首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In clinic, many non-small cell lung cancer (NSCLC) patients receive radiation therapy after chemotherapy failure. However, whether the multidrug resistance (MDR) can elevate the radioresistance (RDR) remains unclear. To evaluate the MDR's effect on the RDR, screen MDR- and RDR-related proteins in human lung adenocarcinoma (HLA) cells and tissues A549, and A549/DDP cells after irradiation were analyzed by colony-forming assay and flow cytometry. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were utilized to identify differentially expressed proteins (DEPs) between them. The value of D0, Dq, and SF2 increased, the mean percentage in G2 phase and apoptosis rate significantly decreased in A549/DDP cells compared with A549 cells. 40 DEP points were found, and among them 27 were identified through proteomics. Four up-regulated proteins (HSPB1, Vimentin, Cofilin-1, and Annexin A4) in MDR cells compared with non-MDR cells, were confirmed by Western blot. Immuno-histochemistry showed that they were also over-expressed in MDR tissues compared with non-MDR counterparts of HLA. These results proved that the MDR in HLA cells and tissues increased the RDR. HSPB1, Vimentin, Cofilin-1, and Annexin A4 are potential biomarkers for predicting HLA response to MDR and RDR, and novel treatment targets of HLA.  相似文献   

2.
《Epigenetics》2013,8(6):896-909
DNA methylation plays a critical role during the development of acquired chemoresistance. The aim of this study was to identify candidate DNA methylation drivers of cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. Gene expression and methylation profiling were determined by high-throughput microarrays. Relationship of methylation status and DDP response was validated in primary tumor cell culture and the Cancer Genome Atlas (TCGA) samples. Cell proliferation, apoptosis, cell cycle, and response to DDP were determined in vitro and in vivo. A total of 372 genes showed hypermethylation and downregulation in A549/DDP cells, and these genes were involved in most fundamental biological processes. Ten candidate genes (S100P, GDA, WISP2, LOXL1, TIMP4, ICAM1, CLMP, HSP8, GAS1, BMP2) were selected, and exhibited varying degrees of association with DDP resistance. Low dose combination of 5-aza-2′-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) reversed drug resistance of A549/DDP cells in vitro and in vivo, along with demethylation and restoration of expression of candidate genes (GAS1, TIMP4, ICAM1 and WISP2). Forced expression of GAS1 in A549/DDP cells by gene transfection contributed to increased sensitivity to DDP, proliferation inhibition, cell cycle arrest, apoptosis enhancement, and in vivo growth retardation. Together, our study demonstrated that a panel of candidate genes downregulated by DNA methylation induced DDP resistance in NSCLC, and showed that epigenetic therapy resensitized cells to DDP.  相似文献   

3.
DNA methylation plays a critical role during the development of acquired chemoresistance. The aim of this study was to identify candidate DNA methylation drivers of cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. Gene expression and methylation profiling were determined by high-throughput microarrays. Relationship of methylation status and DDP response was validated in primary tumor cell culture and the Cancer Genome Atlas (TCGA) samples. Cell proliferation, apoptosis, cell cycle, and response to DDP were determined in vitro and in vivo. A total of 372 genes showed hypermethylation and downregulation in A549/DDP cells, and these genes were involved in most fundamental biological processes. Ten candidate genes (S100P, GDA, WISP2, LOXL1, TIMP4, ICAM1, CLMP, HSP8, GAS1, BMP2) were selected, and exhibited varying degrees of association with DDP resistance. Low dose combination of 5-aza-2′-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) reversed drug resistance of A549/DDP cells in vitro and in vivo, along with demethylation and restoration of expression of candidate genes (GAS1, TIMP4, ICAM1 and WISP2). Forced expression of GAS1 in A549/DDP cells by gene transfection contributed to increased sensitivity to DDP, proliferation inhibition, cell cycle arrest, apoptosis enhancement, and in vivo growth retardation. Together, our study demonstrated that a panel of candidate genes downregulated by DNA methylation induced DDP resistance in NSCLC, and showed that epigenetic therapy resensitized cells to DDP.  相似文献   

