首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stabilizing action of carboxymethyl cellulose (CMC-1 and CMC-2) on caseins was studied in the acidic pH region. CMC-1 stabilized 1% whole, α-, αS- and β-casein at pH 4.6 and 5.0, and at 5°C. But CMC-2 could not completely stabilize these caseins at pH 5.0. Interaction between κ-casein and CMC-1 commenced when pH was adjusted to 6.3, but CMC-2 interacted with κ-casein below pH 5.6. An αS- and κ-casein mixture (4 : 1) with CMC-2 was destabilized by the addition of 0.02 m NaCl or NaH2PO4 at pH 5.0. The αS/κ ratio of the precipitated casein was about 10. But the same system with CMC-1 was not destabilized by the salts.  相似文献   

2.
Chromatography of glutaraldehyde-fixed skim-milk on controlled-pore glass (CPG-10, 300 nm) gave three micellar fractions whose averaged diameters, measured by electron microscopy, decreased progressively with increasing elution volume. Casein micelles with diameters up to 680 nm were detected. The casein composition of the same fractions from unfixed skim-milk was determined. As the fraction elution volume increased, κ-casein varied from 7.7 to 11.4% of total casein, giving αs/κ ratios of 6.1, 4.7 and 3.3.A plot of κ-casein content versus micelle surface-to-volume ratio for skim-milk and the column fractions approximated to a straight line. Re-calculation of the published results from two other studies also gave linear relationships between κ-casein content and surface area for artificial micelles. The three regression lines thus obtained had small intercepts. It was concluded that the data indicated the same fundamental structure for casein micelles, with a pre-dominant surface location for κ-casein, whether the micelles are natural or artificial and whether they are aggregated or by Ca2+ alone oy Ca2+ together with calcium phosphate-citrate complex.  相似文献   

3.
Caseins constitute the main protein components in mammalian milk and have critical functions in calcium transport and prevention of protein aggregation. Fibrillation and aggregation of κ-casein, a phenomenon which has only recently been detected, might be associated with malfunctions of milk secretion and amyloidosis phenomena in the mammary glands. This study employs a newly-designed chromatic biomimetic vesicle assay to investigate the occurrence and the parameters affecting membrane interactions of casein aggregates and the contribution of individual casein members to membrane binding. We show that physiological casein colloids exhibit membrane activity, as well as early globular aggregates of κ-casein, a prominent casein isoform. Furthermore, inhibition of κ-casein fibrillation through complexation with αS-casein and β-casein, respectively, was found to go hand in hand with induction of enhanced membrane binding; these data are important in the context of casein biology since in secreted milk κ-casein is found only in assemblies containing also αS-casein and β-casein. The chromatic experiments, complemented by transmission electron microscopy analysis and fluorescence quenching assays, also revealed significantly higher affinity early spherical aggregates of k-casein to anionic phosphatidylglycerol-lipids, as compared to zwitterionic phospholipids. Overall, this study suggests that lipid interactions play important roles in maintaining the essential physiological functions of caseins in mammalian milk.  相似文献   

4.
Whole casein, αs-casein and k-casein were dephosphorylated with a phosphoprotein phosphatase prepared from beef spleen and their calcium-binding capacities were compared with those of respective native caseins by a ultracentrifugal method.

The bindings of the calcium to 94% dephosphorylated whole casein and to 97 % dephosphorylated αs-casein at neutral pH were approximately one third of those to respective native caseins. The decrease of calcium-binding capacity of k-casein due to dephosphorylation was also significant.

