首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dendritic cell-specific C-type lectin DC-SIGN functions as a pathogen receptor that recognizes Schistosoma mansoni egg antigens through its major glycan epitope Galbeta1,4(Fucalpha1,3)GlcNAc (Lex). Here we report that L-SIGN, a highly related homologue of DC-SIGN found on liver sinusoidal endothelial cells, binds to S. mansoni egg antigens but not to the Lex epitope. L-SIGN does bind the Lewis antigens Lea, Leb, and Ley, similar as DC-SIGN. A specific mutation in the carbohydrate recognition domain of DC-SIGN (V351G) abrogates binding to all Lewis antigens. In L-SIGN Ser363 is present at the corresponding position of Val351 in DC-SIGN. Replacement of this Ser into Val resulted in a "gain of function" L-SIGN mutant that binds to Lex, and shows increased binding to the other Lewis antigens. These data indicate that Val351 is important for the fucose specificity of DC-SIGN. Molecular modeling and docking of the different Lewis antigens in the carbohydrate recognition domains of L-SIGN, DC-SIGN, and their mutant forms, demonstrate that Val351 in DC-SIGN creates a hydrophobic pocket that strongly interacts with the Fucalpha1,3/4-GlcNAc moiety of the Lewis antigens. The equivalent amino acid residue Ser363 in L-SIGN creates a hydrophilic pocket that prevents interaction with Fucalpha1,3-GlcNAc in Lex but supports interactions with the Fucalpha1,4-GlcNAc moiety in Lea and Leb antigens. These data demonstrate for the first time that DC-SIGN and L-SIGN differ in their carbohydrate binding profiles and will contribute to our understanding of the functional roles of these C-type lectin receptors, both in recognition of pathogen and self-glycan antigens.  相似文献   

2.
The identification of Helicobacter pylori isolates that expresses exclusively type I Lewis antigens is necessary to determine the biosynthetic pathway of these antigens. Fast-atom bombardment MS provides evidence that the H. pylori isolate UA1111 expresses predominantly Leb, with H type I and Lea in lesser amounts. Cloning and expression of the H. pylori fucosyltransferases (FucTs) allow comparisons with previously identified H. pylori enzymes and determination of the enzyme specificities. Although all FucTs, one alpha(1,2) FucT and two alpha(1,3/4) FucTs, appear to be functional in this isolate, their activities are lower and enzyme specificities are different to other H. pylori FucTs previously characterized. Studies of the cloned enzyme activities and mutational analysis indicate that Lea acts as the substrate for the synthesis of Leb. This is different from the human Leb biosynthetic pathway, but analogous to the biosynthetic pathway utilized by H. pylori for the production of Ley.  相似文献   

3.
Lewis b (Leb) antigens are gradiently expressed from the proximal to the distal colon, i.e., they are abundantly expressed in the proximal colon, but only faintly in the distal colon. In the distal colon, they begin to increase at the adenoma stage of cancer development and then increase with cancer progression. We aimed to clarify the molecular basis of Leb antigen expression in correlation with the expression of other type I Lewis antigens, such as Lewis a (Lea) and sialylated Lewis a (sLea), in colon cancer cells. Considering the Se genotype and the relative activities of the H and Se enzymes, the amounts of Leb antigens were proved to be determined by both the H and Se enzymes in noncancerous and cancerous colon tissues. But the Se enzyme made a much greater contribution to determining the Lebamounts than the H enzyme. In noncancerous colons, the Se enzyme were gradiently expressed in good correlation with the Leb expression, while the H enzyme was constantly expressed throughout the whole colon. In distal colon cancers, the H and Se enzymes were both significantly upregulated in comparison with in adjacent noncancerous tissues. In proximal colon cancers, expression of the H enzyme alone was highly augmented. The augmented expression of Leb antigens in distal colon cancers is caused mainly by upregulation of the Se enzyme and partly by the H enzymes, while it is caused by upregulation of the H enzyme alone in proximal colon cancers. The Se gene dosage profoundly influences the amounts of the Leb, Lea, and sLea antigens in whole colon tissues, regardless of whether they are noncancerous or cancerous tissues. It suggests that the Se enzyme competes with alpha2,3 sialyltransferase(s) and the Le enzyme for the type I acceptor substrates.  相似文献   

