase and inhibits the K(+)-ATPase activity. To map the epitope, all of the partial sequences of the alpha subunit were expressed in Escherichia coli HB101 using rabbit alpha subunit cDNA restriction fragments ligated into PuEx vector. Bacterial recombinant lysates were separated by sodium dodecyl sulfate-gel electrophoresis, and the epitope was detected by Western blotting. The antibody site was mapped between Cys529 and Glu561. This is close to the Lys517 that binds fluorescein isothiocyanate (FITC) and is considered to be between M4 and M5 close to the ATP binding domain. However, the mAb inhibition of ATPase is not ATP-competitive but is K(+)-competitive with a KI of 2 x 10(-9) M. The mAb also inhibits K+ quench of FITC fluorescence competitively with a KI of 8 x 10(-9) M. The K+ activation of ATPase activity and quench of FITC fluorescence are dependent on K+ binding to an E2 form of the enzyme from the extracytoplasmic surface. The mAb epitope is cytoplasmic since the K(+)-ATPase activity of ion-tight gastric vesicles is inhibited. The 125I-mAb 95-111 binds to a single class of sites with an apparent KD of 2.3 +/- 0.8 x 10(-9) M and K+ does not displace bound mAb. Hence, antibody binding to a cytoplasmic Cys529-Glu561 epitope allosterically competes with K(+)-dependent reactions at extracytoplasmic sites.  相似文献   

18.
When the rabies virus G cDNA was expressed with the help of T7 RNA polymerase provided by a recombinant vaccinia virus (RVV-T7), functional G proteins were produced in terms of their ability to induce low pH-dependent syncytium formation and the formation of conformational epitopes, including the acid-sensitive epitope recognized by mAb #1-30-44. Such an ability and the 1-30-44 epitope formation, however, were not associated with the G gene products when G cDNA was expressed without the help of RVV-T7 using a tetracycline-regulated expression vector (pTet-G), although they were normally transported to the surface of established G protein-producing BHK-21 (G-BHK) cells. But, when the G-BHK cells were treated with 2.5 m M sodium butyrate (NaB) after the removal of tetracycline, we could observe not only a much increased frequency of G protein-producing cells, but also the greatly enhanced maturation of the protein. Another short acylate, sodium propionate (NaP), similarly induced increased G protein synthesis at a concentration of 2.5 m M as NaB; however, such proteins were mostly not endowed with the fusion activity nor the 1-30-44 epitope, while NaP at a higher concentration as 5.0 m M did induce similarly the increased production and enhanced maturation of G protein, including the 1-30-44 epitope formation. From these results, we conclude that functional maturation of G protein to acquire fusogenic activity is correlated with 1-30-44 epitope formation, and 2.5 m M NaB not only stimulates G protein production, but also provides such cellular conditions as are required for the structural and functional maturation of the protein.  相似文献   

19.
Cell fractionation and protein electrophoresis were used to study the intracellular sites of synthesis and intermediate structures in the assembly of the virion proteins of vesicular stomatitis virus. Each of the three major virion proteins assembled into virions through a separable pathway. The nucleocapsid (N) protein was first a soluble protein and later incorporated into free, cytoplasmic nucleocapsids. A small amount of N protein was bound to membranes at later times, presumably representing either nucleocapsids in the process of budding or completed virions attached to the cell surface. The matrix (M) protein also appeared to be synthesized as a soluble protein, but was then directly incorporated into membranous structures with the same density as whole virus. Very little M protein was ever found in membranes banding at the density of plasma membranes. The M protein entered extracellular virus very quickly, as though it moved directly from a soluble state into budding virus. In contrast, the glycoprotein (G) was always membrane bound; it appeared to be directly inserted into membranes during its synthesis. Glycosylation of the G protein was completed only in smooth membrane fractions, possibly in the Golgi apparatus. After a minimum time of 15 min following its synthesis, G protein was incorporated into the surface plasma membrane, from which it was slowly shed into virions. These multiple processing steps probably account for its delayed appearance in virus. From this work it appears that the three major structural proteins come into the surface budding structure through independent pathways and together they coalesce at the plasma membrane to form the mature virion.  相似文献   

20.
Maturation of viral proteins in cells infected with mutants of vesicular stomatitis virus was studied by surface iodination and cell fractionation. The movement of G, M, and N proteins to the virion bud appeared to be interdependent. Mutations thought to be in G protein prevented its migration to the cell surface, allowed neither M nor N protein to become membrane bound, and blocked formation of viral particles. Mutant G protein appeared not to leave the endoplasmic reticulum at the nonpermissive temperature, but this defect was partially reversible. In cells infected with mutants that caused N protein to be degraded rapidly or prevented its assembly into nucleocapsids, M protein did not bind to membranes and G protein matured to the cell surface, but never entered structures with the density of virions. Mutations causing M protein to be degraded prevented virion formation, and G protein behaved as in cells infected by mutants in N protein. These results are consistent with a model of virion formation involving coalescence of soluble nucleocapsid and soluble M protein with G protein already in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号