首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
Znf45l, containing classical C2H2 domains, is a novel member of Zinc finger proteins in zebrafish. In vertebrates, TGF-β signaling plays a critical role in hematopoiesis. Here, we showed that Znf45l is expressed both maternally and zygotically throughout early development. Znf45l-depleted Zebrafish embryos display shorter tails and necrosis with reduced expression of hematopoietic maker genes. Furthermore, we revealed that znf45l locates downstream of TGF-β ligands and maintains normal level of TGF-β receptor type II phosphorylation. In brief, our results indicate that znf45l affects initial hematopoietic development through regulation of TGF-β signaling. [BMB Reports 2014; 47(1): 21-26]  相似文献   

4.
5.
6.
7.
In this study we analyzed expression patterns of two δ-protocadherins, protocadherin-9 and protocadherin-17, in the developing zebrafish using in situ hybridization and RT-PCR methods. Both protocadherins were mainly detected in the embryonic central nervous system, but each showed a distinct expression pattern. Protocadherin-9 message (Pcdh9) was expressed after 10 h post fertilization (hpf). It was found mainly in small clusters of cells in the anteroventral forebrain and ventrolateral hindbrain, and scattered cells throughout the spinal cord of young embryos (24 hpf). Pcdh9 expression in the hindbrain was segmental, reflecting a neuromeric organization, which became more evident at 34 hpf. As development proceeded, Pcdh9 expression increased throughout the brain, while its expression in the spinal cord was greatly reduced. Pcdh9 was also found in the developing retina and statoacoustic ganglion. Protocadherin-17 message (Pcdh17) expression began much earlier (1.5–2 hpf) than Pcdh9. Similar to Pcdh9 expression, Pcdh17 expression was found mainly in the anteroventral forebrain at 24 hpf, but its expression in the hindbrain and spinal cord, confined mainly to lateroventral regions of the hindbrain and anterior spinal cord, was more restricted than Pcdh9. As development proceeded, Pcdh17 expression was increased both in the brain and spinal cord: detected throughout the brain of two- and three-day old embryos, strongly expressed in the retina and in lateral regions of spinal cord in two-day old embryos. Its expression in the retina and spinal cord was reduced in three-day old embryos. Our results showed that expression of these two protocadherins was both spatially and temporally regulated.  相似文献   

8.
9.
10.
11.
原钙黏附蛋白18b(Protocadherin18b,Pcdh18b)属于钙黏附蛋白家族成员.为了研究pcdh18b基因抑制对斑马鱼神经系统发育的影响,针对pcdh18b的翻译起始位点设计一个吗啡啉修饰的反义寡核苷酸抑制其表达,在斑马鱼受精卵一到二细胞期注射并且验证其有效性.注射后用原位杂交和吖啶橙染色检测神经系统的表型和标志基因的表达.pcdh18b下调使神经前体细胞的标志基因neurog1、神经元标志基因elavl3和神经胶质细胞标志基因gfap的表达均出现下调,中后脑边界的标志基因pax2a和wnt1表达减弱并出现神经管分叉现象,同时与后脑分节相关的基因krox20表达减少.吖啶橙染色显示pcdh18b下调后斑马鱼中脑、后脑及中后脑边界细胞凋亡增多.这些结果表明pcdh18b抑制导致了斑马鱼神经系统发育的异常.  相似文献   

12.
Here, we report the results of molecular cloning and expression analyses of a non-clustered protocadherin (pcdh), pcdh18 in zebrafish embryos. The predicted zebrafish pcdh18 protein shows 6566% identity and 7879% homology with its mammalian and Xenopus counterparts. It has a Disabled-1 binding motif in its cytoplasmic domain, which is characteristic of pcdh18. Zebrafish embryos expressed pcdh18 by the early gastrula stage, 6 h post-fertilization (hpf), in their animal cap but not in the germ ring or the shield. pcdh18 was expressed in the neural tube and the central nervous system (CNS) from 12 hpf. Some populations of cells in the lateral neural tube and spinal cord of 1218 hpf embryos expressed pcdh18, but expression in these cells disappeared by 24 hpf. The hindbrain of embryos at 2456 hpf expressed pcdh18 in cells closely adjacent to the rostral and caudal rhombomeric boundaries in a thread-like pattern running in the dorsoventral direction. The pcdh18-positive cells were localized in the ventral part of the hindbrain at 24 hpf and in the dorsal part from 36 hpf. pcdh18 was also expressed in the telencephalon, diencephalon, tectum, upper rhombic lip, retina and otic vesicle. Expression in the CNS decreased markedly before hatching. Pharyngeal arch primordia, arches, jaws and gills expressed pcdh18, and the molecule was also expressed in some endodermal cells in late embryos.  相似文献   

13.
In this study, we performed an in-depth analysis of the neurologic and ophthalmologic phenotype in a patient with Pitt–Hopkins syndrome (PTHS), a disorder characterized by severe mental and motor retardation, carrying a uniallelic TCF4 deletion, and studied a zebrafish model. The PTHS-patient was characterized by high-resolution magnetic resonance imaging (MRI) with diffusion tensor imaging to analyze the brain structurally, spectral-domain optical coherence tomography to visualize the retinal layers, and electroretinography to evaluate retinal function. A zebrafish model was generated by knockdown of tcf4-function by injection of morpholino antisense oligos into zebrafish embryos and the morphant phenotype was characterized for expression of neural differentiation genes neurog1, ascl1b, pax6a, zic1, atoh1a, atoh2b. Data from PTHS-patient and zebrafish morphants were compared. While a cerebral MRI-scan showed markedly delayed myelination and ventriculomegaly in the 1-year-old PTHS-patient, no structural cerebral anomalies including no white matter tract alterations were detected at 9 years of age. Structural ocular examinations showed highly myopic eyes and an increase in ocular length, while retinal layers were normal. Knockdown of tcf4-function in zebrafish embryos resulted in a developmental delay or defects in terminal differentiation of brain and eyes, small eyes with a relative increase in ocular length and an enlargement of the hindbrain ventricle. In summary, tcf4-knockdown in zebrafish embryos does not seem to affect early neural patterning and regionalization of the forebrain, but may be involved in later aspects of neurogenesis and differentiation. We provide evidence for a role of TCF4/E2-2 in ocular growth control in PTHS-patients and the zebrafish model.  相似文献   