4.
人核仁磷酸化蛋白1 (Nucleolar and coiledbody phosphoprotein 1,NOLC1)在癌症的发生发展过程中起着至关重要的调控作用,为探讨NOLC1对肺癌细胞的作用,本研究通过Gateway系统构建重组NOLC1腺病毒载体,成功包装NOLC1腺病毒后,分别感染正常人类胚胎肺细胞(HEL)和非小细胞肺癌细胞(A549细胞),过表达NOLC1。通过MTT实验、AnnexinV-APC/PI双染法和线粒体膜电位实验,证明与HEL细胞相比,NOLC1的过表达对A549细胞的活性降低、凋亡增加、线粒体膜电位下降影响较为显著;通过Real-time PCR检测Caspase家族、TNF与受体家族和BCL2家族基因的表达,发现过表达NOLC1明显上调了A549细胞中促凋亡基因的表达,下调了抗凋亡基因的表达,其中两种重要的促凋亡蛋白CASP8和BAX均显著上调,但是在HEL细胞中这种影响不明显。研究结果表明过表达NOLC1蛋白通过对线粒体通路和死亡受体通路的共同作用,对非小细胞癌具有显著的抗肿瘤活性。  相似文献   

5.
This study aimed to identify potential biomarkers for non-small cell lung cancer (NSCLC) and analyze the role of immune cell infiltration in NSCLC. R software was used to screen differentially expressed genes (DEGs) from NSCLC datasets obtained from the Gene Expression Omnibus (GEO) database, and functional correlation analysis was performed. The machine learning algorithms were used to screen the potential biomarkers of NSCLC. The diagnostic values were assessed through receiver operating characteristic (ROC) curves. The protein and mRNA expression levels of potential biomarkers were verified based on the Human Protein Atlas (HPA) database and qRT-PCR. CIBERSORT was used to evaluate the infiltration of immune cells in NSCLC tissues, and the correlation between potential biomarkers and infiltrated immune cell was analyzed. Finally, specific siRNAs were utilized to reduce the GDF10, NCKAP5, and RTKN2 expression in A549 and H1975 cells. The proliferation ability of A549 and H1975 cells was detected by MTT assay. A total of 848 upregulated DEGs and 1308 downregulated DEGs were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the DEGs were mainly related to cell division. Disease ontology (DO) enrichment analysis showed that the diseases with these DEGs were mainly lung diseases, including NSCLC. In addition,three potential biomarkers were identified: GDF10, NCKAP5, and RTKN2. Immune cell infiltration analysis showed that resting NK cells, activated dendritic cells, and Tregs may be involved in the pathogenesis of NSCLC. Meanwhile, GDF10, NCKAP5, and RTKN2 were negatively correlated with Tregs and naïve B cells but were positively correlated with activated dendritic cells and resting NK cells. Immunohistochemical staining showed that the expression of GDF10, NCKAP5, and RTKN2 in the lung tissue of patients with NSCLC was lower than that of normal lung tissue. qRT-PCR also confirmed that the mRNA expression of three biomarkers in NSCLC cell lines A549 and H1975 were significantly lower than those in human normal lung epithelial cells BEAS-2B. An MTT assay showed that GDF10, NCKAP5, and RTKN2 knockdown significantly promoted the proliferation of A549 and H1975 cells. The in vitro experiments showed that GDF10, NCKAP5, and RTKN2 played the inhibitory effects on NSCLC cell lines proliferation. Hence, GDF10, NCKAP5, and RTKN2 can be used as diagnostic biomarkers for NSCLC.  相似文献   

6.
The aim of this study was to investigate the effect of long noncoding RNA (lncRNA) urogenital carcinoma antigen 1 (UCA1) on drug resistance in A549/DDP cell and explore its underlying mechanism. The inhibition rate and IC 50 of DDP were detected in A549 and A549/DDP cells by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay. The expression of lncRNA UCA1 was measured in A549 and A549/DDP cells by quantitative real-time polymerase chain reaction. The expressions of N-cadherin, E-cadherin, vimentin, and Snail were detected in A549 and A549/DDP cells by Western blot analysis. Results showed that the IC 50 of DDP was 16.20 ± 2.27 μmol/L and 69.72 ± 4.83 μmol/L in A549 and A549/ DDP cells, respectively. Compared with the A549 group, the expressions of N-cadherin, vimentin, and Snail was significantly upregulated in A549/DDP group, but E-cadherin was significantly downregulated. Compared with the shCon group, the abundance of N-cadherin, vimentin, and Snail was significantly downregulated in short hairpin RNA UCA1 (shUCA1) group, while E-cadherin was significantly upregulated. Cell migration and invasion were significantly suppressed and IC 50 was reversed to 16.20 ± 2.27 μmol/L in the shUCA1 group. Silencing lncRNA UCA1 inhibited the migration and invasion of A549/DDP cells and reversed the resistance of A549/DDP cells to DDP. The mechanism might be related to downregulation of epithelial-mesenchymal transition, which will provide a new direction for the treatment of non–small-cell lung cancer with cisplatin.  相似文献   