The effect of pH on the state and the calcium-binding capacity of dephosphorylated caseins was also examined and the role of organic phosphate groups of casein as calcium-binding sites was discussed.  相似文献   

5.
This study aimed to evaluate amino acids content and the electrophoretic profile of camel milk casein from different camel breeds. Milk from three different camel breeds (Majaheim, Wadah and Safrah) as well as cow milk were used in this study.Results showed that ash and moisture contents were significantly higher in camel milk casein of all breeds compared to that of cow milk. On the other hand, casein protein of cow milk was significantly higher compared to that of all camel milk breeds. Molecular weights of casein patterns of camel milk breeds were higher compared to that of cow milk.Essential (Phe, Lys and His) and non-essential amino acids content was significantly higher in cow milk casein compared to the casein of all camel milk breeds. However, there was no significant difference for the other essential amino acids between cow casein and the casein of Safrah breed and their quantities in cow and Safrah casein were significantly higher compared to the other two breeds. Non-essential amino acids except Arg and the essential amino acids (Met, Ile, Lue and Phe) were also significantly higher in cow milk α-casein compared to α-casein from all camel breeds. Moreover, essential amino acids (Val, Phe and His) and the non-essential amino acids (Gly and Ser) content was significantly higher in cow milk β-casein compared to the β-casein of all camel milk breeds and the opposite was true for Lys, Thr, Met and Ile. However, Met, Ile, Phe and His were significantly higher for β-casein of Majaheim compared to the other two milk breeds. The non-essential amino acids (Gly, Tyr, Ala and Asp) and the essential amino acids (Thr, Val and Ile) were significantly higher in cow milk κ-casein compared to that for all camel milk breeds. There was no significant difference among all camel milk breeds in their κ-casein content of most essential amino acids.Relative migration of casein bands of camel milk casein was not identical. The relative migration of αs-, β- and κ-casein of camel casein was slower than those of cow casein. The molecular weights of αs-, β- and κ-casein of camel caseins were 27.6, 23.8 and 22.4 KDa, respectively. More studies are needed to elucidate the structure of camel milk.  相似文献   

6.
Bovine casein components (αsl-, β-, and κ-caseins) were chemically phosphorylated and the properties of the modified components were compared with those of the native to clarify the function of the intrinsic phosphate groups of casein components in casein micelle formation. The calcium binding ability of casein components increased after chemical phosphorylation. The concentrations of calcium chloride required to precipitate modified αsl- and β-caseins were higher than those for native components. However, phosphorylation of αsl- and β-caseins did not affect their properties of forming micelles through interaction with κ-casein. The stabilizing ability of κ-casein for αsl- and β caseins was impaired by its phosphorylation, but the stability was recovered by treating phosphorylated κ-casein with phosphoprotein phosphatase. The results show that the phosphate content of κ-casein must be low to form a stable casein micelle. The results also explain why the specific phosphorylation of casein components in the mammary gland is required.  相似文献   

7.
The heterogeneity and chemical composition were investigated in κ-casein from colostrum. The acid casein was obtained from four different Holstein cow colostra. The yield of acid casein from colostrum was higher than that from normal milk. κ-Casein from colostrum was prepared by the gel filtration method of Yaguchi et al. The gel filtration profiles differed among the four colostrum acid caseins.

Colostrum κ-casein was fractionated on a DEAE-cellulose column into one nonadsorbed and six adsorbed fractions with increasing salt concentration. Six adsorbed fractions had the same molecular weight and stabilizing ability for αs1-casein in the presence of calcium ion. The amino acid composition and the phosphorus content of the adsorbed fractions were identical, but fractions eluted with high salt concentrations had more carbohydrates (galactose, sialic acid, glucosamine, galactosamine). Colostrum κ-casein was characterized by a higher content of carbohydrate moiety in comparison with normal κ-casein. Also glucosamine which has not been found in normal κ-casein was detected in colostrum κ-casein. The κ-casein component from colostrum contained at least one molecule of carbohydrate, though the carbo hydrate-free component was detected in normal κ-casein.  相似文献   

8.
UDP-N-acetyl-d-galactosamine: κ-casein polypeptide N-acetylgalactosaminyltransferase was purified from a crude Golgi apparatus of lactating bovine mammary gland after solubilization with Triton X-100. Through chromatography on DEAE-Sephadex A-50, apomucin-Sepharose 4B, FPLC mono S, and Sephacryl S-200, and then electrofocusing, the enzyme was purified up to 7500-fold from the homogenate.

