首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1889篇
  免费   125篇
  2023年   10篇
  2022年   5篇
  2021年   31篇
  2020年   38篇
  2019年   29篇
  2018年   25篇
  2017年   36篇
  2016年   76篇
  2015年   90篇
  2014年   112篇
  2013年   137篇
  2012年   137篇
  2011年   149篇
  2010年   108篇
  2009年   88篇
  2008年   110篇
  2007年   108篇
  2006年   81篇
  2005年   92篇
  2004年   86篇
  2003年   75篇
  2002年   84篇
  2001年   24篇
  2000年   11篇
  1999年   24篇
  1998年   14篇
  1997年   16篇
  1996年   19篇
  1995年   12篇
  1994年   13篇
  1993年   15篇
  1992年   8篇
  1991年   7篇
  1990年   13篇
  1988年   4篇
  1987年   7篇
  1985年   4篇
  1984年   4篇
  1983年   9篇
  1982年   11篇
  1981年   12篇
  1980年   6篇
  1978年   11篇
  1977年   6篇
  1976年   6篇
  1973年   5篇
  1970年   4篇
  1969年   3篇
  1959年   4篇
  1955年   4篇
排序方式: 共有2014条查询结果,搜索用时 15 毫秒
1.
2.
The ribonucleotide reductase (RNR) complex, composed of a catalytic subunit (RRM1) and a regulatory subunit (RRM2), is thought to be a rate-limiting enzymatic complex for the production of nucleotides. In humans, the Rrm1 gene lies at 11p15.5, a tumor suppressor region, and RRM1 expression in cancer has been shown to predict responses to chemotherapy. Nevertheless, whether RRM1 is essential in mammalian cells and what the effects of its haploinsufficiency are remain unknown. To model RNR function in mice we used a mutation previously described in Saccharomyces cerevisiae (Rnr1-W688G) which, despite being viable, leads to increased interaction of the RNR complex with its allosteric inhibitor Sml1. In contrast to yeast, homozygous mutant mice carrying the Rrm1 mutation (Rrm1WG/WG) are not viable, even at the earliest embryonic stages. Proteomic analyses failed to identify proteins that specifically bind to the mutant RRM1 but revealed that, in mammals, the mutation prevents RRM1 binding to RRM2. Despite the impact of the mutation, Rrm1WG/+ mice and cells presented no obvious phenotype, suggesting that the RRM1 protein exists in excess. Our work reveals that binding of RRM1 to RRM2 is essential for mammalian cells and provides the first loss-of-function model of the RNR complex for genetic studies.  相似文献   
3.
Social media are used as main discussion channels by millions of individuals every day. The content individuals produce in daily social-media-based micro-communications, and the emotions therein expressed, may impact the emotional states of others. A recent experiment performed on Facebook hypothesized that emotions spread online, even in absence of non-verbal cues typical of in-person interactions, and that individuals are more likely to adopt positive or negative emotions if these are over-expressed in their social network. Experiments of this type, however, raise ethical concerns, as they require massive-scale content manipulation with unknown consequences for the individuals therein involved. Here, we study the dynamics of emotional contagion using a random sample of Twitter users, whose activity (and the stimuli they were exposed to) was observed during a week of September 2014. Rather than manipulating content, we devise a null model that discounts some confounding factors (including the effect of emotional contagion). We measure the emotional valence of content the users are exposed to before posting their own tweets. We determine that on average a negative post follows an over-exposure to 4.34% more negative content than baseline, while positive posts occur after an average over-exposure to 4.50% more positive contents. We highlight the presence of a linear relationship between the average emotional valence of the stimuli users are exposed to, and that of the responses they produce. We also identify two different classes of individuals: highly and scarcely susceptible to emotional contagion. Highly susceptible users are significantly less inclined to adopt negative emotions than the scarcely susceptible ones, but equally likely to adopt positive emotions. In general, the likelihood of adopting positive emotions is much greater than that of negative emotions.  相似文献   
4.
The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39°S) to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months) to contrasting pCO2 (ca. 500 and 1400 μatm) and temperature (15 and 19°C) levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15°C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response) or secretion of adhesive mucous (e.g. dislodgement resistance). Moreover, we conclude that positive behavioural responses may assist in the adaptation to negative physiological impacts, and that this may also be the case for other benthic organisms.  相似文献   
5.
Leptin is produced by adipose tissue and identified as a “satiety signal,” informing the brain when the body has consumed enough food. Specific areas of the hypothalamus express leptin receptors (LEPRs) and are the primary site of leptin action for body weight regulation. In response to leptin, appetite is suppressed and energy expenditure allowed. Beside this hypothalamic action, leptin targets other brain areas in addition to neuroendocrine cells. LEPRs are expressed also in the hippocampus, neocortex, cerebellum, substantia nigra, pancreatic β-cells, and chromaffin cells of the adrenal gland. It is intriguing how leptin is able to activate different ionic conductances, thus affecting excitability, synaptic plasticity and neurotransmitter release, depending on the target cell. Most of the intracellular pathways activated by leptin and directed to ion channels involve PI3K, which in turn phosphorylates different downstream substrates, although parallel pathways involve AMPK and MAPK. In this review we will describe the effects of leptin on BK, KATP, KV, CaV, TRPC, NMDAR and AMPAR channels and clarify the landscape of pathways involved. Given the ability of leptin to influence neuronal excitability and synaptic plasticity by modulating ion channels activity, we also provide a short overview of the growing potentiality of leptin as therapeutic agent for treating neurological disorders.  相似文献   
6.