4.
Helicobacter pylori is a widespread Gram-negative bacterium responsible for the onset of various gastric pathologies and cancers in humans. A familiar trait of H. pylori is the production of cell-surface lipopolysaccharides (LPSs; O-chain --> core --> lipid A) with O-chain structures analogous to some mammalian histo-blood-group antigens, those being the Lewis determinants (Lea, Leb, Lex, sialyl Lex, Ley) and blood groups A and linear B. Some of these LPS antigens have been implicated as autoimmune, adhesion, and colonization components of H. pylori pathogenic mechanisms. This article describes the chemical structures of LPSs from H. pylori isolated from subjects with no overt signs of disease. Experimental data from chemical- and spectroscopic-based studies unanimously showed that these H. pylori manufactured extended heptoglycans composed of 2- and 3-linked D-glycero-alpha-D-manno-heptopyranose units and did not express any blood-group O-antigen chains. The fact that another H. pylori isolate with a similar LPS structure was shown to be capable of colonizing mice indicates that H. pylori histo-blood-group structures are not an absolute prerequisite for colonization in the murine model also. The absence of O-chains with histo-blood groups may cause H. pylori to become inept in exciting an immune response. Additionally, the presence of elongated heptoglycans may impede exposure of disease-causing outer-membrane antigens. These factors may render such H. pylori incapable of creating exogenous contacts essential for pathogenesis of severe gastroduodenal diseases and suggest that histo-blood groups in the LPS may indeed play a role in inducing a more severe H. pylori pathology.  相似文献   

5.
A blood-group Lewis precursor glycolipid was isolated from the plasma of a Lewis-negative individual [Le(a--b--)] and treated with fucosyltransferases from human gastric mucosa and GDP-fucose. Subsequently the glycolipid was adsorbed onto Le(a--b--) erythrocytes and the presence of blood-group Lewis antigens was assessed by passive hemagglutination with anti-Lewis sera. It was shown that the precursor glycolipid was enzymatically transformed to blood-group Lewis a (Lea) and Lewis b (Leb) specific glycolipids. Leb-glycolipid was also synthesized by fucosylation of an isolated Lea-glycolipid. Moreover Le(a--b--) erythrocytes were shown to develop Lea and Leb activities when subjected to enzymatic fucosylation, thus showing that Lewis-negative cells carry blood-group Lewis precursor glycolipid on the surface of their membrane. Le(a + b--) erthrocytes, upon enzymatic fucosylation, acquired Leb activity.  相似文献   

6.
We studied interaction of the lectin from the bark of Golden Rain shrub (Laburnum anagyroides, LABA) with a number of basic fucose-containing carbohydrate antigens by changes in its tryptophan fluorescence. The strongest LABA binding was observed for the trisaccharide H of type 6 [alpha-L-Fucp-(1-2)-beta-D-Galp-(1-4)-D-Glc, Ka= 4.2 x 10(3) M(-1)]. The following antigens were bound with a weaker affinity: H-disaccharide alpha-L-Fucp-(1-2)-D-Gal, a glucoanalogue of tetrasaccharide Ley alpha-L-Fucp-(1-2)-beta-D-Galp-(1-4)-[alpha-L-Fucp-(1-3)]-D-Glc, and 6-fucosyl-N-acetylglucosamine, a fragment of core of the N-glycans family (Ka 1.1-1.7 x 10(3) M(-1)). The lowest binding was observed for L-fucose (Ka = 2.7 x 10(2) M-1) and trisaccharide Lea, (3-Galp-(1-3)-[a-L-Fucp-(1-4)]-GlcNAc (Ka = 6.4 x 10(2) M(-1)). The Lea, Lea, and Lex pentasaccharides and Leb hexasaccharide were not bound to LABA.  相似文献   

7.
Two major glycolipids reactive with the monoclonal anti-Lea antibody have been isolated from human blood cell membranes. One component was identified as lactofucopentaosyl(II)ceramide and the other as a ceramide heptassaccharide with the structure described below: (formula; see text) The structure includes the Lea determinant (type 1 chain) linked to lactoneotetraosylceramide (type 2 chain); thus, it is regarded to be a hybrid between type 1 and 2 chain. In addition, a minor component having the thin-layer chromatographic mobility of a ceramide nonasaccharide, which was reactive to anti-Lea antibody, was detected. No other component with a thin-layer chromatographic mobility slower than the above components and reactive to the anti-Lea antibody was detected. In contrast, a series of slowly migrating glycolipids having X (Lex) determinant (Gal beta 1----4(Fuc alpha 1----3)GlcNAc) was detected. A similar series of long chain glycolipids having Y (Ley) determinant (Fuc alpha 1----2Gal beta 1----4(Fuc1----3)GlcNAc) was detected in human blood cells; in contrast, only one major Leb glycolipid was found with the mobility of a ceramide hexasaccharide. No glycolipid with a long carbohydrate chain composed exclusively of type 1 chain was detected. Thus, chain elongation may proceed through type 2 chain, but not through type 1 chain. Lea and X (Lex) haptens are distributed equally among blood group A, B, and O red blood cells, whereas the quantity of Leb and Y (Ley) haptens is much lower in A and B blood cells than in O blood cells.  相似文献   