The molecular weight of the enzyme was estimated at 200,000 from gel filtration. The pI value of the enzyme was 6.4 on electrofocusing. The purified enzyme transferred GalNAc from UDP-GalNAc, not to the carbohydrate chains but to the polypeptide chains of the substrates, κ-casein and mucin. The enzyme required Mn2+, DTT, and Triton X-100 for maximal activity. The Km value for UDP-GalNAc was 16.2μm. Km values for K-subcomponents 1 and 7, and apomucin were 1.15, 5.10, and 0.192mg/ml, and Vmax values were 254, 259, and 581 nmol/hr/mg, respectively. Thermal stability and the effects of pH, milk components, lectins, and nucleotides were examined.

αs1-Casein strongly inhibited GalNAc transfer to κ-casein. The inhibitory effect of αs1-casein was canceled by the addition of Ca2+, which causes casein micelle formation. This means that the glycosylation of κ-casein occurs after casein micelle formation triggered by the accumulation of Ca2+ in vivo.  相似文献   

9.
Time-dependent light-scattering studies have been made on mixtures of αs1 -casein and Ca2+ at fixed temperature over a range of [Ca2+] and [αs1 -casein], and also as functions of temperature- Measurements were also made of the extent of precipitate formation in the casein/Ca2+ mixtures, using centrifugation. The results are analysed in terms of a monomeroctamer equilibrium between calcium caseinate particles followed by a Smoluchowski aggregation in which only the octamers can participate. The equilibrium constant is dependent upon the charge on the protein/Ca2+ particles, and hence can be related to the extent of binding of Ca2+ to the αs1 -casein. The Smoluchowski constant is likewise shown to be charge-dependent. The variation of the reaction rate with temperature can be ascribed solely to the changing charge of the αs1 -casein/Ca2+ complex caused by changed binding of Ca2+ at different temperatures.  相似文献   

10.
The catalytic subunit of rabbit muscle cyclic AMP-dependent protein kinase (EC 2.7.1.37; ATP:protein transferase) has been tested on a variety of caseins. The B variant of β-casein was phosphorylated at a much greater rate than other β-caseins, αs1-caseins, and κ-caseins. Whole casein homozygous for β-casein B was phosphorylated at 2.5 times the rate of commercial whole casein. Gel electrophoresis experiments indicate that β-casein is the predominant component phosphorylated in commerical casein. It is therefore suggested that phosphorylation of whole casein depends on its content of the specific genetic variant, β-casein B.  相似文献   

11.
It was indicated from fluorescence spectra and fluorescence titration that a hydrophobic probe, 1-anilino-8-naphthalenesulfonate (ANS), binds to casein components (αs-, β- and κ-caseins). Fluorescence intensity and affinity of ANS-κ-casein complex were larger than that of ANS-αs- and ANS-β-casein complexes. Enhancements of fluorescence intensity of complexes of casein components were observed by the addition of KCI or CaCl2. Reason for the enhancement was postulated to be the increase of the quantum yield of the ANS fluorescence caused by the environmental change of ANS binding region of the casein components.

Marked increase of sedimentation coefficient of β-casein in the presence of KCl or CaCl2 at 10°C was caused by the addition of ANS. This may be responsible for the stimulation of the Ca-dependent precipitation of β-casein by the addition of ANS.

It was found that αs · κ-association was prevented by ANS and that hydrophobic interaction have an important role for αs · κ-association.  相似文献   

12.
Proteolytic activity in the extract from the cells of Streptococcus cremoris increased in the presence of casein, lactose, glucose, and CaCl2 in the media but was negligibly detectable in the extract of the cells harvested from the culture containing succinate or citrate. The intracellular proteinase from S. cremoris harvested from tomato medium was purified 150-fold in this experiment. The enzyme had a molecular weight of 140,000, optimum pH at 6.5 to 7.0, and maximum activity at 30 C. The proteinase was activated by Ca2+ and inhibited by Zn2+, Cu2+, Hg2+, Fe2+, ethylenediaminetetraacetate, and sodium lauryl sulfate. The Km value of the enzyme towards each casein fraction was almost the same, and the Vmax of the enzyme towards αs-casein was smaller than those towards the other casein fractions.  相似文献   