14.
The development and properties of locomotor behaviors in zebrafish embryos raised at 28.5°C were examined. When freed from the chorion, embryonic zebrafish showed three sequential stereotyped behaviors: a transient period of alternating, coiling contractions followed by touch-evoked rapid coils, then finally, organized swimming. The three different behaviors were characterized by video microscopy. Spontaneous, alternating contractions of the trunk appeared suddenly at 17 h postfertilization (hpf), with a frequency of 0.57 Hz, peaked at 19 hpf at 0.96 Hz, and gradually decreased to <0.1 Hz by 27 hpf. Starting at 21 hpf, touching either the head or the tail of the embryos resulted in vigorous coils. The coils accelerated with development, reaching a maximum speed of contraction before 48 hpf, which is near the time of hatching. After 27 hpf, touching the embryos, particularly on the tail, could induce partial coils (instead of full coils). At this time, embryos started to swim in response to a touch, preferentially to the tail. The swim cycle frequency gradually increased with age from 7 Hz at 27 hpf to 28 Hz at 36 hpf. Lesions of the central nervous system rostral to the hindbrain had no effect on the three behaviors. Lesioning the hindbrain eliminated swimming and touch responses, but not the spontaneous contractions. Our observations suggest that the spontaneous contractions result from activation of a primitive spinal circuit, while touch and swimming require additional hindbrain inputs to elicit mature locomotor behaviors. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 622–632, 1998  相似文献   

15.
16.
17.
18.
Leucine-rich repeat (LRR)-containing G protein-coupled receptors (LGRs) belong to the superfamily of G protein-coupled receptors, and are characterized by the presence of seven transmembrane domains and an extracellular domain that contains a series of LRR motifs. Three Lgr proteins – Lgr4, Lgr5, and Lgr6 – were identified as members of the LGR subfamily. Mouse Lgr4 has been implicated in the formation of various organs through regulation of cell proliferation during development, and Lgr5 and Lgr6 are stem cell markers in the intestine or skin. Although the expression of these three genes has already been characterized in adult mice, their expression profiles during the embryonic and larval development of the organism have not yet been defined. We cloned two zebrafish lgr genes using the zebrafish genomic database. Phylogenetic analyses showed that these two genes are orthologs of mammalian Lgr4 and Lgr6. Zebrafish lgr4 is expressed in the neural plate border, Kupffer’s vesicle, neural tube, otic vesicles, midbrain, eyes, forebrain, and brain ventricular zone by 24 h post-fertilization (hpf). From 36 to 96 hpf, lgr4 expression is detected in the midbrain–hindbrain boundary, otic vesicles, pharyngeal arches, cranial cartilages such as Meckel’s cartilages, palatoquadrates, and ceratohyals, cranial cavity, pectoral fin buds, brain ventricular zone, ciliary marginal zone, and digestive organs such as the intestine, liver, and pancreas. In contrast, zebrafish lgr6 is expressed in the notochord, Kupffer’s vesicle, the most anterior region of diencephalon, otic vesicles, and the anterior and posterior lateral line primordia by 24 hpf. From 48 to 72 hpf, lgr6 expression is confined to the anterior and posterior neuromasts, otic vesicles, pharyngeal arches, pectoral fin buds, and cranial cartilages such as Meckel’s cartilages, ceratohyals, and trabeculae. Our results provide a basis for future studies aimed at analyzing the functions of zebrafish Lgr4 and Lgr6 in cell differentiation and proliferation during organ development.  相似文献   

19.
克隆斑马鱼基质金属蛋白酶15a(MMP15a)基因,并研究其在斑马鱼胚胎早期发育中的时空表达状况。收集不同发育时期的斑马鱼胚胎,制备DIG标记的MMP15a RNA探针,采用全胚胎原位杂交方法研究MMP15a基因在胚胎斑马鱼的表达。结果MMP15a基因在胚胎受精后一个细胞时期就开始表达,从受精后24h起,在眼睛处表达明显,从受精后48h MMP15a在胸鳍和耳囊有特异性表达至到受精后96h。MMP15a在斑马鱼胚胎发育不同时期表达明显,且在胸鳍和耳囊处有持续表达。  相似文献   

20.
李艳欢  吴新荣 《生物学杂志》2010,27(3):53-55,87
克隆斑马鱼基质金属蛋白酶11b(MMP11b)基因,并研究其在斑马鱼胚胎早期发育中的时空表达状况。收集不同发育时期的斑马鱼胚胎,制备DIG标记的MMP11b RNA探针,采用全胚胎原位杂交方法研究MMP11b基因在斑马鱼胚胎的表达。MMP11b基因在胚胎受精后一个细胞时期就开始表达,并且一直持续到96h,从受精后24h起,在耳囊处表达明显,在受精后48h时期在胸鳍和肛门处也有特异性表达。MMP11b在斑马鱼胚胎发育不同时期表达明显,且在耳囊处有持续表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号