8.
Adults of the human parasitic trematode Schistosoma mansoni, which causes hepatosplenic/intestinal complications in humans, synthesize glycoconjugates containing the Lewis x (Lex) Galbeta1-->4(Fucalpha1-- >3)GlcNAcbeta1-->R, but not sialyl Lewis x (sLex), antigen. We now report on our analyses of Lexand sLexexpression in S.haematobium and S.japonicum, which are two other major species of human schistosomes that cause disease, and the possible autoimmunity to these antigens in infected individuals. Antigen expression was evaluated by both ELISA and Western blot analyses of detergent extracts of parasites using monoclonal antibodies. Several high molecular weight glycoproteins in both S. haematobium and S. japonicum contain the Lexantigen, but no sialyl Lexantigen was detected. In addition, sera from humans and rodents infected with S.haematobium and S.japonicum contain antibodies reactive with Lex. These results led us to investigate whether Lexantigens are expressed in other helminths, including the parasitic trematode Fasciola hepatica , the parasitic nematode Dirofilaria immitis (dog heartworm), the ruminant nematode Haemonchus contortus , and the free-living nematode Caenorhabditis elegans . Neither Lexnor sialyl-Lexis detectable in these other helminths. Furthermore, none of the helminths, including schistosomes, express Lea, Leb, Ley, or the H- type 1 antigen. However, several glycoproteins from all helminths analyzed are bound by Lotus tetragonolobus agglutinin , which binds Fucalpha1-->3GlcNAc, and Wisteria floribunda agglutinin, which binds GalNAcbeta1-->4GlcNAc (lacdiNAc or LDN). Thus, schistosomes may be unique among helminths in expressing the Lexantigen, whereas many different helminths may express alpha1,3-fucosylated glycans and the LDN motif.   相似文献   

9.
We report the production of monoclonal antibodies (MAb) by an in vitro technique which react with principal cells of the renal collecting duct. Spleen cells were directly simulated in vitro with unsolubilized antigens, i.e., by direct contact with the apical site of cultivated principal cells or by contact with cell fragments. Out of several others two antibodies, IV1 and IV2, were selected, which specifically reacted with the principal cells of the collecting duct. MAbIV1 also reacted with Type A intercalated cells, indicating the existence of a common antigen in the apical membrane of both cell types. Type B intercalated cells were consistently unreactive. All other parts of the uriniferous tubule were also unreactive. In Western blot analysis MAb IV1 showed immunoreactivity with a 40 KD and a 43 KD antigen. Our experiments demonstrate the possibility of producing antibodies against unsolubilized antigens by a simple in vitro technique. The activity of particular lymphocyte in this in vitro system is shown by the specificity of the antibodies.  相似文献   

10.
We investigated the distribution of Na+,K+-ATPase in rat exocrine pancreas. By use of enzymatic dissociation techniques, pancreatic acini (containing acinar cells and centroacinar ductal cells in a ratio of about 10:1) and all major classes of pancreatic ducts were isolated and analyzed for the presence of Na+,K+-ATPase using K+-NPPase cytochemistry and [3H]-ouabain binding assays. Ultrastructural analysis demonstrated a basolateral localization of ouabain-sensitive enzyme activity in all classes of pancreatic ducts, although the degree of activity varied among the various classes. Qualitative analysis (scale of 0 to + + +) indicated the following enzyme distribution: centroacinar ductal cells (+); intralobular ducts (+ +); interlobular ducts (+ + +); main duct (+ +). In contrast, no reaction product was associated with pancreatic acinar cells even when observed adjacent to enzyme-positive centroacinar ductal cells. Parallel experiments monitoring [3H]-ouabain binding supported the cytochemical studies. When expressed as femtomoles [3H]-ouabain/microgram DNA, the following values were obtained: whole pancreas, 100.3; ducts (pooled intralobular and interlobular), 337.0; acini, 48.2. The acinar value is complicated by the fact that acini contain both acinar and centroacinar cells, but in light of the cytochemical observations we suggest that most of the [3H]-ouabain binding is due to the few ductal cells present in acini. The results suggest that Na+,K+-ATPase is primarily associated with the ductal epithelium of the exocrine pancreas and is differentially distributed among the different classes of ducts.  相似文献   