7.
gamma-Glutamylcysteine synthetase (gamma-GCS) is a key enzyme in glutathione (GSH) synthesis, and is thought to play a significant role in intracellular detoxification, especially of anticancer drugs. Increased levels of GSH are commonly found in the drug-resistant human cancer cells. We designed a hammerhead ribozyme against gamma-GCS mRNA (anti-gamma-GCS Rz), which specifically down-regulated gamma-GCS gene expression in the HCT-8 human colon cancer cell line. The aim of this study was to reverse the cisplatin and multidrug resistance for anticancer drugs. The cisplatin-resistant HCT-8 cells (HCT-8DDP cells) overexpressed MRP and MDR1 genes, and showed resistance to not only cisplatin (CDDP), but also doxorubicin (DOX) and etoposide (VP-16). We transfected a vector expressing anti-gamma-GCS Rz into the HCT-8DDP cells (HCT-8DDP/Rz). The anti-gamma-GCS Rz significantly suppressed MRP and MDR, and altered anticancer drug resistance. The HCT-8DDP/Rz cells were more sensitive to CDDP, DOX and VP-16 by 1.8-, 4.9-, and 1.5-fold, respectively, compared to HCT-8DDP cells. The anti-gamma-GCS Rz significantly down-regulated gamma-GCS gene expression as well as MRP/MDR1 expression, and reversed resistance to CDDP, DOX and VP-16. These results suggested that gamma-GCS plays an important role in both cisplatin and multidrug resistance in human cancer cells.  相似文献   

8.
miR-126在多种恶性肿瘤中存在表达下调并显示抑癌基因的功能,然而其在肿瘤敏感性中的作用仍不明确.为了探讨miR-126在非小细胞肺癌细胞A549对顺式铂氨(cis-diammine dichloroplatoum, cisplatin, CDDP)敏感性中的作用及可能机制,本研究用MTS法检测非小细胞肺癌细胞A549及其衍生的CDDP耐受细胞A549/DDP对CDDP的敏感性.结果表明,A549/DDP细胞对CDDP的耐受性是A549细胞的4.05倍(P=0.0078)|用qRT-PCR检测发现,相比于A549细胞,A549/DDP细胞中miR-126的表达下调了8.45倍(P=0.0063),而survivin和Bcl-2的表达明显上调|通过MTS、qRT-PCR及Western印迹实验发现,miR-126 mimics使A549/DDP细胞中miR-126的表达上调了12.63倍(P=0.0013),并明显增加A549/DDP细胞对CDDP的敏感性及下调survivin和Bcl-2的表达;相反,miR-126 inhibitor能明显增加A549细胞对CDDP的耐受性及增加survivin和Bcl-2的表达.本研究结果提示,miR-126在非小细胞肺癌CDDP耐受细胞中的表达下调,上调miR-126的表达能增加耐药细胞对CDDP的敏感性. miR-126是逆转肺癌CDDP耐受的可能潜在靶标.  相似文献   

9.
Long noncoding RNAs (lncRNAs) have been identified as oncogenes or tumor suppressors that are involved in tumorigenesis and chemotherapy drug resistance. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes an lncRNA, and decreased MEG3 expression plays an important role in multiple cancers. However, its biological role in the development of the chemoresistance phenotype of human lung adenocarcinoma (LAD) is unknown. This study aimed to observe the expression of MEG3 in LAD and to evaluate its biological role and clinical significance in the resistance of LAD cells to cisplatin. MEG3 expression was markedly decreased in cisplatin-resistant A549/DDP cells compared with parental A549 cells as shown by an lncRNA microarray. MEG3 overexpression in A549/DDP cells increased their chemosensitivity to cisplatin both in vitro and in vivo by inhibiting cell proliferation and inducing apoptosis. By contrast, MEG3 knockdown in A549 cells decreased the chemosensitivity. Moreover, MEG3 was decreased in cisplatin-insensitive LAD tissues while p53 protein levels were decreased and Bcl-xl protein levels increased. Furthermore, patients with lower levels of MEG3 expression showed worse responses to cisplatin-based chemotherapy. These findings demonstrate that MEG3 is significantly downregulated in LAD and partially regulates the cisplatin resistance of LAD cells through the control of p53 and Bcl-xl expression. Thus, MEG3 may represent a new marker of poor response to cisplatin and could be a potential therapeutic target for LAD chemotherapy.  相似文献   