13.
The effects of caseins on the rheological properties of κ-carrageenan-calcium gel was investigated by measuring the gel breaking strength. The existence of β-casein in the system promoted the gelation of κ-carrageenan in the presence of calcium ion. Beta-casein increased the strength of calcium gels of κ-carrageenan with increasing NaCl concentration up to 80 mM and strengthened the κ-carrageenan-calcium gel at neutral pH. The values obtained from the slopes of the logarithmic plots of the gel strength versus concentration were 2.15 for κ-carrageenan gel and 2.27 for a β-casein-κcarrageenan mixture gel, suggesting that β-casein may participate in the gelation of κ-carrageenan through the mediation of calcium ions.  相似文献   

14.
The Ca2+-induced association of αs-casein has been studied using the methods of stopped-flow light-scattering and stopped-flow turbidity. The methods used are described, and the analysis of the results to give plots of M w against time in the time-scale 0–15 sec is demonstrated. The validity of the method is discussed, and it is shown to be applicable to the association kinetics of aggregating proteins whose molecular-weight averages lie between 107 and 109. The method was used to study the association of bovine αs-casein in the presence of Ca2+, and results obtained are briefly discussed in terms of possible association mechanisms, and a mechanism for the overall reaction of αs-casein with Ca2+, and the subsequent precipitation of the caseinate is proposed.  相似文献   

15.
A milk coagulating protease was purified ∼10.2-fold to apparent homogeneity from ginger rhizomes in 34.9% recovery using ammonium sulfate fractionation, together with ion exchange and size exclusion chromatographic techniques. The molecular mass of the purified protease was estimated to be ∼36 kDa by SDS-PAGE, and exhibited a pI of 4.3. It is a glycoprotein with 3% carbohydrate content. The purified enzyme showed maximum activity at pH 5.5 and at a temperature of ∼60 °C. Its protease activity was strongly inhibited by iodoacetamide, E-64, PCMB, Hg2+ and Cu2+. Inhibition studies and N-terminal sequence classified the enzyme as a member of the cysteine proteases. The cleavage capability of the isolated enzyme was higher for αs-casein followed by β- and κ-casein. The purified enzyme differed in molecular mass, pI, carbohydrate content, and N-terminal sequence from previously reported ginger proteases. These results indicate that the purified protease may have potential application as a rennet substitute in the dairy industry.  相似文献   

16.
The interaction of αs1-casein with β-, dephosphorylated β-,γ- and R-caseins was studied. It was proved by the sedimentation velocity experiments that αs1-casein formed a complex with each of these components at 25±C in the presence of 3 mm CaCl2.

In the presence of 10 mm CaCl2, β- and dephosphorylated β-casein prevented the precipitation of αs1-casein and gave micelle-like turbid solutions. However, γ- and R-caseins, fragments of β-casein, did not stabilize αs1-casein. It was concluded from these results that α-casein interacted with αs1-casein through its hydropholic region corresponding to R-casein and that hydrophilic region of β-casein was responsible for the stabilization of αs1-casein.  相似文献   

17.
A sensitive immunoassay was used to identify recombinant plasmids carrying cDNA fragments of bovine caseins in the cDNA library from bovine mammary gland mRNA. Colonies grown on nitrocellulose filters were lysed in situ and proteins from the lysates were blotted onto CNBr-activated cellulose filter paper. Antigens covalently bound to CNBr-activated paper or bound to nitrocellulose filters were detected by reaction with antiserum to caseins, followed by 125I-labelled Staphylococcus aureus protein A and autoradiography. Six clones were found positive among 5400 of the cDNA library: 3-A1, 3-B2, 3-B5, 3-H7, 2-A5 and 2-C9. The molecular weights of chimeric pre-β-lactamase: casein proteins synthesized in Escherichia coli were estimated by immunoblotting. Colony hybridization and nucleotide sequence analysis showed that clone 3-B5 contained a cDNA fragment of bovine χ-casein, clone 3-H7 contained a cDNA fragment of β-casein, while clones 2-A5 and 2-C9 carried cDNA fragments of αsi-casein.  相似文献   

