首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motility is a key trait for rhizosphere colonization by Pseudomonas fluorescens. Mutants with reduced motility are poor competitors, and hypermotile, more competitive phenotypic variants are selected in the rhizosphere. Flagellar motility is a feature associated to planktonic, free‐living single cells, and although it is necessary for the initial steps of biofilm formation, bacteria in biofilm lack flagella. To test the correlation between biofilm formation and rhizosphere colonization, we have used P. fluorescens F113 hypermotile derivatives and mutants affected in regulatory genes which in other bacteria modulate biofilm development, namely gacS (G), sadB (S) and wspR (W). Mutants affected in these three genes and a hypermotile variant (V35) isolated from the rhizosphere were impaired in biofilm formation on abiotic surfaces, but colonized the alfalfa root apex as efficiently as the wild‐type strain, indicating that biofilm formation on abiotic surfaces and rhizosphere colonization follow different regulatory pathways in P. fluorescens. Furthermore, a triple mutant gacSsadBwspR (GSW) and V35 were more competitive than the wild‐type strain for root‐tip colonization, suggesting that motility is more relevant in this environment than the ability to form biofilms on abiotic surfaces. Microscopy showed the same root colonization pattern for P. fluorescens F113 and all the derivatives: extensive microcolonies, apparently held to the rhizoplane by a mucigel that seems to be plant produced. Therefore, the ability to form biofilms on abiotic surfaces does not necessarily correlates with efficient rhizosphere colonization or competitive colonization.  相似文献   

2.
Bacterial strains with ability to suppress Colletotrichum falcatum were isolated from the rhizosphere of sugarcane. Thirty nine candidates, chosen on the basis of in vitro antagonism, inhibited C. falcatum growth by 15–65% on test plates. Twenty two isolates causing 50% or more in vitro inhibition were screened for their root colonization ability and biocontrol activity on micropropagated sugarcane plants under greenhouse conditions. Twelve strains suppressed red rot infection in plantlets, but no significant correlation was observed between in vitro pathogen inhibition and in vivo disease suppression. However, isolates showing root colonization over 5.2 log10 CFU g−1 of soil showed highest suppression of C. falcatum and reduction of red rot disease. Six strains with the capability to maintain a significant population in the sugarcane rhizosphere and with a high potential to control red rot were identified by 16S rDNA as Ochrobacterum intermedium NH-5, Pseudomonas putida NH-50, Bacillus subtilis NH-100, Bacillus subtilis NH-160, Bacillus sp NH-217 and Stenotrophomonas maltophilia NH-300.  相似文献   

3.
Aims: Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity and potential to control Phy. capsici root rot was determined. Methods: Biosurfactant‐producing pseudomonads were genotypically and biochemically characterized by BOX‐polymerase chain reaction (PCR), 16S‐rDNA sequencing, reverse‐phase‐high‐performance liquid chromatography and liquid chromatography‐masss spectrometry analyses. Results: Biosurfactant‐producing fluorescent pseudomonads make up c. 1.3% of the culturable Pseudomonas population in the rhizosphere of black pepper. Although BOX‐PCR revealed substantial genotypic diversity, the isolates were shown to produce the same biosurfactants and were all identified as Pseudomonas putida. When applied to black pepper stem cuttings, several of the biosurfactant‐producing strains provided significant disease control. In absence of the disease, several of the bacterial strains promoted shoot and root growth of black pepper stem cuttings. Conclusions: Biosurfactant‐producing pseudomonads indigenous to the rhizosphere of black pepper plants are genotypically diverse and provide a novel resource for the control of Phy. capsici root rot and growth promotion of black pepper stem cuttings. Significance and Impact of the Study: The results of this study provide a strong basis for further development of supplementary strategies with antagonistic bacteria to control foot and root rot of black pepper and to promote plant growth.  相似文献   

4.
Glomus mosseae and the two pod rot pathogens Fusarium solani and Rhizoctonia solani and subsequent effects on growth and yield of peanut (Arachis hypogaea L.) plants were investigated in a greenhouse over a 5-month period. At plant maturity, inoculation with F. solani and/or R. solani significantly reduced shoot and root dry weights, pegs and pod number and seed weight of peanut plants. In contrast, the growth response and biomass of peanut plants inoculated with G. mosseae was significantly higher than that of non-mycorrhizal plants, both in the presence and absence of the pathogens. Plants inoculated with G. mosseae had a lower incidence of root rot, decayed pods, and death than non-mycorrhizal ones. The pathogens either alone or in combination reduced root colonization by the mycorrhizal fungus. Propagule numbers of each pathogen isolated from pod shell, seed, carpophore, lower stem and root were significantly lower in mycorrhizal plants than in the non-mycorrhizal plants. Thus, G. mosseae protected peanut plants from infection by pod rot fungal pathogens. Accepted: 10 February 2000  相似文献   

5.