10.
11.
《Phytomedicine》2014,21(7):970-977
Chemotherapy is the recommended treatment for advanced-stage cancers. However, the emergence of multidrug resistance (MDR), the ability of cancer cells to become simultaneously resistant to different drugs, limits the efficacy of chemotherapy. Previous studies have shown that herbal medicine or natural food may be feasible for various cancers as potent chemopreventive drug. This study aims to explore the capablility of reversing the multidrug resistance of docetaxel (DOC)-resistant A549 cells (A549/D16) of psoralen and the underlying mechanisms. In this study, results showed that the cell viability of A549/D16 subline is decreased when treated with psoralen plus DOC, while psoralen has no effect on the cell proliferation on A549 and A549/D16 cells. Furthermore, mRNA and proteins levels of ABCB1 were decreased in the presence of psoralen, while decreased ABCB1 activity was also revealed by flow cytometry. Based on these results, we believe that psoralen may be feasible for reversing the multidrug resistance by inhibiting ABCB1 gene and protein expression. Such inhibition will lead to a decrease in ABCB1 activity and anti-cancer drug efflux, which eventually result in drug resistance reversal and therefore, sensitizing drug-resistant cells to death in combination with chemotherapeutic drugs.  相似文献   

12.
目的:观察RNA干扰沉默缺氧诱导因子1α(HIF-1α)对肺癌细胞耐药性的影响。方法:构建靶向HIF-1α小干扰RNA基因,并转染到人肺腺癌耐顺铂细胞株A549/DDP细胞中。逆转录聚合酶链反应RT—PCR)检测细胞的HIF-1α、多药耐药基因-(MDR-1)以多药耐药相关蛋白基因(MRP)mRNA变化,免疫细胞化学法观察干扰后HIF-1α、P-糖蛋白以及MRP蛋白的变化。MTT法检测不同浓度的顺铂作用下细胞死亡率。结果:HIF-1αsiRNA组中H1F-1α、MDR—1、MRPmRNA水平显著降低(P〈0.05)。且蛋白水平也显著下降(P〈0.05)。HIF-1αsiRNA组细胞死亡率较未转染组均明显增高(P〈0.05),转染siRNA阴性组不影响肿瘤细胞的耐药性。结论:HIF-1αsiRNA可显著降低A549/DDP细胞中H1F-1α、MDR-1、MRP表达,从而起到逆转肺腺癌A549/DDP细胞的耐药作用。  相似文献   

13.
cDNA microarray and proteomics studies were performed to analyze the genomic and proteomic expression patterns in HPV-16 E6 gene transfected stable human carcinoma cell lines. Among 1024 known genes and ESTs tested by cDNA microarray, we found 50 upregulated and 35 downregulated genes in RC10.1 HPV-16 E6 transfected human colon adenocarcinoma cells compared to RKO cells, and 27 upregulated and 43 downregulated genes in A549E6 HPV-16 E6 transfected human lung adenocarcinoma cells compared to A549 cells. Employing two dimensional gel electrophoresis and MALDI-TOF-MS, the global pattern of protein expressions in RC10.1 human colon adenocarcinoma and A549E6 human lung adenocarcinoma cell lines stably expressing the HPV 16-E6 gene were compared with those of RKO and A549 cell lines to generate a differential protein expression catalog. We found 13 upregulated and 13 downregulated proteins in RC10.1 (E6-expressing RKO) cells compared to RKO cells and 12 upregulated and 14 downregulated proteins in A549E6 (E6-expressing A549) cells compared to A549 cells. The identified genes and proteins were classified into several groups according to the subcellular function. Expressing pattern of three genes and proteins (CDK5, Bak, and I-TRAF) were matched in both analyses of cDNA microarray and proteomics. These powerful approaches using cDNA microarray and proteomics could provide in-depth information on the impact of HPV-16 E6-related genes and proteins. Differential gene and protein expression patterns by transfection of HPV-16 E6 will provide the nucleus of valuable resource for investigation of the biochemical basis of cervical carcinogenesis. Further understanding of this data base may provide valuable resources for developing novel diagnostic markers and therapeutic targets of cervical cancer.  相似文献   