11.
Glycoproteins from the ruminant helminthic parasite Haemonchus contortus react with Lotus tetragonolobus agglutinin and Wisteria floribunda agglutinin, which are plant lectins that recognize α1,3-fucosylated GlcNAc and terminal β-GalNAc residues, respectively. However, parasite glycoconjugates are not reactive with Ricinus communis agglutinin, which binds to terminal β-Gal, and the glycoconjugates lack the Lewis x (Lex) antigen or other related fucose-containing antigens, such as sialylated Lex, Lea, Leb Ley, or H-type 1. Direct assays of parasite extracts demonstrate the presence of an α1,3-fucosyltransferase (α1,3FT) and β1,4-N-acetylgalactosaminyltransferase (β1,4GalNAcT), but not β1,4-galactosyltransferase. The H. contortus α1,3FT can fucosylate GlcNAc residues in both lacto-N-neotetraose (LNnT) Galα1→4GlcNAcβ1→3Galβ1→4Glc to form lacto-N-fucopentaose III Galβ1→ 4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glc, which contains the Lex antigen, and the acceptor lacdiNAc (LDN) GalNAcβ1→4GlcNAc to form GalNAcβ1→4[Fucα1 →3]GlcNAc. The α1,3FT activity towards LNnT is dependent on time, protein, and GDP-Fuc concentration with a Km 50 μ M and a Vmax of 10.8 nmol-mg?1 h?1. The enzyme is unusually resistant to inhibition by the sulfhydryl-modifying reagent N-ethylmaleimide. The α1,3FT acts best with type-2 glycan acceptors (Galβ1→4GlcNAcβ1-R) and can use both sialylated and non-sialylated acceptors. Thus, although in vitro the H. contortus α1,3FT can synthesize the Lex antigen, in vivo the enzyme may instead participate in synthesis of fucosylated LDN or related structures, as found in other helminths.  相似文献   

12.
In 1980 blood and saliva samples were taken from Spanish students of the University of Madrid. Red cells were analysed for A1B2BO and Lewis blood groups. Saliva samples were tested to detect the specific group substances ABH, Lea and Leb. A slightly higher frequency of the "le" gene (0.419) was found in our sample as compared to other Spanish samples. The phenotype frequencies of ABH secretors (77.2%) and non-secretors (22.8%) are in the range of other European populations. The levels of A and B antigens of individuals belonging to these blood groups were similar, whereas the average titration of the H substance showed the relation O greater than A2 greater than A1 greater than A1B greater than B. Analysis of variance proved this heterogeneity to be statistically significant. The amount of Lea substance in non-secretors was higher than in secretors. This shows again that the ABH secretor status has some influence on the quantity of this antigen. The average titration of the Leb substance in secretors was higher than that of Lea in individuals belonging to O, A and AB blood groups, but not in those with blood group B.  相似文献   

13.
We studied in detail the distribution pattern of gamma-glutamyl transpeptidase (gamma-GT) in human pancreas, using the immunoperoxidase technique and a monoclonal antibody to human kidney gamma-GT. Positive reaction was confined exclusively to the luminal surface of the centroacinar cells and the epithelia of the intercalated, intralobular, and interlobular ducts. The immunoreaction was stronger in the intercalated and intralobular ducts than in the interlobular ducts. The acinar cells did not show any reaction. The islets of Langerhans were heavily surrounded by the ducts, and normal islet cells showed no reaction. The course of the ducts, from the acinar lumina to the interlobular ducts, was delineated by using reaction sites positive for gamma-GT as markers. The courses of the ducts, which comprise the pathway for pancreatic juice, were found to vary widely in their connections with each other, especially between the intralobular and interlobular ducts. At least three separate routes could be identified.  相似文献   