Aim

It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains.

Methods

Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (isolated from banana rhizosphere) of their original host was found to be more effective as compared to the colonization of the non-host plant. Organic acids in the root exudates of the two plants were identified by High performance liquid chromatography (HPLC). The chemotactic response and effects on biofilm formation were assessed for SQR9 and N11 in response to cucumber and banana root exudates, as well as their organic acids components.

Results

Citric acid detected exclusively in cucumber exudates could both attract SQR9 and induce its biofilm formation, whereas only chemotactic response but not biofilm formation was induced in N11. Fumaric acid that was only detected in banana root exudates revealed both significant roles on chemotaxis and biofilm formation of N11, while showing only effects on biofilm formation but not chemotaxis of SQR9.

Conclusion

The relationship between PGPR strain and root exudates components of its original host might contribute to preferential colonization. This study advances a clearer understanding of the mechanisms relevant to application of PGPR strains in agricultural production.  相似文献   

6.
Monitoring of pathogenic strains of Fusarium oxysporum (Fox), which cause wilt and rots on agricultural and ornamental plants, is important for predicting disease outbreaks. Since both pathogenic and non‐pathogenic strains of Fox are ubiquitous and are able to colonize plant roots, detection of Fox DNA in plant material is not the ultimate proof of an ongoing infection which would cause damage to the plant. We followed the colonization of tomato plants by strains Fox f. sp. radicis‐lycopersici ZUM2407 (a tomato foot and root rot pathogen), Fox f. sp. radicis‐cucumerinum V03‐2g (a cucumber root rot pathogen) and Fox Fo47 (a well‐known non‐pathogenic biocontrol strain). We determined fungal DNA concentrations in tomato plantlets by quantitative PCR (qPCR) with primers complementary to the intergenic spacer region (IGS) of these three Fox strains. Two weeks after inoculation of tomato seedlings with these Fox strains, the DNA concentration of Forl ZUM2407 was five times higher than that of the non‐compatible pathogen Forc V03‐2g and 10 times higher than that of Fo47. In 3‐week‐old plantlets the concentration of Forl ZUM2407 DNA was at least 10 times higher than those of the other strains. The fungal DNA concentration, as determined by qPCR, appeared to be in good agreement with data of the score of visible symptoms of tomato foot and root rot obtained 3 weeks after inoculation of tomato with Forl ZUM2407. Our results show that targeting of the multicopy ribosomal operon results in a highly sensitive qPCR reaction for the detection of Fox DNA. Since formae speciales of Fox cannot be distinguished by comparison of ribosomal operons, detection of Fox DNA is not evidence of plant infection by a compatible pathogen. Nevertheless, the observed difference in levels of plant colonization between pathogenic and non‐pathogenic strains strongly suggests that a concentration of Fox DNA in plant material above the threshold level of 0.005% is due to proliferation of pathogenic Fox.  相似文献   

7.
The effects of 17 Paenibacillus strains on root colonization by Glomus intraradices or Glomus mosseae and plant growth parameters (shoot and root weight) of mycorrhizal cucumber plants were examined. The Paenibacillus strains were originally isolated from mycorrhizal (G. intraradices) and non-mycorrhizal cucumber rhizosphere and/or hyphosphere, except for strain EJP73, which originated from a Pinus sylvestris-Lactarius rufus ectomycorrhiza. Root colonization of cucumber plants by G. intraradices or G. mosseae was unaffected by all seven strains of Paenibacillus polymyxa, but was decreased or increased by four strains of Paenibacillus macerans and strain EJP73 of Paenibacillus sp. Overall, shoot dry weight of cucumber grown in symbioses with either G intraradices or G. mosseae was unaffected by inoculation with all of the Paenibacillus strains, except for strain MB02-429 of P. macerans, which increased the shoot dry weight in the cucumber-G. mosseae symbiosis. On the other hand, several Paenibacillus strains caused altered root growth. Three strains of P. polymyxa and four strains of P. macerans increased the root fresh weight of the cucumber–G. intraradices symbiosis, whereas three strains of P. polymyxa and one strain of P. macerans as well as Paenibacillus sp. EJP73, decreased the root fresh weight of the cucumber–G. mosseae symbiosis. In conclusion, our results show that bacteria from several species of Paenibacillus differentially affect cucumber mycorrhizas.  相似文献   