14.
Non-small-cell lung cancer (NSCLC) is one of the main causes of death induced by cancer globally. However, the molecular aberrations in NSCLC patients remain unclearly. In the present study, four messenger RNA microarray datasets (GSE18842, GSE40275, GSE43458, and GSE102287) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between NSCLC tissues and adjacent lung tissues were obtained from GEO2R and the overlapping DEGs were identified. Moreover, functional and pathway enrichment were performed by Funrich, while the protein–protein interaction (PPI) network construction were obtained from STRING and hub genes were visualized and identified by Cytoscape software. Furthermore, validation, overall survival (OS) and tumor staging analysis of selected hub genes were performed by GEPIA. A total of 367 DEGs (95 upregulated and 272 downregulated) were obtained through gene integration analysis. The PPI network consisted of 94 nodes and 1036 edges in the upregulated DEGs and 272 nodes and 464 edges in the downregulated DEGs, respectively. The PPI network identified 46 upregulated and 27 downregulated hub genes among the DEGs, and six (such as CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M) of that have not been identified to be associated with NSCLC so far. Moreover, the expression differences of the mentioned hub genes were consistent with that in lung adenocarcinoma and lung squamous cell carcinoma in the TCGA database. Further analysis showed that all the six hub genes were associated with tumor staging except MYH11, while only the upregulated DEG CENPE was associated with the worse OS of patients with NSCLC. In conclusion, the current study showed that CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M might be the key genes contributed to tumorigenesis or tumor progression in NSCLC, further functional study is needed to explore the involved mechanisms.  相似文献   

15.
Chemoresistance remains a major obstacle to effective treatment in patients with ovarian cancer, and recently increasing evidences suggest that miRNAs are involved in drug-resistance. In this study, we investigated the role of miRNAs in regulating cisplatin resistance in ovarian cancer cell line and analyzed their possible mechanisms. We profiled miRNAs differentially expressed in cisplatin-resistant human ovarian cancer cell line A2780/DDP compared with parental A2780 cells using microarray. Four abnormally expressed miRNAs were selected (miR-146a,-130a, -374a and miR-182) for further studies. Their expression were verified by qRT-PCR. MiRNA mimics or inhibitor were transfected into A2780 and A2780/DDP cells and then drug sensitivity was analyzed by MTS array. RT-PCR and Western blot were carried out to examine the alteration of MDR1, PTEN gene expression. A total of 32 miRNAs were found to be differentially expressed in A2780/DDP cells. Among them, miR-146a was down-regulated and miR-130a,-374a,-182 were upregulated in A2780/DDP cells, which was verified by RT-PCR. MiR-130a and miR-374a mimics decreased the sensitivity of A2780 cells to cisplatin, reversely, their inhibitors could resensitize A2780/DDP cells. Furthermore, overexpression of miR-130a could increase the MDR1 mRNA and P-gp levels in A2780 and A2780/DDP cells, whereas knockdown of miR-130a could inhibit MDR1 gene expression and upregulate the PTEN protein expression .In a conclusion, the deregulation of miR-374a and miR-130a may be involved in the development and regulation of cisplatin resistance in ovarian cancer cells. This role of miR-130a may be achieved by regulating the MDR1 and PTEN gene expression.  相似文献   