14.
The pancreatic duct is the major site for the secretion of pancreatic fluid, but the pathway of water transport in this system is not known. Recently, intense signal for mRNA of aquaporin 1 (AQP1) water channels was detected in isolated rat interlobular ducts. Therefore, we performed light- and electron-microscopic (EM) immunohistochemistry for AQP1 in the rat pancreatic ducts. AQP1 immunoproducts were not observed in the acinar cells, centroacinar cells or intercalated ducts. In the smaller intralobular ducts less than 10 microm in diameter (the lumen plus duct cells), most cells were immunonegative. AQP1-positive cells appeared in intralobular ducts 10-15 microm in diameter. In small and medium-sized interlobular ducts 15-70 microm in diameter surrounded by periductal connective tissue 2-40 microm thick, most cells were AQP1 positive with various degrees of immunoreactivity. In the larger interlobular ducts, the expression of AQP1 was variable, ranging from immunopositive to negative. In the main pancreatic duct, most cells were negative for AQP1. EM immunohistochemistry of the intralobular and small interlobular ductal epithelial cells showed that the AQP1 immunoproducts were more abundant in the basolateral membrane than in the apical membrane, though they were present in both membranes. In the medium-sized interlobular ducts, AQP1 immunoproducts were distributed densely along the apical, lateral interdigitation and basal membrane of the epithelial cells. In the various sizes of interlobular ducts, immunoproducts were associated not only with the plasma membrane, but also with the caveolae and vesicle-like structures. Secretin did not induce any significant difference in AQP1 expression and cellular and subcellular localization. These results indicate that the expression and subcellular localization of AQP1 vary considerably depending on the duct size, which may reflect water transport characteristics in the different divisions of the pancreatic duct system.  相似文献   

15.
Altman E  Smirnova N  Li J  Aubry A  Logan SM 《Glycobiology》2003,13(11):777-783
The cell envelope of Helicobacter pylori contains a lipopolysaccharide (LPS) essential for the physical integrity and functioning of the bacterial cell membrane. The O-chain of this LPS frequently expresses type 2 Lewis x (Lex) and Lewis y (Ley) blood group antigens that mimic human gastric mucosal cell-surface glycoconjugates. This article describes the isolation and structural analysis of the LPS from a clinical isolate of H. pylori strain PJ2 that lacks Le antigens but is still capable of colonization. Subsequent composition, methylation, and CE-ESMS analyses of LPS revealed its core oligosaccharide structure to be consistent with the previously proposed structural model for H. pylori LPS. In addition, it carries an unusually long side branch alpha1,6-glucan and was devoid of Le O-chain polysaccharide. Its ability to colonize the mouse stomach was essentially identical to that of DD-heptoglycan- and Le antigen- producing H. pylori strains.  相似文献   

16.
Monoclonal antibodies directed against human cancer cells were prepared by the murine hybridoma technique. These antibodies detect Lewis blood group antigens as determined by indirect solid-phase radioimmunoassay, hapten inhibition studies, and chromatogram binding assay. One monoclonal antibody is specific for the Lea terminal carbohydrate of Gal beta 1----3Glc NAc(4----1 alpha Fuc) beta 1----3LacCer. Five monoclonal antibodies react with the Leb terminal carbohydrate sequence of Fuc alpha 1----2Gal beta 1----3GlcNAc(4----1 alpha Fuc) beta 1----3LacCer, and four of these antibodies are highly specific for this glycolipid and do not react with other similar di- and monofucosylated glycolipids. One of the anti-Leb antibodies cross-reacts with blood group H glycolipid and has binding properties similar to those of the previously described antibody NS-10-17 [M. Brockhaus, J. L. Magnani, M. Blaszczyk, Z. Steplewski, H. Koprowski, K.-A. Karlsson, G. Larson, and V. Ginsburg (1981) J. Biol. Chem. 256, 13223-13225]. Two antibodies react with both the Lea and Leb antigens, though both bind preferentially to Leb.  相似文献   

17.
Using lectin staining methods in combination with exo- and endo-glycosidase digestion procedures, we analyzed the chemical structure of different types of blood group-related substances in serous cells of formalin-fixed, paraffin-embedded human submandibular glands. Serous cells produced only H antigen; A and B antigens were not present, and the expression of H antigen is dependent on the secretor status of the tissue donor. Although reactivity with Ulex europaeus agglutinin I (UEA-I) was not markedly reduced by alpha-L-fucosidase digestion, an affinity for peanut agglutinin (PNA) was seen after fucosidase digestion in the cells from secretors. In those from nonsecretors, no PNA reactivity appeared after enzyme digestion. On the other hand, sialidase digestion elicited PNA reactivity in serous cells irrespective of the donor's secretor status. PNA reactivity observed after fucosidase or sialidase digestion was susceptible to endo-alpha-N-acetylgalactosaminidase (endo-GalNAc-dase) digestion. SBA reactivity in UEA-I-negative cells from secretors, or in cells from fetuses and newborn infants, was markedly reduced by beta-galactosidase digestion. After galactosidase digestion, reactivity with Griffonia simplicifolia agglutinin II (GSA-II) appeared in the corresponding cells. This GSA-II reactivity was almost completely eliminated by subsequent beta-N-acetylhexosaminidase digestion. Whereas PNA reactivity in these cells was not reduced by beta-galactosidase treatment, it was significantly diminished by endo-GalNAc-dase digestion. These results suggest that at least two kinds of precursor disaccharides are produced in submandibular serous cells, i.e., SBA-reactive D-galactose-(beta 1-3,4)-N-acetyl-D-glucosamine and PNA-reactive D-galactose-(beta 1-3)-N-acetyl-D-galactosamine alpha 1-serine or threonine (O-glycosidically linked Type 3 chain or T antigen). Final fucosylation and synthesis of these two types of precursor chain appear to be under the control of the secretor gene.  相似文献   