8.
Indirect immunofluorescence techniques and confocal scanning laser microscopy were used to identify rhizobacterial strains on the root surfaces of pine seedlings, which were grown from seeds under gnotobiotic conditions. Conifer plant growth promoting rhizobacterial strains Paenibacillus polymyxa L6 and Pw-2, and the forest soil isolate Pseudomonas fluorescens M20, were inoculated onto surface-disinfested pine seeds, singly, or in dual combinations: strains L6 + M20, or strains Pw-2 + M20. Segments containing particular root microsites (root tip, root hair zone, or areas of lateral root emergence) were sampled randomly from roots 7 or 13 weeks after inoculation, and the colonization of roots by each bacterium was observed. Root segments were also sampled from individual roots at six different points along the length of the root, and the qualitative colonization of younger areas, closer to the root tip, contrasted with that of older areas, closer to the root base. The ability of strain M20 to colonize root areas adjacent to sites of lateral root emergence improves in the presence of either P. polymyxa strain, while the ability of the P. polymyxa strains to colonize these areas was not affected. More rhizobacteria were also generally observed on younger root tissues than on areas closer to the root base.  相似文献   

9.
To characterize the ability of different strains of Fusarium oxysporum to colonize roots, and to analyze competition for root colonization between pathogenic and non‐pathogenic strains of F. oxysporum, it was necessary to develop specific labelling techniques for quantification of root colonization. Two methods were selected: the production of polyclonal antibodies, and the use of GUS‐transformed strains of F. oxysporum. The polyclonal antibodies recognized infected plants, and gave a minimum reaction with healthy plants, but were not specific for individual strains of F. oxysporum. These antibodies enabled total density of F. oxysporum to be assessed on roots, by ELISA. Metabolic activity of the root population of GUS‐marked strains was assessed by measuring the glucuronidase activity. Strains showed a diversity in their ability to colonize roots: patterns of root colonization were similar, but the intensity and the speed of colonization differed according to the plant—fungus combination used. Results demonstrated competition between the pathogenic and the non‐pathogenic strains for root colonization. In the presence of the non‐pathogenic strain Fo 47, the competition seems to be reciprocal, affecting both the pathogen and non‐pathogenic strain. Other non‐pathogenic strains reduced root colonization by the pathogenic strain, but some strains did not reduce the metabolic activity of the pathogen, suggesting that different mechanisms are involved in the interaction between pathogenic and non‐pathogenic F. oxysporum.  相似文献   

10.
The fungal species from rhizosphere and rhizoplane of perennial grasses of the Western Ghats of India were studied for their pathogenicity, antagonism in vitro, substrate and root colonization abilities, rhizosphere competence, growth in different soil pH and inoculum shelf-life. Out of 138 non-pathogenic fungal isolates tested, 85 were antagonistic in vitro to chilli anthracnose pathogen Colletotrichum capsici. Fifteen isolates with >60% inhibition zone to pathogen culture had saprophytic and root and rhizosphere colonization abilities. The sorghum grain inocula of test antagonistic fungi- Fusarium oxysporum, Chaetomium globosum and Trichoderma harzianum had the shelf-life of 90 days at 20?±?2?°C and required optimum soil pH of 6.5. The above fungal isolates when tested for biocontrol of anthracnose disease in greenhouse and field caused reduction in seedling mortality and decreased disease incidence and severity at various plant growth stages and significant reduction in chilli fruit and seed infection. The test antagonistic fungi promoted seedling and mature plant growth and increased fruit and seed yield. Populations of these antagonistic fungi were fairly high in chilli rhizosphere at harvest. The present study indicated that antagonistic fungi from grass rhizosphere and rhizoplane could be used to control anthracnose and promote plant growth, and increase yield of chilli in field.  相似文献   