Chemokines and their ligands play a critical role in enabling chronic lymphocytic leukaemia (CLL) cells access to protective microenvironmental niches within tissues, ultimately resulting in chemoresistance and relapse: disruption of these signaling pathways has become a novel therapeutic approach in CLL. The tyrosine kinase inhibitor dasatinib inhibits migration of several cell lines from solid-organ tumours, but effects on CLL cells have not been reported. We studied the effect of clinically achievable concentrations of dasatinib on signaling induced by the chemokine CXCL12 through its'' receptor CXCR4, which is highly expressed on CLL cells. Dasatinib pre-treatment inhibited Akt and ERK phosphorylation in CLL cells upon stimulation with CXCL12. Dasatinib also significantly diminished the rapid increase in actin polymerisation observed in CLL cells following CXCL12 stimulation. Moreover, the drug significantly inhibited chemotaxis in a transwell assay, and reduced the percentage of cells able to migrate beneath a CXCL12-expressing murine stromal cell line. Dasatinib also abrogated the anti-apoptotic effect of prolonged CXCL12 stimulation on cultured CLL cells. These data suggest that dasatinib, akin to other small molecule kinase inhibitors targeting the B-cell receptor signaling pathway, may redistribute CLL cells from protective tissue niches to the peripheral blood, and support the investigation of dasatinib in combination strategies.  相似文献   
7.
In the present study, the effectiveness of two plants, Medicago sativa L. and Dittrichia viscosa L., and a biostimulation method based on the use of an olive waste vermicompost, to restore the original quality of a trichloroethylene-contaminated soil was evaluated using eco-physiological profiles. These were designed in form of sun-ray plots by combining soil enzyme activities (dehydrogenase, alkaline phosphatase, β-glucosidase, urease and o-diphenol oxidase), bacterial population size via real-time PCR, Shannon diversity index values for PCR-denaturing gradient gel electrophoresis profiles, and genetic diversity θ(π) of the sequenced Proteobacteria of the different treatments. The eco-physiological profiles coupling biochemical and molecular parameters could be used as a valuable index for monitoring the success of a restoration scheme, estimating the quality of both contaminated and restored soils. Particularly remarkable was the interaction between vermicompost and D. viscosa, the only treatment that improved biochemical and microbiological restoration in such a way that an eco-physiological profile greater than that of the uncontaminated soil was noticed. The results showed the need to combine chemical analysis and microbiological measurements for evaluating the efficacy of soil remediation techniques.  相似文献   
8.
9.
1. Generalist herbivores feed on a wide and diverse set of species, but fine‐scale foraging patterns may be affected by the interplay between the quality, quantity and spatial distribution of host plants. 2. The foraging patterns of a prevalent Neotropical herbivore, the leaf‐cutter ant Atta laevigata, in the Brazilian Cerrado savannas were examined in order to determine if patterns observed are in concert with central‐place foraging predictions. 3. The results showed that A. laevigata acts as a polyphagous but highly selective herbivore, with ant attacks often resulting in partial defoliation of less‐preferred species and full defoliation of preferred ones. It was found, for the first time, that there is a strong and positive relationship between the relative attack frequency on plants from preferred species and foraging distance to the nest. This suggests a balance between the quality of plant resources harvested and costs involved in their transportation. It was also observed that colonies focused their harvest on preferred species in months with low availability of young leaves. Consequently, high herbivory rate was more frequent in plants attacked far away from the nest and in dry months. 4. These assessments highlight the fact that Atta colonies may become more selective as foraging distance to the nest increases and in response to fluctuations in the availability of palatable resources throughout the year. The results also show some dissimilarities in the foraging behaviours of A. laevigata when compared with other locations, suggesting that widely distributed herbivores may modify foraging strategies across their geographic range.  相似文献   
10.
In the course of a project carried out in two regions of Spain, Castilla y León and Andalucía, aiming to find useful biofertilizers for staple grain-legumes, an efficient rhizobia nodulating chickpea (termed as C-2/2) and a powerful in vitro phosphate-solubilizing bacterial strain (termed as PS06) were isolated. Analyses of their 16S rDNA sequence indicated that they belong to the bacterial species Mesorhizobium ciceri and Pseudomonas jessenii, respectively. Greenhouse and field experiments were carried out in order to test the effect of single and dual inoculations on chickpea (ecotype ILC-482) growth. Under greenhouse conditions, plants inoculated with Mesorhizobium ciceri C-2/2 alone had the highest shoot dry weight. The inoculation treatment with P. jessenii PS06 yielded a shoot dry weight 14% greater than the uninoculated control treatment, but it was not correlated with shoot P contents. However, the co-inoculation of C-2/2 with PS06 resulted in a decrease in shoot dry weight with respect to the inoculation with C-2/2 alone. Under field conditions, plants inoculated with M. ciceri C-2/2, in single or dual inoculation, produced higher nodule fresh weight, nodule number and shoot N content than the other treatments. Inoculation with P. jessenii PS06 had no significant effect on plant growth. However, the co-inoculation treatment ranked the highest in seed yield (52% greater than the uninoculated control treatment) and nodule fresh weight. These data suggest that P. jessenii PS06 can act synergistically with M. ciceri C-2/2 in promoting chickpea growth. The contrasting results obtained between greenhouse and field experiments are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号