18.
Regional differentiation of the plasma membrane and related structures of the exocrine pancreas has been studied ultrastructurally and cytochemically. Fixation with an osmium tetroxide-silver acetate solution produced abundant fine precipitates on the luminal and basal surface of the centroacinar but not the acinar cells. Staining with dialyzed iron (DI) revealed the heaviest concentration of anionic sites on the luminal plasma membrane of the acinar cells, including the surface of both the intercellular canaliculi and the main lumen. The reactive sites on the apical acinar plasmalemma appeared to consist of discrete globules. DI-reactivity of the lateral basal membranes was most prominent in the centroacinar cells and essentially absent in the acinar cells but was weak relative to that of the acinar-cell apical plasmalemma. The lamina lucida of the basement membrane of the duct stained with DI, but that of basement membrane under acinar cells did not. Sialidase digestion prior to DI staining abolished the staining of plasma membranes. These results indicate that duct epithelial cells, including most prominently the centroacinar cells, are chiefly responsible for electrolyte and fluid transport.  相似文献   

19.
A monoclonal antibody, MSN-1, generated by immunizing a mouse with a human uterine endometrial adenocarcinoma cell line, SNG-II, was strongly and specifically reactive with neutral glycosphingolipids from cancer tissues of patients with uterine endometrial adenocarcinomas. The glycosphingolipid antigen was purified from pooled human meconia, which contained the antigen at the concentration of 1.95 mumol/g dry weight. Its structure was determined by NMR, negative ion FABMS, permethylation analysis, and TLC-immunostaining with monoclonal anti-Lc4Cer antibody, and was concluded to be the III4IV2Fuc2Lc4Cer,Leb antigen of the human Lewis blood system. On ELISA, the monoclonal antibody was found to be strongly reactive with Leb, slightly with Lea and not at all with A, B, H, or IV2FucGg4Cer. The amount of Leb in cancerous regions in the patients with the Lea-b+ blood group was significantly increased compared to that in normal regions in the same patients, and it was a newly appearing antigen in the cancerous tissue of a patient with the Lea+b- blood group.  相似文献   

20.
The specificity of endothelial cell leukocyte adhesion molecule-1, ELAM-1, for binding to a panel of carbohydrate structures was determined by a sensitive cell binding assay with immobilized synthetic glycoconjugates. ELAM-1 cDNA transfectants were found to bind Sialyl Lea (sialylated lacto-N-fucopentaose II) or sialylated Lewis a antigen (NeuAc alpha 2-3Gal beta 1-3(Fuc alpha 1-4)GlcNAc), as well as or slightly better than Sialyl Lex (sialylated lacto-N-fucopentaose III) or sialylated Lewis X antigen (NeuAc alpha 2-3 Gal beta 1-4(Fuc alpha 1-3)GlcNAc). A monoclonal antibody, HECA-452, which has been identified recently as recognizing ELAM-1 ligands in addition to those containing Sialyl Lex, was also found to bind both Sialyl Lex and Sialyl Lea. Hard sphere exo-anomeric (HSEA) calculations were performed on these two hexasaccharides. The conformations indicate that Sialyl Lea and Sialyl Lex show a high degree of similarity in both the nonreducing and reducing termini. As Lea and Lex show much weaker reactivity, the determinants recognized by ELAM-1 and HECA-452 probably involve neuraminic acid and fucose residues which on one face of both Sialyl Lex and Sialyl Lea can be similarly positioned. The finding that Sialyl Lea is a potent ligand for ELAM-1 is important, as circulating Sialyl Lea and Sialyl Lex containing mucins which are elevated in the serum of many cancer patients may block leukocyte interactions with ELAM-1 and may contribute to the pathological immunodepression observed in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号