11.
Aims: To examine the relationships between population growth and biological characters of the plant‐growth‐promoting rhizobacterium Paenibacillus polymyxa GBR‐1. Methods and Results: Population growth, colony formation, starch‐hydrolytic activity, and ginseng root rot caused by P. polymyxa GBR‐1 isolated from a rotten ginseng root were examined in vitro and in vivo at high [1 × 108 colony‐forming units (CFU) ml?1] and low (1 × 106 CFU ml?1) initial inoculum densities. Paenibacillus polymyxa GBR‐1 showed strong starch‐hydrolytic activity on modified starch agar with relatively low starch content, but only at certain incubation temperatures (18 and 23°C); the high‐density inoculum produced bacterial colonies about nine times thicker than those formed from the lower inoculum density. Light, scanning electron, and transmission electron microscopy showed that the thick colonies from the high‐density inoculum were filled with extracellular polymeric substances (EPS), in which a relatively small number of ovoid‐rod‐shaped bacterial cells (mostly endospore‐bearing cells) were distributed. In contrast, the thin colonies from the low‐density inoculum were composed of massive vegetative cells with a rectangular rod shape and minimum EPS. Fluorescent in situ hybridization (FISH) revealed that the β‐amylase gene was expressed only in bacterial cells from the thick colonies formed from the high‐density inoculum, but not in those from the low‐density inoculum. The culture filtrate from the thick colonies produced a hydrolytic clear zone on modified starch agar, degraded starch granules in various manners, and produced rot symptoms on ginseng root tissues. Conclusions: The biological properties of colony formation, starch hydrolysis, and ginseng tissue rotting by P. polymyxa GBR‐1 are interrelated; they are influenced by the initial bacterial population density but not by the in situ and the final population densities. Significance and Impact of the Study: Knowledge of disease‐inducing characters of P. polymyxa GBR‐1 can be used in the development of biocontrol strategies.  相似文献   

12.
Minaxi  Jyoti Saxena 《BioControl》2010,55(6):799-810
Pseudomonas fluorescens BAM-4, Burkholderia cepacia BAM-6 and B. cepacia BAM-12 isolated from the rhizosphere of moong bean (Vigna radiata L.) showed significant growth-inhibitory activity against a range of phytopathogenic fungi. Light and scanning electron microscopic (SEM) studies showed morphological abnormalities such as fragmentation, swelling, perforation and lysis of hyphae of pathogens by Pseudomonas and Burkholderia. Two of the strains (BAM-4 and BAM-6) produced siderophore in CAS agar plates, whereas all three strains produced chitinase. Bacterization of seeds of moong bean with pseudomonads has been reported as a potential method for enhancing plant growth and yield, and for providing protection against Macrophomina phaseolina. Seed bacterization with these plant growth-promoting rhizobacteria (PGPR) showed a significant increase in seed germination, shoot length, shoot fresh and dry weight, root length, root fresh and dry weight, leaf area and rhizosphere colonization. Yield parameters such as pods, number of seeds, and grain yield per plant also enhanced significantly in comparison to control. The disease suppression and plant growth enhancement along with the positive rhizosphere colonization by these strains indicate their possible use as PGPR/biocontrol agents against charcoal rot.  相似文献   

13.
14.
In an area reforested with Brazilian pine (Araucaria angustifolia) located in Paraná State, southern Brazil, 20‐ to 40‐year‐old trees representing 0.2% of the surveyed area had symptoms of root and crown rot, yellowing and browning of leaves from the uppermost branches and death. Three Phytophthora isolates obtained from diseased plant tissue were tested against 1‐year‐old Brazilian pine seedlings and found to display positive pathogenicity. Based on their morphological and physiological characteristics, the isolates were identified as Phytophthora cinnamomi. A GenBank BLAST search of partial sequences from the β‐tubulin and elongation factor‐1α genes, as well as the ITS regions and 5.8S gene of rDNA, confirmed the species identification. This is the first report of the involvement of this pathogen on the aetiology of Brazilian pine root and crown rot.  相似文献   