18.
κ-Caseins were prepared by the calciurn-ethanol method, the Sephadex method and the urea-sulfuric acid method. Some important properties of κ-caseins were investigated using isoelectric focusing, starch gel electrophoresis, ultracentrifugation, chemical analysis, stabilization test of αs-casein, and rennin treatment. Isoelectric focusing established that κ-casein had its isoelectric point near pH 6.0 in 6 m urea, usually accompanied by a second peak around pH 5.6. Ultracentrifugation, however, showed a single peak having a s20,w value of 2.6 ~ 3.8 in the presence of 6 m urea and of 14.4 in the absence of such dispersing reagents. Normal contents of hexose, sialic acid, phosphorus, and nitrogen were about 1.5, 0.8, 0.2, and 14%, respectively. Relative patterns of amino acid composition were similar in all of the κ-caseins. In addition, amino acid composition in intact κ-casein and in the further purified κ-casein which formed the second peak in DEAE cellulose chromatography were almost identical, indicating that the κ-casein of the first peak is not an impurity but is one of the components which formed the original κ-casein complexes. The ability of κ-caseins to stabilize αs-casein in the presence of calcium increased when purified by DEAE cellulose chromatography.  相似文献   

19.
Elevated homocysteine levels are resulting in N-homocysteinylation of lysyl residues in proteins and they correlate with a number of human pathologies. However, the role of homocysteinylation of lysyl residues is still poorly known. In order to study the features of homocysteinylation of intrinsically unstructured proteins (IUP) bovine caseins were used as a model. α(S1)-, β- and κ-caseins, showing different aggregations and micelle formation, were modified with homocysteine-thiolactone and their physico-chemical properties were studied. Efficiency of homocysteine incorporation was estimated to be about 1.5, 2.1 and 1.3 homocysteyl residues per one β-, α(S1)-, and κ-casein molecule, respectively. Use of intrinsic and extrinsic fluorescent markers such as Trp, thioflavin T and ANS, reveal structural changes of casein structures after homocysteinylation reflected by an increase in beta-sheet content, which in some cases may be characteristic of amyloid-like transformations. CD spectra also show an increase in beta-sheet content of homocysteinylated caseins. Casein homocysteinylation leads in all cases to aggregation. The sizes of aggregates and aggregation rates were dependent on homocysteine thiolactone concentration and temperature. DLS and microscopic studies have revealed the formation of large aggregates of about 1-3μm. Homocysteinylation of α(S1)- and β-caseins results in formation of regular spheres. Homocysteinylated κ-casein forms thin unbranched fibrils about 400-800nm long. In case of κ-casein amyloidogenic effect of homocysteinylation was confirmed by Congo red spectra. Taken together, data indicate that N-homocysteinylation provokes significant changes in properties of native caseins. A comparison of amyloidogenic transformation of 3 different casein types, belonging to the IUP protein family, shows that the efficiency of amyloidogenic transformation upon homocysteinylation depends on micellization capacity, additional disulphide bonds and other structural features.  相似文献   

20.
1. Fractions have been obtained from human whole casein closely resembling the αs- and κ-fractions of cow casein. 2. The αs-fraction (human αs-casein) is calcium-sensitive, heterogeneous in zone analysis and inert towards rennin. 3. The κ-fraction (human κ-casein) is calcium-insensitive, heterogeneous in zone analysis, and forms a soluble glycopeptide when acted upon by rennin. 4. Human κ-casein stabilizes human αs-casein in the presence of Ca2+ ions. 5. The glycopeptides released by rennin from human casein and from cow casein have been compared. There are important differences in both the peptide and non-peptide structures of the two compounds. 6. In both human and bovine glycopeptides some of the carbohydrate residues are joined to the peptide by O-glycosidic links with threonine, and possibly with serine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号