16.
Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.  相似文献   

17.
Ye MX  Zhao YL  Li Y  Miao Q  Li ZK  Ren XL  Song LQ  Yin H  Zhang J 《Phytomedicine》2012,19(8-9):779-787
Curcumin, a yellow pigment derived from Curcuma longa Linn, has been favored by the Eastern as dietary ingredients for centuries. During the past decade, extensive investigations have revealed curcumin sensitized various chemotherapeutic agents in human breast, colon, pancreas, gastric, liver, brain and hematological malignant disorders in vivo and in vitro. Several pathways and specific targets including NF-κB, STAT3, COX-2, Akt and multidrug resistant protein have been identified to facilitate curcumin as a chemosensitizer. Recent studies suggest HIF-1α participated in the development of drug resistance in cancer cells and targeting HIF-1α either by RNAi or siRNA successfully overcame chemotherapeutic resistance. To investigate the mechanism basis of curcumin as a chemosensitizer in lung cancer, we examined curcumin's effects on HIF-1α in cis-platin (DDP) sensitive A549 and resistant A549/DDP cell lines by RT-PCR and Western blot. HIF-1α in A549/DDP cells was found to be overexpressed at both mRNA and protein levels together with a poor response to DDP. Results from transient transfection and flow cytometry showed the HIF-1α abnormality contributed to DDP resistance in A549/DDP lung cancer cells. Combined curcumin and DDP treatment markedly inhibited A549/DDP cells proliferation, reversed DDP resistance and triggered apoptotic death by promoting HIF-1α degradation and activating caspase-3, respectively. Expression of HIF-1α-dependent P-gp also seemed to decrease as response to curcumin in a dose-dependent manner. Our findings shed light on drug resistant reversing effect of curcumin in lung cancer cells by inhibiting HIF-1α expression and activating caspase-3.  相似文献   

18.
19.
Because multidrug resistance (MDR) is a serious impediment to the use of chemotherapy in treating cancer patients, great efforts have been made to search for effective MDR-reversing agents. We have developed a brand new synthetic ardeemin derivative, 5-N-formylardeemin, and investigated the activity of which in reversing MDR in MDR cancer cell lines derived from human breast cancer (MCF-7-R) or lung cancer (A549-R). 5-N-formylardeemin strongly enhanced the anti-cancer efficacy of doxorubicin, vincristine through potentiation of apoptosis in both MCF-7-R and A549-R at relatively noncytotoxic concentrations in vitro. Mechanistic studies showed that 5-N-formylardeemin inhibited the expression of MDR-1 (P-gp) and increased the intracellular accumulation of cytotoxic drugs in the MDR cells, suggesting that 5-N-formylardeemin reverses MDR activities through inhibiting MDR-1 expression. Interestingly, 5-N-formylardeemin also sensitized the parent wild-type cancer cells toward these chemotherapeutic agents to various extents. Importantly, in vivo studies demonstrated that 5-N-formylardeemin significantly improved the therapeutic effects of doxorubicin in nude mice bearing A549-R xenografts, which was associated with reduced expression of MDR-1 protein level and increased apoptosis in tumor tissues. These results underscore 5-N-formylardeemin as a potential sensitizer for chemotherapy against multidrug resistant cancers.  相似文献   

20.
Multidrug resistance (MDR) transporters have been termed the Phase III detoxification system because they not only export endogenous metabolites but provide protection from xenobiotic insult by actively secreting foreign compounds and their metabolites from tissues. However, MDR overexpression in tumors can lead to drug resistance, a major obstacle in the treatment of many cancers, including lung cancer. Isothiocyanates from cruciferous vegetables, such as sulforaphane (SF) and erucin (ER), are known to enhance the expression of Phase II detoxification enzymes. Here we evaluated the ability of SF and ER to modulate MDR mRNA and protein expressions, as well as transporter activity. The expression of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1) and multidrug resistance protein 2 (MRP2) in liver (HepG2), colon (Caco-2) and lung (A549) cancer cells treated with ER or SF was analyzed by Western blotting. Neither SF nor ER affected P-gp expression in any of the cell lines tested. Both SF and ER increased the protein levels of MRP1 and MRP2 in HepG2 cells and of MRP2 in Caco-2 cells in a dose-dependent manner. In A549 lung cancer cells, SF increased MRP1 and MRP2 mRNA and protein levels; ER caused a similar yet smaller increase in MRP1 and MRP2 mRNA. In addition, SF and ER increased MRP1-dependent efflux of 5-carboxyfluorescein diacetate in A549 cells, although again the effect of SF was substantially greater than that of ER. The implication of these findings is that dietary components that modulate detoxification systems should be studied carefully before being recommended for use during chemotherapy, as these compounds may have additional influences on the disposition of chemotherapeutic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号