15.
缓解花生连作障碍的根际促生菌分离及功能鉴定   总被引:1,自引:0,他引:1  
[目的] 长期连作障碍严重降低花生生产的产量及品质,根际促生菌可有效降解土壤中自毒化感物质、抑制植物病原菌生长及促进植物生长,从而有效缓解连作障碍问题。筛选优化具有缓解花生连作障碍能力的多功能根际益生微生物,验证其益生作用能力,为根际促生菌株在连作障碍中的应用提供理论依据及技术支持。[方法] 采集连作12年地块花生根际土壤,利用以酚酸为唯一碳源的筛选培养基获得具有酚酸自毒化感物质降解及利用能力的根际促生菌,通过16S rRNA基因测序进行系统发育分析,确定根际促生菌菌株的分类地位,并验证其对植物病原菌生长抑制能力及解磷、解钾、产植物激素吲哚乙酸能力。[结果] 从连作12年的花生发病土壤中获得7株可高效降解酚酸类自毒物质且降解底物多样的根际微生物菌株,经16S rRNA测序比对分别为克雷伯氏菌B02 (Klebsiella sp.B02)、克雷伯氏菌B07 (Klebsiella sp.B07)、克雷伯氏菌B15 (Klebsiella sp.B15)、芽孢杆菌B28 (Bacillus sp.B28)、不动杆菌P09 (Acinetobacter sp.P09)、布鲁氏杆菌VA05 (Brucella sp.VA05)、芽孢杆菌CA04 (Bacillus sp.CA04)。促生实验表明,7株高效降解菌株均可以合成吲哚乙酸,3株具有固氮能力,4株菌具有解有机磷及无机磷的能力,2株菌具有解钾的能力。拮抗实验表明,2株菌可以抑制多种植物病原菌的生长,均为芽孢杆菌属。选取Bacillus sp.B28初步验证对花生种子萌发及幼苗生长的影响,结果表明根际促生菌可显著缓解酚酸对花生种子发芽的抑制,并明显促进花生幼苗的生长。[结论] 获得多株具有降解酚酸类自毒化感物质、抑制植物病原菌生长及促进植物生长的多功能花生根际促生菌,更好地为根际促生菌在连作障碍治理中的有效应用提供菌株及技术支持。  相似文献   

16.
Abstract The interaction between VA mycorrhiza Glomus mosseae (Gm), root rodulating symbiont Rhizobium leguminosarum (Rl), and root rot pathogen Fusarium solani (Fs) on the common bean (Phaseolus vulgaris) in relation to plant growth, nutrient uptake, disease severity, rhizosphere microbial biomass, and nutrient availability was investigated. Mycorrhizal plants yielded significantly greater plant biomass and mobilized more N and P uptake as compared to nonmycorrhizal plants or those infected with Fs. However, the mycorrhizal root colonizing ability, in presence of Fs, was reduced by 27%, whereas Rl enhanced it by 37%. The inoculation of Gm, besides decreasing propagule number of Fs in the rhizosphere, decreased pathogenic root rot by 34 to 77%. However, in the presence of Rl, Gm-inoculated plants were more tolerant of the fungal root pathogen. The Gm + Rl inoculated plants not only had maximum plant biomass and root nodulation, but also exhibited higher microbial biomass, alkaline phosphatase activity, and available phosphorus in their rhizosphere. Rl, alone or in association with Gm, caused the maximum increase in mineral nitrogen (NH4 + and NO3 ) content in soil. These results indicate that Gm has a vital role in inhibiting the root pathogen from invasion, more so in the presence of R. leguminosarum. Received: 26 February 1996; Revised: 12 July 1996  相似文献   

17.
The effect of seed‐borne pathogens of wheat and barley on crown and root rot diseases of seven barley cultivars (Jimah‐6, Jimah‐51, Jimah‐54, Jimah‐58, Omani, Beecher and Duraqi) and three wheat cultivars (Cooley, Maissani and Shawarir) was investigated. Bipolaris sorokiniana and Alternaria alternata were detected in seeds of at least eight cultivars, but Fusarium species in seeds of only two barley cultivars (Jimah‐54 and Jimah‐58). Crown rot and root rot symptoms developed on barley and wheat cultivars following germination of infected seeds in sterilized growing media. Bipolaris sorokiniana was the only pathogen consistently isolated from crowns and roots of the emerging seedlings. In addition, crown rot and root rot diseases of non‐inoculated barley cultivars correlated significantly with B. sorokiniana inoculum in seeds (P = 0.0019), but not with Fusarium or Alternaria (P > 0.05). These results indicate the role of seed‐borne inoculum of B. sorokiniana in development of crown rot and root rot diseases. Pathogenicity tests of B. sorokiniana isolates confirmed its role in inducing crown rot and root rot, with two wheat cultivars being more resistant to crown and root rots than most barley cultivars (P < 0.05). Barley cultivars also exhibited significant differences in resistance to crown rot (P < 0.05). In addition, black point disease symptoms were observed on seeds of three barley cultivars and were found to significantly affect seed germination and growth of some of these cultivars. This study confirms the role of seed‐borne inoculum of B. sorokiniana in crown and root rots of wheat and barley and is the first report in Oman of the association of B. sorokiniana with black point disease of barley.  相似文献   

18.
19.
Pseudomonas fluorescens strain CHA0 and its antibiotic overproducing derivative CHA0/pME3424 repeatedly reduced Meloidogyne incognita galling on tomato, brinjal, mungbean and soya bean roots but not in chilli. An antibiotic‐deficient derivative, CHA89, did not reduce nematode invasion in any of the plant species tested. When plant species were compared, bacterial inoculants afforded better protection to tomato, mungbean and soya bean roots against root‐knot nematodes than to brinjal and chilli. Antibiotic overproducing strain CHA0/pME3424 markedly reduced fresh shoot weights of chilli and mungbean while antibiotic‐deficient strain CHA89 enhanced fresh shoot weights of mungbean. While strains CHA0 had no significant impact on fresh root weights of any of the plant species, strain CHA0/pME3424 consistently reduced fresh root weights of brinjal and mungbean. In none of the plant species the bacterial strains had an influence on protein contents of the leaves. Regardless of the plant species, the three bacterial strains did not differ markedly in their rhizosphere colonization pattern. However, colonization was highest in brinjal rhizosphere and lowest in the mungbean rhizosphere. A slight host genotype effect on the biocontrol performance of the bacterial inoculants was also detected at cultivar level. When five soya bean cultivars were compared, biocontrol bacteria exhibited best suppression of the root‐knot nematode in cv. Ajmeri. Antibiotic overproducing strain CHA0/pME3424 substantially reduced fresh shoot weights of the soya bean cultivars Centuray 84 and NARC‐I while strain CHA89 enhanced shoot weights of the cultivars Ajmeri, William‐82 and NARC‐II. Wild type strain CHA0 had no significant impact on fresh shoot weights of any of the soya bean cultivars. Strain CHA0/pME3424 reduced fresh weights of root of Century 84, NARC‐I and NARC‐II while strain CHA89 increased root weights. Bacterial rhizosphere colonization was highest in variety NARC‐I and lowest in variety Ajmeri. Plant age had a significant impact on the biocontrol performance of bacterial inoculants against nematodes. The biocontrol effect of all bacterial strains was more prominent during early growth stage (7 days after nematode inoculation). A strong negative correlation between bacterial rhizosphere colonization and nematode invasion in soya bean roots was observed.  相似文献   

20.
【背景】利用微生物促进植物健康生长是农业可持续发展的重要方向之一,而种子相关的促生菌可在植物生命周期早期与植物相互作用,对植物健康生长具有重要意义。【目的】发掘与利用种子相关促生菌的前提是筛选获得促生菌菌种资源,验证其益生能力,为其进一步应用与机理研究提供依据与支持。【方法】以花生种子为研究对象,从种子表面及种子内部分离纯化多株菌,测定菌株的固氮、解磷、解钾、吲哚乙酸合成和铁载体合成等促生能力,并验证菌株对常见植物病原菌的生长抑制特性;通过16S rRNA基因序列进行系统发育分析,确定分类地位;通过生物膜形成能力及根际定殖能力测定菌株在植物根际的生存能力;最后通过催芽及盆栽试验测定菌株对花生种子发芽及幼苗生长的影响。【结果】从花生种子表面、种子内和胚根内分离筛选到41株菌,均有吲哚乙酸合成能力,其中35株有固氮能力,2株有铁载体分泌能力,14株有植物病原菌生长抑制能力。各选一株为代表的菌株,即PS3、PE5和PR5,经16S rRNA基因序列比对分析鉴定为芽孢杆菌属(Bacillus)。PS3、PE5和PR5均可在MSgg液体培养基表面形成褶皱较强的生物膜,也可在花生根际形成有效定殖。催芽试验结果表明经过促生菌浸种后花生种子萌发率明显提高,在第2天时,PS5将发芽率由14.17%提高至38.33%,PE5发芽率提高至30.83%,PR5发芽率提高至39.17%。三株菌能够明显促进花生幼苗生长,PS5对花生幼苗苗高、根长、鲜重和干重分别提高21.82%、22.20%、37.11%和35.64%,PE5分别提高17.45%、18.93%、26.10%和21.18%,PR5分别提高23.11%、23.92%、38.66%和37.47%。【结论】筛选获得的花生种子相关促生菌,具有促进植物生长的潜力,明显促进种子萌发及幼苗生长,是良好的促生菌生物资源,具有较好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号